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1 Prior distribution

A problem-specific characterization of the parameters of a parsimonious higher-order HMM A
is achieved by including prior knowledge about data into the training of the model. This prior
knowledge is integrated by defining the prior distribution

PN ©]:=D1(7|01) - D2(A[O2)-D3(B[O3) (1)

over the model parameters A := (7, A, B) in dependency of the corresponding hyper-
parameters © := (01,02, ©3). This prior is defined as a product of three independent priors for
the initial state distribution 7, the set of transition matrices A, and the emission parameters B.
The prior Dy( A|©2) for the set of transition matrices is specified in detail in the section "Prior
Distribution’ of the manuscript. Thus, only the prior distributions for the initial state distribution
and the emission parameters require further considerations.

1.1 Prior for initial state distribution

The prior distribution for the initial state distribution 7 with initial state probability ; := exp(Ay,)
is defined by a commonly used transformed Dirichlet distribution

Dy(7]O1) = Z(01) Hexp mi Vi) (2)
€S

with hyper-parameter vector ©1 := (9;);es and 9; € R*. The normalization constant is repre-
sented by Z(01) := (3,5 i)/ [1;es L'(¥:) with Gamma function T'(z) = [ u” ™! - exp(—u) du
for all z € R™". This transformed Dirichlet prior has been specified in a general form in [1].

1.2 Prior for emission parameters

As prior for the state-specific emission parameters B a product of independent Gaussian-
Inverted-Gamma distributions

D3(B[O3) = [[ N(1:i103) - Ia(0:]O3) (3)

€S

is used with respect to the hyper-parameter matrix O3 := (n;, €;, 4, ;) ies containing the mean
n; € R, the scale parameter ¢; € R, the shape parameter r; € R™, and the scale parameter
a; € RT. The Gaussian-Inverted-Gamma distribution [2] for state i € S is defined by a Gaussian

distribution
Ve i =i\
,uz ‘ @3 \/—O_Z €xp 2 o

with mean 7; and standard deviation o;/./€; as prior distribution for the state-specific mean 1;,
and an Inverted-Gamma distribution

2@1'” (67
IG( a; | @3) = F(T')J'QTVH €xXp <_ ‘2>
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with shape parameter r; and scale parameter «; as prior of the state-specific standard deviation

;.

1.3 Choice of prior parameters

The prior defined in Eqgn. (1) provides the basics to integrate prior knowledge about the dis-
tribution of Array-CGH measurements into a parsimonious higher-order HMM for distinguish-
ing between genomic regions affected by DNA polymorphisms (deletions or sequence devia-
tions, amplifications) and unchanged regions. A histogram of log-ratios (e.g. Figure 2a in the
manuscript) helps to characterize the three states of the model in Figure S2 by appropriate
emission parameters. The following hyper-parameters have been considered in the case stud-
ies with a parsimonious HMM of order L on the Arabidopsis Array-CGH data.

The mean values of the Gaussian emission densities of the emission prior have been set to the
values n_ = —3, n— = 0, and .. = 1.5 according to the state-specific mean values ;. = —3,
u= = 0, and po = 1.5 initially defined for the Gaussian emission densities of the model. The
corresponding scale parameters have been setto e = e_ = 1 and e, = 5,000 providing more
flexibility for the training of the means of the Gaussian emission densities of the states '—’ and
'="than for the state ’+’ with respect to the asymmetric distribution of log-ratios having a long
negative tail peaking around zero. The shape parameter r; = T'/2 and the scale parameter
a; = Ts?/2 for the standard deviation of the Gaussian emission density of state i € S have
been set in dependence of the number of log-ratios T' = 364, 339 and their standard deviation
s =0.67.

All parameters of the initial state prior distrioution have been set to ¥; = 3 for each initial
state i € S. For each transition matrix A,, with [ € {1,...,L}, the hyper-parameters of the
corresponding transition prior Di( A, |©}) (see Egn. (2) in the manuscript) have been set to
¥;; = 3L~ for a transition from each state-context i € S' to each next state j € S.

To interpolate with parsimonious higher-order HMMs between a mixture model and higher-
order HMMs, the following logarithmic values of the tree structure hyper-parameter ¢ of the
tree structure prior D)(7;|¢) defined in Eqn. (3) of the manuscript have been considered.
Completely fused trees (e.g. Figure 3a in the manuscript) underlying a mixture model have
been obtained for log(¢) = —30,000 at latest. The range of log(¢) from —23,000 up to 0 has
been considered to obtain parsimonious trees (e.g. Figure 3b or Figure 4 in the manuscript).
This range has been sampled in steps of 1, 000 for —23, 000 to —1, 000, in steps of 100 for —1, 000
to —100, and finally from —100 up to 0 in steps of 10. Complete trees underlying a higher-order
HMM have been obtained for log(¢) = 10 at latest (e.g. Figure 3c in the manuscript).

The choice of prior hyper-parameters is generally depending on the characteristics and the
size of the data set. The chosen hyper-parameter values provided a good basis for a broad
range of parsimonious higher-order HMMs of different model complexities. Basic settings for
the emission prior can easily be made via a histogram of log-ratios. No data-specific prior
knowledge on transition parameters has been integrated. Characteristic transition parameters
of each state have been learned from the data based on the well-characterized emission dis-
tributions of a parsimonious higher-order HMM. Best-performing parsimonious models have
been found for values of the tree structure hyper-parameter log() in the interval between —100
and 0 representing parsimonious HMMs with clearly reduced model complexities in comparison



to complete higher-order HMMs.

2 Bayesian Baum-Welch algorithm

2.1 Basics of the Bayesian Baum-Welch algorithm

The Bayesian Baum-Welch algorithm is a training procedure that iteratively determines new
model parameters

AMh+1):= arg;nax (Q(X|A(R)) +1og(P[A]©O]))

for a parsimonious higher-order HMM based on the parameters of the current model A(h) (h =1
initial model) by maximizing Baum’s auxiliary function Q( A | A(h) ) in combination with the prior
distribution P[ A | © ] defined in (1). This Bayesian Baum-Welch algorithm performs a maximum
a posterior (MAP) estimate of model parameters instead of a maximum likelihood (ML) estimate
obtained by the Baum-Welch algorithm. In the following, Baum’s auxiliary function is considered
in detail and splitted into individual functions that enable the estimation of initial state, transition,
and emission parameters of the parsimonious higher-order HMM A(h + 1).

2.2 Baum’s auxiliary function

Baum’s auxiliary function provides the basis for the estimation of the model parameters using
the standard Baum-Welch algorithm. This function is defined by

K
QUAIAR)) == > > PLq|a(k), A(h)] - log(P[a(k), 7| A])

k=1 geSTk

in analogy to [3]. Here, the complete-data-likelihood of an emission sequence o(k) =
(o1(k),...,or, (k)) and a corresponding state sequence ¢'= (qu,. .., qr,) is given by

L—1 T,—1 Ty
Plo(k), ¢ A] := mg, - H A (qr,..q)qe41 H Qe (g1 t)Gt4+1 'Hb%(ot(k))

t=1 t=L t=1

under a parsimonious HMM of order L with parameters \ := (7, A, B). The initial state dis-
tribution 7@ := (m;);cs, the set of transition matrices A := {A,,..., A, }, and the emission
parameters B := (u;, 0;)ics are specified in more detail in the section 'Parsimonious Higher-
Order Hidden Markov Models’ of the manuscript. In addition to this, the function £(q) defines
the corresponding set of equivalent state-contexts ¢ € 7; to which a state-context ¢ € S' is
belonging under consideration of the corresponding state-context tree 7; that is underlying the
transition matrix A,,. Based on the complete-data-likelihood, Baum’s auxiliary function can be
split up into three independent functions

Q(A[A(R)) = Qu(T|A(h)) + Q2(A|A(R)) + Q3(B|A(h))



for representing each class of model parameters separately. Subsequently, the derivation of
these three functions and the corresponding model parameter estimations are considered in
detail.

2.3 Estimation of initial state probabilities

To estimate the initial state probabilities for the parsimonious higher-order HMM A(h + 1),
Baum’s auxiliary function for estimating the initial state probabilities is required. This function is
given by

[a—

K
og (m) > Pla=1i|d(k), A(h)]
K
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based on expressing the sum over all state sequences ¢ € ST+ by two sums. The first sum con-
siders all initial states 7 € S, and the second sum marginalizes over all state sequences ¢ € STk
with initial state ¢g; = i leading to P[q1 = i]d(k), A(h)], which represents the state-posterior
7% (i) computed under the current parsimonious higher-order HMM \(h) using extended ver-
sions of the Forward and Backward algorithm [4]. Finally, the initial state probability =; is pa-
rameterized in the log-space by A, := log (m;).

The new initial state probability wghﬂ) of state i € S is determined by combining Baum’s aux-
iliary function for initial state parameters with the corresponding prior distribution D;(7|©;)
defined in (2) with respect to the constraint ) . s exp(Ay,) = 1. This is done by applying the
method of Lagrange multipliers to the auxiliary function Q(7|A(h)) + log(D1(7|©1)) — 6 -
(X ies exp(Ax,)) — 1) with variable A, and Lagrange multiplier . This leads to the new initial

state probability

K
( ﬁ@) + v
(h+1) _ k=1
i K
(zzmv)) N (z m)
vES k=1 vES

of state ¢ € S for the parsimonious higher-order HMM A(h + 1).

2.4 Estimation of transition probabilities

For estimating the transition probabilities of the next parsimonious higher-order A(h+1), Baum’s
auxiliary function for the set of transition matrices is required. This function has been specified
by Q5,(A|A(h)) := Zle Q4( A, | M(h)) in the section 'Bayesian Baum-Welch Training’ of the
manuscript. In addition to this, Baum’s auxiliary function Qi( A,, | A\(h)) for transition param-
eters of the transition matrix A, has been defined in Eqn. (4) of the manuscript. Here, the



derivation of Q1( A,, | \(h)) for state-contexts of length | = L is given. This function is specified
by

Thp—1

K
Q3 (AIAMR)) =) Pl

k=1 t=L STk

‘ 5(k)7 )‘(h)] -log (af(Qt—L+17---7Qt)Qt+l)

=y

K Ti—1
= Z Zlog (GEJ)Z Z PlG—r41..t € & 41 = jlo(k), A(h)]
ey jes k=1 t=L
K Tp—1
=) > loglag) Y > Plgiri1.a =01 = 7| 8(k),A(h)]
¢ery jes k=1 t=L ic
K Tp—1
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ety jeS k=1 t=L i€

substituting the sum over all state sequences ¢ € ST+ by three sums. Two of these sums
are shown explicitly and the third sum is substituted as explained subsequently. The first sum
considers each set of equivalent state-contexts £ € 7;,. The second sum considers each next
state j € S. Now, a third sum is necessary to marginalize over all state sequences ¢ € S”* with
fixed current state-context ¢;—r.+1..+ :== (¢—r+1,--.,q:) € £ and fixed next state ¢.+; = j. The
resulting marginal distribution P[q_r+1..+ € &, ¢+1 = 7| 0(k), A(h)] is split up into its individual
probabilities P[¢i—r+1..+ = i, q+1 = j | 0(k), A(h) | by summing over all state-contexts i € £. This
probability is denoted by ¥ (4, 7) := P[G_r41..¢ = i, qr1 = j | 8(k), A\(h) ] that is computed under
the current parsimonious higher-order HMMs \(h) using extended versions of the Forward and
Backward algorithm [4]. Finally, the transition probability a,; is parameterized in the log-space
by As,, := log(ag;). Baum’s auxiliary function QL( A, | M(h)) for the transition parameters of the
initial time steps [ € {1,..., L — 1} can be obtained in analogy to this derivation. How all these
functions are used to determine the underlying optimal state-context trees and corresponding
optimal transition parameters is outlined in the following.

2.4.1 Scoring scheme for tree structures

The objective function for the computation of an optimal state-context tree 7; and its correspond-
ing transition matrix A,, is specified by

F(Aq):=>_fi(dc) (4)

gem

in terms of a scoring function f;(d.) for evaluating each existing set of equivalent state-
contexts ¢ based on its corresponding transition probabilities d@e := (a¢j);es. This scoring
function combines Baum’s auxiliary function of transition parameters Q.( A, | A\(h)) with the
corresponding transition prior D4( A,, | ©.) and the tree structure prior D( 7, | ) defined in the
Egns. (4), (2), and (3) of the manuscript. By regrouping and conflating of individual terms in
QLA+ | A(R)) +log(Di( Ay, |©4)) +log(Di( 7| ¢)), the scoring function

fild@e) = (g ) +log(y) +1og(Z(Oh)) (5)



for a set of equivalent state-contexts ¢ is obtained. This function consists of a function h;( d ),
the constant value log(y) of the tree structure prior, and the corresponding normalization con-
stant log(Z(le’f)) of the transition prior. The scoring function is used to determine the score of
any existing set of equivalent state-contexts of length [. The score of each equivalence class is
maximized by estimating the corresponding optimal transition probabilities for f;( d@. ). For doing
this, its sufficient to consider the function

K
S Aag [ DD efind) | + e 1<I<L
. jes k=1 ie¢
hi(dg) = — 6)
-
Shag [ (SN N eli i) | +9g | 1=L
jES k=1 t=L ic¢

representing the log-transition probability A, := log(ag;) that needs to be estimated for maxi-
mizing f,(d¢ ). As described in the previous section, the probability €7 (i, j) is computed under
the current parsimonious higher-order HMM A(%), and 1J¢; represents the corresponding hyper-
parameter defined for the transition prior.

Subsequently, the estimation of the transition probabilities for a set of equivalent state-contexts
is considered. Based on this, a high-level view of the dynamic programming approach in [5, 6]
for maximizing F'( A,, ) in (4) is given to provide an overview how an optimal state-context tree
and corresponding transition probabilities are computed efficiently.

2.4.2 Estimating transition probabilities of a set of equivalent state-contexts

The basis for the estimation of the transition probabilities belonging to a set of equivalent state-
contexts & is given by h;(d. ) defined in (6) in dependency of the state-context length I. This
function is maximized using the method of Lagrange multipliers in subject to the constraint
> jesexp(dq,;) = 1 specifying that all transition probabilities of the set of equivalent state-
contexts have to sum up to one. For a set of equivalent state-contexts of a fixed length 1 <[ <
L, the optimal transition probability is given by

K
ZZ?S?(LJ) + U¢j
af) = = u
(z L j>) ; (z ﬁ)
€€ jeS k=1 JjeS

for a transition from a state-context i € £ to a next state j € S at the fixed time step I. In
analogy, a set of equivalent state-contexts of length L has the corresponding optimal transition



probability

K Tp—1
(Z > Za‘f(m)) + g
(*) . k=1 t=L i€

Y = K Tp—1 (8)
(zzz > am) . (z ﬁ)

ic¢ jES k=1 t=L jes

for a transition from a state-context i € £ to a next state j € S at time steps ¢t > L. The
obtained transition probabilities maximize f;(d. ) in (5) and hy(dg ) in (6). This can be proven
like outlined in [7]. Subsequently, an extended state-context tree data structure is specified to
enable the computation of an optimal state-context tree and its corresponding optimal transition
probabilities for the next parsimonious higher-order HMM A(h + 1).

2.4.3 Extended state-context tree

To efficiently compute an optimal state-context tree 7, a data structure representing all existing
sets of equivalent state-contexts of length [ is required [5, 6]. This is realized by the extended
state-context tree 1; of height | defined to have the following properties.

e The root node r of ; in depth 0 is labeled by the set L[n] := {€} representing the empty
word e. Each node v in depth d,, € {1,...,[} is labeled by a non-empty subset L[v] C §
and is linked to its parent node V[v] in depth d,— 1. Each node v in depth d, € {0,...,l1—1}
has 2 — 1 child nodes whose labels represent all non-empty elements of the power set
of S. All leaf nodes of ¢; are in depth I.

e Each leaf v represents a set of equivalent state-contexts {(v) = {(i1,i2...,4;) : i1 €

Llv],i2 € L[V[v]],...,e € L[r]} of length [. The state-contexts of leaf v define all combi-
nations of states that are obtained by traversing the path from the leaf node v to the root
node r.

The fact that the child nodes of each non-leaf node represent all different non-empty subsets
of the power set of S ensures that all different sets of equivalent state-contexts of length [ are
represented by the extended state-context tree ;. The difference between the extended state-
context tree ; and the state-context tree 7; is that «; contains all different sets of equivalent
state-contexts, while 7; represents all state-contexts of length [ by a specific set of disjoint sets
of state-contexts.

Subsequently, the extended state-context tree ¢ is transformed into an optimal state-context
tree 7; by selecting the optimal set of disjoint sets of state-contexts representing the optimal
transition probabilities of the transition matrix A,, of the next parsimonious higher-order HMM
A(h+1).

2.4.4 Dynamic programming approach

The general scheme of the dynamic programming approach for computing optimal transition
parameters has been proposed for parsimonious higher-order Markov models in [5]. Further



refinements for a maximum a posterior estimation providing an optimal state-context tree, its
corresponding transition parameters, and more details on an efficient implementation have
been described in [6].

For determining the optimal transition parameters of the transition matrix A, of the next parsi-
monious higher-order HMM \(h + 1), this dynamic programming approach is used to maximize
the scoring function F( A,, ) in (4). An overview of the computational scheme of this algorithm
is given by the following steps.

e Initialization: For each leaf node v of the extended state-context tree v, in depth [ the
corresponding equivalence class ¢ of v is considered.

1. Estimate the optimal transition probabilities ag) for each next state j € S using (7)
or (8). Store these probabilities in leaf node v.

2. Compute the score of the set equivalent state-contexts fl(c‘ié*) ) defined in (5) using
the corresponding optimal transition probabilities. Store this score in leaf node v.

e lteration: Climb up one level towards the root. Consider each node v of the extended
state-context tree v; in the current depth.

1. Determine all child nodes of the current node v and consider each combination of
child nodes whose labels specify a partition in the set of partitions of S.

2. Compute the score for each partition by adding the scores stored in the correspond-
ing child nodes. Determine the partition with the maximal score and store this score
in the current node v. Delete all sub-trees under v that have a root node which is not
required for the partition with the maximal score.

3. Stop if the current node v is the root node of the extended state-context tree /;,
otherwise continue with the next iteration step.

The dynamic programming algorithm iterates bottom-up from the leaf nodes to the root node
of the extended state-context tree ;. The initialization step provides the basics for each set
of equivalent state-contexts represented by the extended state-context tree. The iteration step
transforms the extended state-context tree v, into a state-context tree 7; by successively deter-
mining the optimal partition of states under each non-leaf node of ;. After the iteration step,
only the optimal set of disjoint sets of state-contexts remains and the extended state-context
tree 1; has been transformed into the optimal state-context tree 7; representing the correspond-
ing optimal transition probabilities of the transition matrix A,, of the parsimonious higher-order
HMM X(h + 1). Details for an efficient recursive implementation are described in [6] and imple-
mented in Jstacs (www.jstacs.de).

2.4.5 Computational complexity of the dynamic programming approach

The computational complexity of the dynamic programming algorithm is derived for the ex-
tended state-context tree v;, of depth L. Based on this extended tree, the computation of
the optimal tree r£h+1) and its corresponding optimal transition probabilities aé’;‘“) for the next
parsimonious higher-order HMM A(h + 1) has the greatest computational complexity. This is
because state-contexts of the fixed maximal length L have to be considered. For the following

analysis, the parsimonious HMM of order L is assumed to have N states and the processed
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emission sequence is assumed to have a length of 7.

In the initialization step, each leaf node of the extended state-context tree v, is evaluated by
computing the optimal transition probabilities ag) and the optimal score f7,( aé*) ) for the equiv-
alence class ¢ of each leaf node. Since each non-leaf node of the extended tree 11, has exactly
2NV — 1 child nodes, the initialization step has to operate on (2" — 1)” leaf nodes. For each
leaf node, the computation of the transition probability ag) in (8) for the equivalence class ¢
of a leaf node involves at most N’ different probabilities ¢, (i, ) for each time step ¢ of the T
time steps. For each of the (2" — 1)! equivalence classes represented by the leaf nodes of
the extended tree, IV different transition probabilities and the corresponding optimal score have
to be computed. This leads to a computational complexity of O ((2¥ — 1)% . NL+1. T) for the
initialization step.

The iteration step is working on each non-leaf node of the extended tree ;. The total number
of non-leaf nodes of this tree is (2 — 1) —1)/((2¥ — 1) — 1). This follows from the geometric
series that develops by the common ratio of 2 — 1 child nodes per non-leaf node. For each of
these non-leaf nodes all different partitions of the set of hidden states S must be considered to
compute the optimal partition and their corresponding optimal score. The number of different
partitions is given by the Bell number By defining the existing numbers of partions of the N
states. The computation of the score of each partition requires at most a sum over N scores
stored in the child nodes of a non-leaf node. In addition to this, at most 2" — 2 sub-trees of child
nodes that are not part of the optimal partition must be removed from each non-leaf node. This
leads to a run-time of O (((2Y — 1)X — 1)/((2¥ — 1) = 1) - (By - N + 2V — 2)) that is mainly in-
fluenced by By which grows faster than 2V for N > 4.

In summary, the upper bound of the computational complexity of the dynamic programming
approach is given by the sum of the computational complexities of the initialization and iteration
step.

2.5 Estimation of emission parameters

To estimate the transition parameters for the next parsimonious higher-order HMM A(h + 1),
Baum'’s auxiliary function for the emission parameters is required. This function is defined by

K
Qa(BIAR)) =) > > Pld|dk), A(h)]-1og (bg, (0:()))

K T
= Zlog (bi(ot(k))) - Plgs = i|0(k), A(h)]
€S k=1 t=1
Ty
=SS log (o)) - 4EG)
€S k=1 t=1

including the substitution of the sum over all state sequences ¢ € S™+ by two sums. The first
sum runs over all current states i € S. Now, a second sum is required to marginalize over all
state sequences ¢ € ST+ with fixed current state ¢; = i. The second sum can be simplified to its
marginal probability v (i) := P[q; = i|d(k),A\r(h)] representing the state-posterior computed
under the current parsimonious higher-order HMM \(h) using extended versions of the Forward

11



and Backward algorithm [4].

The state-specific mean ugh“) and the state-specific standard deviation o of the Gaus-
sian emission density of state i € S are determined by maximizing Baum’s auxiliary function
for emission parameters Qs( B | A(h)) in combination with the emission prior D3( B |©3) de-
fined in (3). This is done by determining the critical points of the derivatives of Qs( B | A(h) ) +
log(Ds( B|©3)) with respect to the mean p; and the standard deviation ¢;. This leads to the

mean

(h+1)

%
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and the standard deviation
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for the Gaussian emission density of each state i € S of the parsimonious higher-order HMM
A+ 1).

3 Model evaluations on human cell lines

Array-CGH data of human cell lines by Snijders et al. [8] frequently considered in other model
comparison studies (e.g. [9-13]) were analyzed to evaluate the identification of known mono-
somies and trisomies by different methods. The Array-CGH profiles of 10 human cell lines (9
fibroblast lines, 1 B-lymphocyte line) and corresponding known underlying monosomies and
trisomies of chromosomal regions were taken from the R-package of RJaCGH [12]. In more
detail, the cell lines gm01524, gm01750, gm02948, gm03134, gm03563, gm03576, gm04435,
gm07081, gm13031, and gm13330 have been included into the analysis. The whole data set
comprised 20,885 measurements across the 23 chromosomes of all 10 cell lines. These are
about 17.5 times less measurements than contained in the more complex A. thaliana data set
measured on a high-density tiling array.

We trained parsimonious HMMs on this data set interpolating between a mixture model and
a first-order HMM. The transition to parsimonious higher-order HMMs was not necessary,
because the first-order HMMs already reached a nearly perfect identification of known mono-
somies and trisomies. The resulting ROC curves are shown in Figure A. The standard first-
order HMM and the parsimonious HMM clearly outperformed the mixture model that does not
model any chromosomal dependencies. Since the parsimonious HMM showed to be slightly
better than the first-order HMM (PHMM: 100% TPR at 0.167% FPR; HMM: 100% TPR at
0.172% FPR) and since this model has less transition parameters, we further applied this
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model for comparisons to other existing methods. Detailed results of this comparison study are
reported in the main manuscript and are shown in Figure S9. The parsimonious HMM, but also
both Bayesian HMMs, RJaCGH and GHMM (RJaCGH: 100% TPR at 0.275% FPR; GHMM:
100% TPR at 0.196% FPR), reach the best, nearly perfect identification of known chromoso-
mal aberrations in the individual human cell lines. The run-times of the different methods are
given in Table S1 of this section.

The analysis of the Snijders data [8] was performed using the data-dependent standard initial-
ization as applied for the Arabidopsis study. We just modified the initial means of the Gaussian
emission densities of state '—" and '+’ to -0.5 and 0.5 respectively to account for the differ-
ent distribution of log-ratios compared to the Arabidopsis data set. We interpolated between
the mixture model and the standard first-order HMM by choosing the tree structure hyper-
parameter log(y) € {—10000, —1000,0}. Each parsimonious HMM converged to the identical
state-context tree shown in Figure Bb. This tree shows that the state '—" modeling monosomies
and the state '+’ modeling trisomies are sharing their transition parameters, while unchanged
regions modeled by state '=’ have their own set of transition parameters. That nicely reflects
the occurrence of monosomies and trisomies in the Snijders data. These chromosomal aber-
rations occur much less frequently than unchanged chromosomal regions (501 monosomies or
trisomies compared to 20,384 unchanged regions; 2.46% polymorphic regions).

3.1 Figure A: Initial model comparisons on human cell lines
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Figure A: ROC curves comparing the identification of known monosomies and trisomies of
chromosomal regions in the Snijders data [8]. The standard first-order HMM (red) and the
parsimonious first-order HMM (black) outperformed the mixture model (HMM of order zero;
green). The parsimonious first-order HMM was also slightly better than the standard first-order
HMM by reaching 100% TPR at 0.167% FPR compared to 0.172% FPR for the HMM. The
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mixture model reached this performance at 79.9% FPR. The parsimonious first-order HMM has
been further considered for the comparison against the other existing methods summarized in
Figure S9 of the main manuscript. The different state-context trees underlying the three models
are shown in Figure B.

3.2 Figure B: Different state-context tree structures on human cell lines

a) Mixture Model b) PHMM c) HMM
8] 0 O
3 transition parameters 6 transition parameters 9 transition parameters

Figure B: Different state-context trees obtained for interpolating between a mixture model
(HMM of order zero) and a standard first-order HMM on the Snijders data [8]. Detailed de-
scriptions of state-context trees are given in Figure 3 and Figure 5 of the main manuscript. a)
The mixture model has the most parsimonious tree representing all state-contexts ’—’, '=’, and
"+’ by just one leaf node resulting in three different transition parameters that are shared across
all three hidden states. b) The parsimonious first-order HMM separates all state-contexts ’—’,
=", and '+ into two different leaf nodes, one for '=" and another for '—’ and '+’ together. This
leads to six different transition parameters, three for state '=" and three parameters shared
across the states '—’ and ’+’. ¢) The standard first-order HMM represents each state-context
'~ ’=", and '+’ in a separate leaf node leading to nine different transition parameters, three for

each state.

3.3 Table S1: Overview of run-times of different methods for the analysis of
human cell lines

Shortcut Method Reference Computing time
GHMM Bayesian first-order HMM [13] 1 min
PHMM Parsimonious first-order HMM see main text 1 min
wuHMM  First-order HMM [14] 1 min
ACE Analysis of Copy Errors [15] 2 min
CGHseg CGH segmentation [16] 4 min
GLAD Gain and Loss Analysis of DNA  [11] 4 min
wavelet Haar wavelet and clustering [17] 4 min
FHMM First-order HMM [9] 6 min
CBS Circular Binary Segmentation [10] 8 min
RJaCGH Bayesian first-order HMM [12] 70 min

Run-times in minutes required for the analysis of the 10 human cell lines from [8] by the ten
different methods. All methods except GHMM, PHMM, wuHMM, and RJaCGH were run on the
ADaCGH web-server [18] (AMD Opteron 2.2 GHz CPU with 6 GB RAM). The other methods
GHMM, PHMM, wuHMM, and RJaCGH were run on a standard desktop computer with Intel
CPU T9500 2.6 GHz and 4 GB RAM.
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4 Supporting Figures

4.1 Figure S1: Number of different state-context trees
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Figure S1: Number of different state-context trees. Increase of the number of different state-context
trees for a fixed number of states (black: two; red: three) in dependency of the height of the tree. The
numbers of existing trees are plotted in logarithmic scale. Exact numbers are given for all heights of
two states and for three states up to height three. Parsimonious higher-order HMMs with three states
up to order five have been investigated in the manuscript.
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4.2 Figure S2: Three-state architecture
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Figure S2: Three-state architecture. The three-state architecture of the parsimonious higher-order
HMM used in the manuscript. The states of the model are represented by labeled circles with corre-
sponding state-specific Gaussian emission densities. State '—’ models chromosomal regions affected
by deletions or sequence deviations, state =" models unchanged chromosomal regions, and state
"+’ models chromosomal regions affected by amplifications. Arrows represent possible transitions be-
tween states. The corresponding transition probabilities of each transition matrix are represented by
state-context trees like illustrated in Figure 3 or Figure 4 of the manuscript.
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4.3 Figure S3: Choice of model order
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Figure S3: Choice of model order. Modeling of the mean partial autocorrelation function of the
Arabidopsis Array-CGH data set (orange) by different models (other colors). The mean partial auto-
correlation is computed by adding the partial autocorrelation functions of the five chromosome-specific
Array-CGH profiles weighted by their proportion of measurements in relation to the total number of
measurements in the Array-CGH data set. Each model was trained with the Arabidopsis Array-CGH
data using the Bayesian Baum-Welch algorithm. Then 100 artificial chromosomes with 10,000 log-
ratios were sampled from each trained model to compute its mean partial autocorrelations. To ease
the comparison, the x-axis is plotted in logarithmic scale and the values of the mean partial autocorre-
lation function are plotted slightly shifted for each position. As expected from theory and as indicated
by mean partial autocorrelations of about zero, the mixture model of three Gaussian densities (grey)
does not model dependencies between adjacent chromosomal regions. The first-order HMM (black)
represents a natural extension of the mixture model enabling the modeling of dependencies between
directly adjacent chromosomal regions indicated by positive values of the mean partial autocorrela-
tion function. Higher-order HMMs of order two up to five (red to purple) clearly improve the modeling
of dependencies between adjacent chromosomal regions present in the Arabidopsis Array-CGH data.
The trend that HMMs with a higher model order are better able to model the partial autocorrelation
function is expected from theory because of their more complex state-transition processes enabling an
improved modeling of spatial dependencies compared to HMMs with a smaller model order. However,
especially for position one (directly adjacent tiles on a chromosome) all models clearly underestimate
the partial autocorrelations of the Array-CGH data set. One reason for this is the difference between the
hybridization of DNA segments leading to the log-ratios of the Arabidopsis Array-CGH data set and the
sampling of log-ratios from state-specific Gaussian emission densities. The hybridized DNA segments
have lengths up to 900 bp. Thus, log-ratios measured for directly adjacent chromosomal regions in
distance of about 350 bp are expected to be more similar to each other than log-ratios sampled from
a state-specific Gaussian emission density that has to cover a broader range of log-ratios. Although,
none of these HMMs was able to perfectly model the partial autocorrelation structure of the Arabidopsis
Array-CGH data set. But still, HMMs are flexible models well-suited for the analysis of real Array-CGH
profiles.
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4.4 Figure S4: Identification of deletions and sequence deviations in the
Arabidopsis Array-CGH data set
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Figure S4: Identification of deletions and sequence deviations in the Arabidopsis Array-CGH
data set. This figure shows the content of Figure 4 in the manuscript extended by standard deviations
for the obtained mean true-positive-rates (TPRs). The curves show the mean TPRs and corresponding
standard deviations for the identification of candidate regions of deletions or sequence deviations at
a fixed false-positive-rate (FPR) of 1% (a)) and 2.5% (b)) obtained by parsimonious HMMs of order
L € {1,...,5} of different model complexities across twenty different initializations. The rightmost point
of each curve of parsimonious HMMs of order L (PHMM(L)) represents the corresponding higher-order
HMM of order L with highest model complexity of 3* leaf nodes in the state-context tree underlying the
transition matrix A,,. The rightmost point of the black curve represents the standard first-order HMM. At
both levels of FPRs, parsimonious higher-order HMMs are significantly better than parsimonious HMMs
of order one including the standard first-order HMM. At the level of 1%FPR, parsimonious higher-order
HMMs with a mean model complexity in the range of 3 up to 9 also identify deletions or sequence
deviations better than higher-order HMMs. At 2.5% FPR, clearly reduced model complexities are suffi-
cient to reach identifications of deletions or sequence deviations by parsimonious higher-order HMMs
comparable or slightly better than corresponding higher-order HMMs.
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4.5 Figure S5: False-positive-rates for the identification of deletions and
sequence deviations in the Arabidopsis Array-CGH data set by
parsimonious HMMs at fixed true-positive-rates
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Figure S5: False-positive-rates for the identification of deletions and sequence deviations in the
Arabidopsis Array-CGH data set by parsimonious HMMs at fixed true-positive-rates. Curves of
mean false-positive-rates (FPRs) for the identification of candidate regions of deletions or sequence
deviations at a fixed true-positive-rate (TPR) of 65% (a)) and of 83% (b)) obtained by parsimonious
HMMs of order L € {1, ..., 5} of different model complexities across twenty different initializations. The
rightmost point of each curve of parsimonious HMMs of order L (PHMM(L)) represents the correspond-
ing higher-order HMM of order L with highest model complexity of 3~ leaf nodes in the state-context
tree underlying the transition matrix A,,. The rightmost point of the black curve represents the stan-
dard first-order HMM. At both levels of TPRs, parsimonious higher-order HMMs are clearly better than
parsimonious HMMs of order one including the standard first-order HMM. At the level of 65% TPR,
parsimonious higher-order HMMs with a mean model complexity in the range of 3 up to 9 also identify
deletions or sequence deviations better than higher-order HMMs. At 83% TPR, clearly reduced model
complexities are sufficient to reach identifications of deletions or sequence deviations by parsimonious
higher-order HMMs comparable to corresponding higher-order HMMs. TPRs for fixed FPRs in the
range of 65% and 83% are shown in the corresponding Figure 4 of the main manuscript.
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4.6 Figure S6: Identification of deletions and sequence deviations in the
Arabidopsis Array-CGH data set for a less restrictive mapping of validation
data

Here, model evaluation is done based on a less restrictive mapping of candidate regions of deletions
or sequence deviations identified in the independent array-based resequencing experiment (Clark et
al. (2007), Zeller et al. (2008)) described in the manuscript. The candidate regions were used to identify
each tile in the Array-CGH data set for which at least 40% of its nucleotides (> 24 bp of 60 bp) are
covered by candidate regions. This results in 24,231 tiles labeled as being affected by potential dele-
tions or sequence deviations among the 364,339 tiles in the Array-CGH data set. Like shown in Figure
2b for the more restrictive validation data, these labeled tiles also show a clear enrichment of negative
log-ratios (histogram not shown). The less restrictive validation data is subsequently considered for
model evaluation.
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Figure S6: Identification of deletions and sequence deviations in the Arabidopsis Array-CGH
data set for a less restrictive mapping of validation data. Curves of mean true-positive-rates (TPRs)
for the identification of candidate regions of deletions or sequence deviations at a fixed false-positive-
rate (FPR) of 1% (a)) and 2.5% (b)) obtained by parsimonious HMMs of order L € {1,...,5} of different
model complexities across twenty different initializations. The rightmost point of each curve of par-
simonious HMMs of order L (PHMM(L)) represents the corresponding higher-order HMM of order L
with highest model complexity of 3* leaf nodes in the state-context tree underlying the transition matrix
A.,. The rightmost point of the black curve represents the standard first-order HMM. At both levels of
FPRs, parsimonious higher-order HMMs are significantly better than parsimonious HMMs of order one
including the standard first-order HMM. At the level of 1% FPR, parsimonious higher-order HMMs with
a mean model complexity in the range of 3 up to 9 exist that are able to identify deletions or sequence
deviations better than higher-order HMMs. At 2.5% FPR, clearly reduced model complexities are suffi-
cient to reach identifications of deletions or sequence deviations by parsimonious higher-order HMMs
comparable or slightly better than corresponding higher-order HMMs.
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4.7 Figure S7: Comparison of a parsimonious fourth-order HMM to existing
methods on the Arabidopsis Array-CGH data set based on a less restrictive
mapping of validation data
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Figure S7: Comparison of a parsimonious fourth-order HMM to existing methods on the Ara-
bidopsis Array-CGH data set based on a less restrictive mapping of validation data. Receiver
operating characteristic (ROC) curves of different methods for evaluating the identification of dele-
tions and sequence deviations in the Arabidopsis Array-CGH data set based on the less restrictive
validation data described in Figure S6. The methods FHMM, ACE, segMNT, CBS, GLAD, wuHMM,
RJaCGH, GHMM, and one of the best performing parsimonious HMMs of order four (see Figure 5 in
the manuscript) were used to identify deletions or sequence deviations in the Array-CGH data set. The
results for FHMM, ACE, CBS, and GLAD were computed using the ADaCGH webserver with standard
settings. For segMNT, wuHMM, RJaCGH, and GHMM, corresponding software packages were used
with standard settings. The parsimonious HMM of order four reaches the best identification of deletions
or sequence deviations (black). Comparable results on the more restrictive validation data are shown
in Figure 6 of the main manuscript.
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4.8 Figure S8: Comparison of a parsimonious fourth-order HMM against a
standard first-order HMM on the Arabidopsis Array-CGH data set
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Figure S8: Comparison of a parsimonious fourth-order HMM against a standard first-order HMIM on the Ara-
bidopsis Array-CGH data set. Receiver operating characteristic (ROC) curves of the parsimonious fourth-order HMM
(cyan) with underlying state-context tree shown in Figure 5 and the standard first-order HMM (black). The left subfigure
shows the whole ROC curves and the right subfigure represents a selected subpart of these ROC curves relavant for
evaluating the performance of the identifcation of deletions or sequence deviations. The parsimonious fourth-order
HMM reaches a better identification than the standard first-order HMM.
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4.9 Figure S9: Model evaluation on Array-CGH data of human cell lines by

Snijders et al. (2001)
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Figure S9: Model evaluation on Array-CGH data of human cell lines by Snijders et al. (2001).
Receiver operating characteristic (ROC) curves of different methods for evaluating the identification
of known trisomies and monosomies in individual cell lines. The methods FHMM, ACE, CBS, GLAD,
wuHMM, RJaCGH, GHMM, CGHseg, wavelet and a parsimonious HMM of order one were used to
identify trisomies and monosomies. The results for FHMM, ACE, CBS, GLAD, CGHseg, and wavelet
were computed using the ADaCGH webserver with standard settings. For wuHMM, RJaCGH, and
GHMM, corresponding software packages were used with standard settings. The two Bayesian HMMs,
RJaCGH (green) and GHMM (yellow), and the PHMM (black) reach the best identification of known

chromosomal aberrations.
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