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Determination of the total reaction entropy of cells 

 

The ensemble method of statistical thermodynamics is applied for finding the 

total reaction entropy of the system if the reaction consists of the sum of fractional 

contributions by elementary modes. We consider the entire metabolic network of the cell 

as a canonical ensemble of n discrete states defined by elementary modes. Because each 

elementary mode starts with the uptake of glucose molecules, one can characterize each 

of the n discrete states by the reaction entropy iS  per molecule glucose reacted and one 

can observe the number ia  molecules of glucose that are metabolized through each 

elementary mode. Thus, we can describe any one state of the ensemble by the following: 

State No: 1, 2,  3, …,  n  

Entropy generation: 1S , 2S , 3S , …,  nS  

Molecule of glucose utilized: 1a , 2a , 3a , …, na  

On the basis of mass conservation and entropy generation being extensive, the entire 

ensemble must satisfy the two constraints:  

 ia    (1) 

 
 

i ia S Z   (2) 

where ia  is the number of molecules of glucose metabolized by the i
th

 discrete state, iS  

is the reaction entropy generated by this discrete state,   is the total number of 

molecules of glucose being utilized by the entire ensemble, and Z represents the entropy 

formation of the ensemble. 
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The distribution of the   molecules of glucose such that 
1a  is in the 1

st
 discrete state, 

2a  are in the 2
nd

 discrete state, and so on can be achieved in many possible ways. The 

number of ways 
1 2 3( , , ,...)W a a a  that   identical, distinguishable molecules of glucose 

can be arranged into groups, each associated with a specific discrete state, is defined as: 
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Consequently, the probability ip  that any given molecules of glucose is in the i
th

 discrete 

state is given by averaging over all the possible distributions 
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If   is arbitrarily large, the distribution function ( )iW a  can be made arbitrarily narrow. 

The 1 2 3( , , ,...)W a a a    where ia is the set of ia ’s that maximizes the function ( )iW a  will 

be overwhelmingly huge as compared to ( )iW a  for other remaining set of ia ’s. Thus, the 

function ( )iW a  can be approximated as 1 2 3( , , ,...)W a a a   , that is the most probable 

distribution. We can then write the probability ip  
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where ia  is the set of ia ’s associated with the i
th

 discrete state for the most probable 

distribution ( )iW a  of the ensemble.  

Eq (5) reveals that we can compute the probability of the i
th

 quantum state by determining 

only the distribution of a set of ia  that maximizes a function ( )iW a  under the given 
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constraints. The solution of this problem can be obtained with the Lagrange multiplier 

method. 

The function ( )iW a  can be simplified by taking the natural logarithm of ( )iW a  and 

with Stirling’s approximation ln ( )iW a  becomes 
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Applying the method of Lagrange multipliers, we next differentiate Eq (6) with respect to 

ia , while enforcing the two constraints Eq. (1) and (2) 
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where  and   are the Lagrange multipliers. 

The set of ia ’s  that maximizes 1 2 3( , , ,...)W a a a  can be found from solving Eq (7). The 

solution of ia ’s for the most probable distribution for the systems making up the 

ensemble is 

 1            1,2,  ....,  iS

ia e e i n
       (8) 

Combining Eq (1) and (8), we obtain 

 
1 iS

e e
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We can then find an expression for the probability ip  in term of iS  and   by 

substituting Eq (8) and (9) into Eq (5) 
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where Q is a partition function that has been defined as iS
Q e

 
  
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The expression of Eq (10), which is analogous to the Boltzmann distribution law, 

suggests that the usage probabilities of elementary modes can be determined based on the 

reaction entropy of individual elementary modes.  

We can rewrite the probability function Eq (10) in terms of the reaction entropy of 

the i
th

 discrete state 

 
1 1

ln lni iS p Q
 

     (11) 

At a temperature of absolute zero, the total entropy of a system has a value of zero, and 

the probability of generating zero entropy is 1, according to the Third law of 

thermodynamics. This leads to Q = 1. 

With the constant 1/   being replaced by b, Eq (11) thus becomes  

 lni iS b p     (12) 

Eq (12) expresses the reaction entropies of the individual elementary modes as a linear 

function of the natural log of the usage probabilities of the corresponding elementary 

modes.  

Thus, the total reaction entropy of the cell system is 

 TOT i iS S p S     (13) 

Substituting Eq (12) into Eq (13), we obtain 

 lnTOT i iS b p p     (14) 

Eq (14) describes the total reaction entropy of the cell system as a weighted sum of the 

usage probabilities which is similar to the expression for Boltzmann’s entropy. The total 

rate of entropy production of the cell system 
TOTSr  is then defined as the product of the 

uptake rate of glucose molecules and the total reaction entropy of the cell system. 
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TOTS g TOTr r S    (15) 

One can multiply Eq (12) with the asymptotic uptake rate of glucose ( gr
 ) to obtain the 

rate of entropy production of individual modes for a fully evolved metabolism 

 ln
iS ir b p  

     (16) 

where the 
iSr is equivalent to g ir S  , and ip  is the pathway probability of elementary 

modes for a fully evolved metabolism.  

 

 


