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ABSTRACT
Using cloned DNA from the vicinity of the yeast mating type locus (MAT)

as a probe, the wild type allele of the cryptopleurine resistance gene
CRY1 has been isolated by the technique of chromosome walking and has been
shown to be identical to the gene for ribosomal protein 59. A recessive
cryRl allele has also been cloned, using the integration excision method.

The genetic distance from MAT to CRY1 is 2.2 cM, while the physical
distance is 21 kb, giving a ratio of about l0kb/cM for this interval. The
phenotypic expression of both plasmid borne alleles of the gene can be
detected in vivo. The use of this gene as a hybridization probe to examine
RNA processing defects in the rna 2, ma 3, ra 4, ma 8, and rna 11 mutants
is also discussed.

INTRODUCTION

The rates of synthesis of ribosomal proteins are closely coordinated

under a variety of growth conditions in both prokaryotes and eukaryotes (1).
Ribosome biosynthesis is consequently an excellent system for examining the

mechanisms used to regulate a group of functionally related genes. In

Escherichia coli, 52 ribosomal protein (rp) genes are organized into at least

16 operons. For many of the operons, autogenous feedback regulation of

transcription or translation has been demonstrated. However, not all rp

operons studied fit this model perfectly, and much work remains in

determining the way in which a balance is maintained among the synthesis of

ribosomal proteins1and how rp gene expression is modulated in response to

bacterial growth rate and amino acid starvation (reviewed in 2). Only
recently, with the isolation of recombinant DNA molecules containing

Saccharomyces, Drosophila, Mus, and Xenopus rp genes, have probes become

available for studying the organization and expression of eukaryotic rp

genes (3-8). These genes are not significantly clustered (5, 9, 10), some

of them are repeated (3, 5, 11), and in yeast, many of the rp genes contain

intervening sequences (5, 9, 12, 13). Preliminary experiments using cloned

eucaryotic rp genes suggest that coordinate expression of eukaryotic rp
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genes occurs under a variety of conditions, and is regulated via the

concentration of mRNAs and/or availability for translation of rp mRNAs

(14-17).

We would like to analyze the processes regulating the expression of

yeast rp genes in vivo by assaying the expression of a cloned rp gene

transformed into yeast. We hope to determine which sequences in or flanking
the rp gene are involved in its transcription, processing, and translation,
by assaying the expression of mutants of the gene generated in vitro.

These experiments require that we be able to distinguish the expression of

the plasmid borne rp gene from that of the chromosomal copy of that rp gene

and that the expression of such a gene can be easily assayed, If these

criteria are met we should be able to isolate interesting intragenic and

extragenic mutations which affect rp synthesis. For these purposes we

have chosen to clone a yeast antibiotic resistance gene, R , thought to

encode a ribosomal protein, Resistance to cryptopleurine, an inhibitor of

protein synthesis, is due to a single recessive nuclear gene, and is a

readily assayable phenotype. We anticipated that expression of either the

CRYs1 allele or the ry1 allele from plasmids in yeast could be

distinguished from that of the chromosomal copy of the gene.

The CRY1 gene was thought to code for a ribosomal protein, since cell

free translation experiments using combinations of 60S and 40S ribosome

subunits from cryptopleurine sensitive and resistant yeast have demonstrated

that cryptopleurine resistance in vitro is a property of the 40S subunit

(18). Binding studies with cryptopleurine identified a high affinity
binding site on the 40S subunit (19). The CRY1 gene is tightly linked to

the yeast mating type locus MAT (18, 20, Figure 1f.
By using plasmids containing DNA from the vicinity of MAT as the

initial probes for several rounds of overlap hybridization screening, we

have isolated a fragment of DNA 21 kb centromere proximal to the mating type

locus which contains the gene for rp59 and for cryptopleurine resistance.

Preliminary characterizations of the structure and expression of this gene

are presented.

MATERIALS AND METHODS

Strains and Plasmids: Saccharomyces cerevisiae strains DBY745 cry

(MATa leu2-3 leu2-112 ura3-52 adel cryl) and DBY745 (MATa leu2-3 leu2-112

ura3-52 adel), the YEpl3 yeast SauIIIA bank (constructed by Nasmyth and

Tatchell (21) and the centromere distal MAT Hind III-EcoRl subclone were
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obtained from Dr. J. Haber. The rna2 (ts368), rna3 (ts125), rna4 (ts339),

rna8 (ts219), and rnall (ts382) alleles used in this study were derived

by Robert Last from strains obtained from the Yeast Genetic Stock Center.

Temperature sensitive segregants of crosses with each of these to wild type

strains, in which temperature sensitivity segregated 2:2 with respect to

wild type, were used to ensure that each strain contained a single ts

mutation. The yeast Sau IIIA library in YEp24, as well as the vectors

YEp24, YRpl7, and YIp5 were provided by Dr. D. Botstein. The yeast partial

EcoRl X phage Charon 4A library used in this study was that previously

described by Woolford and Rosbash (9). The centromere proximal MAT HindIII-

EcoRl subclone, DP366, was obtained from Dr. J. Hicks. A Tyl homologous

probe, pPM21, was provided by Dr. M. Olson. Yeast transformants maintained

on selective media were assayed for cryptopleurine phenotype by replica

plating to selective media plus 1-10 iM cryptopleurine.

Yeast Transformation: The yeast strains DB745 and DB745 cry were

transformed essentially as described by Sherman et al (22). Transformants

containing integrating vectors were tested for stability by growing

isolated colonies to stationary phase in 25 ml YEPD (10-12 generations) and

comparing plating efficiencies on complete and selective media.

Nucleic Acid Preparation: Bacterial plasmid DNA and X phage Charon 4A

DNA were prepared as previously described (3,9). Yeast poly(A) RNA was

prepared from A364A (wild type) or rna2, 3, 4, 8, or 11 ts mutant strains

either grown at 23°C or shifted to 36 C one hour prior to extraction, as

described by Hereford and Rosbash (23). Yeast genomic DNA was prepared by

a modification of the method of Cryer et al (24).

Plaque and Colony Hybridization: Phage were plated, screened, grown

and purified as previously described (9). The plasmid libraries were

screened by the colony hybridization protocol of Gergen et al (25).

Approximately 10,000 colonies were screened on LB+amp plates at a density of

1,000 colonies per 9 cm petri dish. Positive colonies were picked,

streaked for single colonies, and rescreened to obtain pure colonies.

Gel Electrophoresis, Transfer, and Filter Hybridization of DNA and

RNA: Restriction endonucleases,DNA polymerase, and T4 DNA ligase were

purchased from New England BioLabs, Boehringer Mannheim and New England
Nuclear and used according to their specifications. DNA restriction

fragments were electrophoresed as previously described (3). DNA was

transferred to nitrocellulose filters by the method of Southern (26) with

the modifications that the gels were rinsed twice in 0.25M HCl for 15
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minutes prior to denaturation to aid in the transfer of large fragments,

and the transfers were done in 20X SSC (3.OM NaCl, 0.3M Na citrate).

RNA (total or polyA+) was electrophoresed on 1.5% agarose gels

containing 6% formaldehyde, and O.02M sodium 3-[N-morpholino] propanesulfonic

acid, 0.005M sodium acetate, and O.001M EDTA, pH 7.5 (lX MOPS). RNA

samples were prepared to be 6% formaldehyde, 50% formamide, and IX MOPS

(27). These samples were heated to 650C for eight minutes, 5X sample buffer

(50% glycerol, 0.1% bromophenol blue, 0.1% xylene cyanol FF, and 1X MOPS)

was added, and the samples were immediately loaded on the gel for

electrophoresis. These gels were blotted to nitrocellulose in 20X SSPE

(20 mM disodium EDTA, 0.16M NaOH, O.2M NaH2PO4, 3.OM NaCl). After

transferring overnight, the filters were washed in 2X SSPE, air dried, and

baked at 800C in a vacuum oven for two hours.

Both DNA and RNA filters were hybridized to DNA labeled in vitro with

P by nick translation (28, 29), as described by Davis et al (30). The

filters were air dried and exposed as described previously.

Hybridization Selection and Cell Free Translation of RNAs: Polypeptides

encoded by cloned DNAs were identified by the method of Ricciardi et al

(31). Phage or plasmid DNA (20 yg) was linearized by restriction

endonuclease digestion, immobilized on a 1 cm2 nitrocellulose filter, and

hybridized to 15 pg of polyA+ RNA. These RNA samples were then translated

in a cell free wheat germ extract (32) containing L 35 ] methionine.

Gel Electrophoresis of Proteins: Radioactively labeled translation

products of RNA complementary to cloned yeast DNA were analyzed by

electrophoresis on SDS-polyacrylamide gels containing a 12-20% linear

gradient of acrylamide (33). Translation products were identified as

ribosomal proteins by their comigration with unlabeled yeast ribosomal

proteins on the two-dimensional gel system described by Warner and

Gorenstein (34). Yeast ribosomal proteins were isolated as described by

Warner and Gorenstein (34). In some cases, the gels were stained with

silver nitrate (35).
Physical and Biological Containment: Recombinant DNAs were prepared

in compliance with NIH Guidelines for Recombinant DNA Research.

RESULTS

Isolation of the CRY1 and RP59 Gene

CRY1 is approximately 2.1 cM centromere proximal to MAT on

chromosome III (Figure 1). Correlations of genetic and physical
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Figure 1. Genetic map of chromosome III of Saccharomyces cerevisiae,
illustrating the relationship of MAT, CRY1, and the centromere.

distances in several intervals of the yeast genome including a large

stretch of chromosome III indicated that 1 centimorgan is equivalent to X

3000-5000 base pairs of DNA. Thus we expected that the CRY1 gene might be

6 to 10 kb from the MAT locus, and could be isolated by chromosome walking

(39, 40) using a cloned single copy DNA probe from the region around MAT.

Plasmids containing HindIII-EcoRl fragments on either side of MAT were used

as plaque hybridization probes to screen the recombinant phage library as

described in Materials and Methods. The 0.5 kb HindIII-EcoRl fragment

(DP366) was particularly useful, as it had been shown (41) to be located on

the centromere proximal side of MAT, allowing us to bias our "chromosome

walking" in the proper direction. The phage XMl-XM4 were obtained,

containing overlapping fragments of yeast DNA extending 25kb centromere

proximal from MAT (Figure 2). These phage were used directly as colony

CRYlAI I II
XM2i 1

XM31 No

XM4 1--H

pJLlF i

pJL2 i --4
pJL3f

pJL4t I- t
pJL5E-I+--t--

pJL6et I t
pCRYlZ I I 1i 1

pJL371-1
pJL321
CRY Hind L.2

I 1kb

Figure 2. Cloned DNAs from the vicinity of MAT. Restriction endonuclease
cleavage sites: +, EcoRl, 2 , HindIII, Y , SalI, 9 BamHl. All EcoRl
sites in the cloned interval are shown. Only the relevant cleavage sites
for other enzymes are shown. The centromere proximal and centromere distal
MAT HindIII-EcoRl probes used in the initial screen of the phage library
are indicated by solid bars. The locations of MAT and CRY1 are shown by
open bars.
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Figure 3. Two-dimensional gel electrophoresis of hybridization translation
products of pJL32. a. Silver nitrate stained gel of ribosomal proteins
electrophoresed as described in Materials and Methods. The positions of
rp 39 and rp 59 are indicated by arrows. b. Autoradiogram of cell free
translation products of RNA hybridized to pJL32. Cloned DNA containing
the rp 39 gene was included in the hybridization translation as a positive
control.

hybridization probes to the YEpl3 and YEp24 yeast transformation plasmid
libraries to isolate plasmids pJLl - pJL6 (in YEpl3) and pCRYl (in YEp24),
containing overlapping yeast genomic fragments from the same interval

(Figure 2). DBY745cry yeast transformed with pCRYl but not pJLl - pJL6,
YEpl3, or YEp24 were cryptople-urine sensitive, from which we conclude that

S

the CRY 1 gene and sequences sufficient for its expression are present
Sentirely within pCRYl DNA. The CRY 1 gene was further localized by

subcloning the 2.2 kb HindIII restriction fragment of pCRYl into YEpl3.
This plasmid was capable of transforming DBY745cry to leucine prototrophy
and cryptopleurine sensitivity, demonstrating that this restriction

fragment contains a functional copy of CRY 1.

In order to determine whether any ribosomal protein genes were located

within the cloned interval, RNA complementary to each recombinant was

selected by hybridization to filter bound DNA and was translated in a

wheatgerm cell free lysate. The radioactive translation products were

analyzed by two dimensional polyacrylamide gel electrophoresis. As shown

in Figure 3, the subclone pJL32 hybridizes to mRNA coding for a 17,000
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Figure 4. RNA blot analysis of transcripts in the vicinity of CRYl.
PolyA+ RNA (2-.g) from rna2 yeast grown at 230C, or grown at 230C and
shifted to 370C for one hour, was electrophoresed and transferred to
nitrocellulose as described in Materials and Methods. The blot was probed
with cloned DNA labeled in vitro with 32p. The indicated sizes of the
transcripts in nucleotides were obtained by comparison with pBR322
restriction fragments denatured as described for RNA and electrophoresed
on the same gel. The probes were: (a) 1078, a plasmid containing the
rp 39 gene, (b) pJL32, (c) pJL37

dalton polypeptide which comigrates with rp59 on a two dimensional gel.
Translatable rp59 mRNA was also selected by hybridization to the subclone

pJL37 (data not shown) indicating that the rp59 gene spans the chromosomal

Eco Rl site common to these two DNAs. This Eco Rl site is internal to the
2.2 kb HindIII restriction fragment containing CY (See Figures 2 and 5).

An attempt was made to determine whether the cRy allele encoded an

electrophoretic variant of rp59. However, the cell free translation

products of rp59 mRNA selected from both DBY745 and DBY745cry RNA

comigrated on two-dimensional gels (data not shown>.
The CRYl Gene and rp59 Gene are Identical

Evidence suggesting the identity of the CRYl and rp59 genes was

obtained by mapping transcripts in this region of chromosome III. We took

advantage of the fact that the rp59 gene, like most other yeast rp genes, is

known to be affected by mutant alleles of the RNA2 gene (42, and J, Larkin,
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Figure 5. Locations of transcripts in the vicinity of CRY1. The results
of the RNA blots in Figure 4 and similar experiments are summarized in this
figure. Possible precursor-mature transcript relationships are indicated
by arrows. The symbols for restriction endonuclease cleavage sites are
identical to those in Figure 2.

unpublished). Yeast containing the temperature-sensitive ts368 allele of

RNA2 are unable to correctly process the transcripts of many rp genes at

the nonpermissive temperature, apparently due to the presence of intervening
sequences in these genes (5,9,12). As a result, RNA species complementary

to these genes which are larger than their mature mRNAs accumulate in this

mutant at the nonpermissive temperature. PolyA+ RNA isolated from rna2

yeast grown at 23°C (the permissive temperature) and from the same strain

grown at 23°C and shifted to 37C for one hour, were separated by gel

electrophoresis under denaturing conditions, blotted to nitrocellulose, and

probed with radioactively labelled DNA fragments. The results of this

experiment are shown in Figure 4, and the conclusions of this and other RNA

blotting experiments are diagrammed in Figure 5. As shown in Figure 4,
lanes B and C, there is one transcript present at 2300 that is 630

nucleotides long, is of comparable abundance to the rp39 mRNA (lane A), and

hybridizes to both pJL32 and pJL37. The concentration of this transcript is

decreased approximately tenfold in 37°C rna2 RNA. Another transcript 960

nucleotides long hybridizes to both subclones, and its concentration is

greatly increased in RNA from cells shifted to 370C.
Thus the location and response to rna2 of the 630 nucleotide and the

960 nucleotide transcripts suggest that they are the mature message and an

incompletely processed precursor of the rp59 gene. Northern blotting using

the 2.2 kb HindIII restriction fragment demonstrates that these two

transcripts are the only detectable transcripts complementary to this

fragment (see Figure 8) which includes all of the functional CRY1 gene. It

follows that the rp59 gene and the CRY1 gene are identical.
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Figure 6. Cloning of the R resistance allele. The strain DBY745cry
was transformed to uracil prototrophy with pJL38, a derivative of YIp5
which contains a 3.5 kb EcoRl restriction fragment including the centromere
distal portion of CRYl. The expected integration event, confirmed by
Southern blotting, is depicted above. Genomic DNA was isolated from a
transformant, cut with BamHl (arrows), ligated with T4 DNA ligase, and
used to transform E. coli to ampicillin resistance.

Cloning the Resistance Allele of CRY1

For many types of genetic studies, it would be useful to have a cloned

copy of the cryptopleurine resistant cry 1 allele. For this reason, the
R allele was acquired by the integration-excision method (43). The 3.5

kb EcoRl fragment from pJL32, which contains a centromere proximal portion

of the CRYs1 gene, was transferred to the integrative transformation vector

YIp5. This plasmid was used to transform DBY745cry to URA . Stable URA

transformants were obtained after 10-12 generations of nonselective growth

in liquid YEPD, presumably resulting from homologous recombination of the

YIp5 recombinant plasmid into the chromosomal CRY1 locus. The expected

integration event is illustrated in Figure 6. Transformants with the proper

integrated structure were recognized by Southern blots to restriction

fragments of genomic DNAs cut with appropriate restriction enzymes. If

recombination between the plasmid and the chromosome occurs to the left of

the cryR1 mutant lesion as depicted in Figure 6, then it should be possible
to recover the R allele on a BamHl fragment containing the ampicillin

resistance gene and an E. coli origin of replication, Recombination to the

left of cryR1 should be favored by the location of the CRYs1 sequences on

the extreme right of the plasmid insert. Also, if it is assumed that the

partial CRYsl gene present on the plasmid is not functional, then only the

recoverable allele of the gene should be expressed. Consistent with this

expectation, all stable transformants were cryptopleurine resistant.
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Figure 7. Is CRY1 single copy? 5vg of DBY745cry genomic DNA, and
approximately one genome equivalent of XM4 DNA (see Figure 2) was digested
with EcoRl or HindIII, electrophoresed and transferred as described in
Materials and Methods. Blots were probed with DNA labeled in vitro with
32p. Lanes 1, 3, 5, 7, 9, and 11 are genomic DNA. Lanes 2, 4, 6, 8, 10,
and 12 are XM4 DNA. Lanes 1, 2, 5, 6, 9, and 10 were digested with EcoRl.
Lanes 3, 4, 7, 8, 11, and 12 were digested with HindIII. Lanes 1, 2, 3,
and 4 were probed with a HindIII-BglII fragment centromere proximal to the
bulk of the CRY1 gene. Lanes 5, 6, 7, and 8 were probed with a BglII-EcoRl
gragment which includes part of CRY1. Lanes 9, 10, 11, and 12 were probed
with pJL37, which includes the centromere distal end of CRY1. Restriction
endonuclease cleavage sites are as above except X , BgIII. Two small
HindlII fragments predicted to hybridize to pJL37 were too small to be
retained on this gel.

Genomic DNA from appropriate transformants was digested with BamHI, ligated

under dilute conditions, and used to transform E. coli to ampicillin

resistance. Plasmid DNA was isolated from a number of transformants, and
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several of these DNAs were found to contain the expected restriction

pattern. DNA containing the putative cryRi allele was subeloned from one

of these plasmids into YEp24. When this subclone was used to transform the

Cry strain DBY745, all of the transformants were Cry (see Table I and

below), demonstrating the successful isolation of the srx.A allele from

DBY745 cry.

Is the CRY1 Gene Single Copy?

Most, if not all rp genes in mammals are repeated (16). Recently, it

has been suggested that some rp genes in yeast are also repeated (5). When

the 2.2 kb HindIII fragment, which contains CRY1, and no other detectable

genes (see Figure 5), is radioactively labeled and hybridized to Southern

blots of genomic EcoRl and RindIII fragments, a single additional band was

seen in each lane which was not predicted by the restriction map of the

CRY1 region (Figure 7). Thus there is a sequence within the 2.2 kb

HindIII fragment which is duplicated. To determine whether the duplicated

sequence lies within the CRY1 gene, it was localized more specifically.

A 1.1 kb HindIII-BglII fragment centromere proximal to most of the CRY1

gene (probe A, Figure 7), a 0.5 kb BglII-EcoRl fragment containing the

centromere proximal portion of CRYl (probe B, Figure 7) and pJL37

(probe C, Figure 7) were used to probe blots of genomic EcoRl and HindIIl

digests, as described above. The additional EcoRl and HindIII fragments

(4.6 kb and 5.4 kh respectively) were homologous to the 0.5 kb BglII-EcoRl

probe, but not to the HindIII-jjlII fragment or to pJL37. Since the CRYI

gene extends into the EcoRl fragment cloned in pJL37, that portion of the

gene within pJL37 must not be duplicated, i,e. there is only one intact

CRY] gene in Saccharomyces cerevisiae, consistent with the. existence of

only one genetic locus capable of conferring a high level of resistance to

cryptopleurine.
Effect of rna Mutations on the CRY1 Gene

The synthesis of translatable mRNA for most ribosomal proteins is

dramatically reduced in yeast containing temperature-sensitive lethal

mutations in ten different genes, RNA2-RNAll. This effect has been studied

in greatest detail for the ts368 allele of RNA2 and the rp5l gene, where it

has been demonstrated that processing of an intervening sequence from the

rp5l transcript is blocked at the nonpermissive temperature resiulting in a

decrease in concentration of mature rp5l mRNA and the accumulation of a

higher molecular weight precursor (12). We assume that the CRY1 gene, like
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Figure 8. Molecular phenotype of rna mutants. Total RNA (4 ulg) from
rna2, 3, 4, 8, or 11 yeast grown at 230C, or grown at 230C and shifted to
370C for one hour, was electrophoresed and transferred to nitrocellulose
as described in Materials and Methods. The blot was probed with a 32p
labeled 2.2 kb HindIII restriction fragment containing the CRY1 gene.

most other yeast ribosomal protein genes, contains one or more intervening

sequences, since Northern blotting demonstrated that the "mature" 630
nucleotide CRY1 transcript is decreased in concentration at 37°C in ts368,

and a 960 nucleotide transcript homologous to the gene is increased in

concentration (Figure 4, lanes B and C). We would like to study the

molecular phenotype of each of the rna mutants, in order to learn whether

mutations in each of the RNA genes affect processing of yeast transcripts,

and, if so, what role each of the RNA gene products might play in the

process. Cloned ribosomal protein genes provide a convenient probe to

study this process. PolyA RNA was isolated from wild type (A364A), rna2

(ts362), rna3 (ts125), rna4 (ts339), rna8 (ts219), and rnall (ts382) cells

grown at 23°C and shifted to 37°C for one hour prior to harvesting. These

RNAs were electrophoresed on denaturing gels, blotted, and hybridized with

the radioactively labeled 2.2 kb HindIII fragment containing the CRY1 gene.

As shown in Figure 8, the concentration of the 630 nucleotide transcript is

decreased in each mutant grown at 37°C, while in each case the 960

nucleotide transcript is increased in concentration, although to variable

extents in each mutant.
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TABLE I

Phenotype
Plasmid Transformed into DBY745 Transformed into DBY745cry

CryS CrR CrSC R_ Cry

YEpl3 20/20 0/20 0/20 20/20

YEp24 20/20 0/20 0/20 20/20

YRpl7 20/20 0/20 0/20 20/20

YEpl3CRY 1 N.D. 40/40 0/40

YEp24CRY 1 N.D. 24/24 0/24

YEpl7CRY 1 N.D. 8/8 0/8

YIp5CRY 1 N.D. 3/6 3/6

YEp24cry 1 0/32 32/32 0/8 8/8

YRpl7cry 1 31/32 1/32 0/8 8/8

YIp5cry 1 6/8 2/8 0/8 8/8

The plasmid YEp13CRY 1 contains the 2.2kb Hind III fragment. All
other Ciy plasmids contain a R5.0 Kb BamHl - SalI fragment carrying either
the CRY 1 allele or the cry 1 allele. Cryptopleurine resistance was
determined on plates containing 5 um cryptopleurine after three days of
growth. Under these conditions, diploid strains heterozygous for CRY1 were
equally as seRsitive to cryptopleurine as DBY745, and all transformants
scored as Cry were fully as resistant as DBY745cry.

Expression of Either Allele of Plasmid Borne CRY1

Can be Distinguished in Yeast
SWe have cloned the CRY 1 gene in order to obtain a yeast ribosomal

protein gene which we can reintroduce into yeast by transformation, and

whose expression in vivo can then be readily assayed and distinguished

from that of the chromosomal copy of the gene. For this reason, the

in vivo expression of both the CRY 1 allele and the cryR1 allele in

several yeast transformation vectors was examined. The 5.0 kb BamHI-Sal I

fragment containing CRY s1 was subcloned from pCRYl into the vectors YIpS,

YRpl7, and YEp24, and transformed into the CryR strain DBY745cry. All

cells transformed to uracil prototrophy with the independently replicating,

multicopy plasmid derivatives of YEp24 and YRpl7 were cryptopleurine

sensitive, while half of those transformed with the YIp5 derivative

containing CRYS1 were sensitive. A similar inconsistency in phenotypes of

integrative transformants has been observed at the suf2 locus, and may be

attributable to gene conversion associated with the integration event (44).
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Similarly, the 5.0 kb BamHI-Sal I fragment containing the cryRi

resistance allele was subcloned into YIp5, YRpl7, and YEp24, and each

recombinant was used to transform both the CryR and Crys strains DBY745cry

and DBY745 to uracil prototrophy. In each case all of the DBY745cry URA+
transformants were CRY (Table I). When the cryR1 allele was transformed

into the sensitive strain, DB745, only those yeast transformed with the

more stable, high copy number plasmid derivative of YEp24 were uniformly

resistant (Table I). When only one intact copy of the resistance gene

cloned in YIp5 was integrated at the sensitive locus (as assayed by

Southern blotting) or when the resistance allele were transformed into the

sensitive strain using derivatives of the less stable plasmid YRpl7,

most of the URA transformants were sensitive. These results are

consistent with the transforming plasmids containing the CryR allele of

cryptopleurine, which is recessive to the Crys allele when one copy of each

gene is present. The in vivo expression of either plasmid borne allele of

CRY1 can be detected phenotypically, providing us with a variety of

possibilities for assaying rp59 gene expression.

DISCUSSION

The results presented here demonstrate the isolation of the CRY s1 gene

and its identity with the rp59 gene. CRYs1 was cloned by using previously

cloned single copy DNA centromere proximal to the mating type locus as a

probe for overlap hybridization to "walk" from MAT to CRY s1 on chromosome

III. Cloned DNA in yeast transformation vectors was assayed for the

presence of the CRY 1 gene by screening the plasmids for the presence of

sequences capable of transforming a cryptopleurine resistant yeast strain to

sensitivity. By these means we isolated the CRY s1 gene and localized it and

sequences sufficient for its expression within a 2.2 kb HindIII restriction

fragment 21 kb centromere proximal to MAT. The cryRl allele of DBY745cry

was cloned by the integration-excision method pioneered by Roeder and Fink

(43). Hybridization translation assays and Northern blotting demonstrated

that the rp59 gene is present in this 2.2 kb HindIII fragment, and that it

is the only detectable gene in the fragment, from which we conclude that the

CRY1 and rp59 genes are identical.

An unexpected finding was that the MAT-CRY1 physical distance was

21 kb. In most yeast strains, the genetic map distance of this interval

is slightly over 2 cM (J. Haber, personal communication), giving a ratio of

about 10 kb/cM. This ratio is almost double the highest previously
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determined ratio of 5.6 kb/cM for the CYCl-sup4 interval on chromosome X.

By taking advantage of a circular chromosome III generated via recombination

between HML and MAT, Strathern et al (36) were able to estimate a ratio of

2.7 kb/cM for a large portion of chromosome III including the CRYl-MAT

interval. This region of chromosome III shows no evidence of gross

rearrangement in several strains of yeast which have been tested (this paper,

and unpublished results). Studies are underway to determine the significance

of this abnormally low recombination frequency and its relationship, if any,

to specific sequences around MAT.

No known genes have been mapped between MAT, CRY1, and the centromere

proximal gene PET18. We have detected at least eight transcripts in the llkb

immediately surrounding CRY1. One of these transcripts appears to be

associated with a repeated Tyl-like element centromere proximal to CRY1.

(See Figure 5, J. Larkin, unpublished data.) A small transcript homologous

to sequences centromere proximal of CRY1 accumulates a potential precursor

in rna2 yeast at the nonpermissive temperature (Figure 5, unpublished data).

However, the in vitro translation products of hybrid selected RNA from this

region do not comigrate with any basic or acidic ribosomal proteins on two

dimensional polyacrylamide gels. Thus we do not believe that this gene

codes for a ribosomal protein. We have found no other ribosomal protein

genes nearby to CRY1. A similar lack of clustering of ribosomal protein

genes has been found adjacent to other cloned ribosomal protein genes,

consistent with the notion that coordinate expression of yeast ribosomal

protein genes is not mediated by their organization into operons or tightly

linked domains of chromatin.

Recently, two other antibiotic resistance genes, the trichodermin

resistance gene TCM1, and the cycloheximide resistance gene CYH2, have been

cloned from yeast and shown to encode ribosomal proteins L3 and L29

respectively (4,6). These two genes, as well as CRY1, have each been

mapped to a single genetic locus. As expected from these results, both

TCMl and CYH1 are single copy yeast genes (4, 6). Our data suggest that

there is only one complete CRY1 gene. A duplicated sequence lies

centromere proximal to the EcoRl site internal of the CRY1 gene, but our

data lack the resolution to determine whether this sequence lies within the

CRYl gene or is adjacent to it, Should the duplicated sequence prove to

be present within the gene, at least three possibilities would be consistent

with the genetics of CRYl: 1) The CRY1 gene is duplicated but the second

copy of the CRY1 gene is non-functional (a pseudogene); 2) the second
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sequence may have only partial homology to the CRYl gene, and may code for

a protein, not rp 59, which does not interact with cryptopleurine; 3) the

duplicated sequences may be in a nontranslated portion of the gene. We note

that only the 630 nucleotide and the 960 nucleotide transcripts are

detected by RNA blotting using either a single copy DNA probe from CRYl,

or a probe containing CRYl sequences and the duplicated sequence.

Our data suggest that the CRY1 gene contains one or more intervening

sequences totaling approximately 330 nucleotides in length which are removed

via splicing from a 960 nucleotide poly(A) precursor to produce a 630

nucleotide poly(A) mRNA. As shown in Figure 8, this precursor transcript

accumulates to variable extents at the nonpermissive temperature in each of

the temperature-sensitive mutants rna2, rna3, rna4, rna8, and rnall. A

small amount of precursor is present in wild type cells at 2300 and 370C.

Similar results have been obtained using other cloned ribosomal protein

genes (Woolford, unpublished). The CRYl gene could be a useful probe for

the investigation of the processing of yeast transcripts and the role of

RNA gene products in this process. That both the cryRl and CRYs1 alleles

are expressed from plasmids means that the intervening sequences of these

genes are properly processed. We therefore are provided with not only a

probe for RNA processing but also a template for biochemically and

genetically assaying functions necessary for processing in yeast.

The ability to return DNA sequences which have been altered in vitro

to living yeast cells by transformation is a powerful tool in yeast

molecular biology. In preparation for the use of this approach to the

study of the regulation of the CRYl gene, we have begun to examine the

expression of both unaltered alleles of this gene when introduced into

yeast on vectors which have different copy numbers per cell. We have found

that under appropriate conditions, the expression of either allele present

on a plasmid in yeast can be distinguished. Although cryptopleurine

sensitivity is dominant to resistance in heterozygous diploids or

merodiploids, multiple copies of the R allele in a cell containing the

CRYs1 gene on the chromosome renders the cell phenotypically resistant

(Table I). This might result from an excess of "resistant" proteins being

synthesized relative to "sensitive" proteins, assuming there is no bias

toward assembly of either protein into otherwise functional ribosomes.
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