Structural and Kinetic Isotope Effect Studies of Nicotinamidase (Pnc1) from *S. cerevisiae*

Brian C. Smith, Mark A. Anderson, Kelly A. Hoadley, James L. Keck, W. Wallace Cleland, and John M.

Denu

SUPPORTING INFORMATION

Contents:

- Supporting Discussion. Derivation explaining observed kinetic isotope effects for Pnc1 D51N.
- Table S1. Primers used in Pnc1 mutagenesis.
- Figure S1. Double-reciprocal inhibition plots.
- Figure S2. Multiple-sequence alignment of nicotinamidases.

Supporting Discussion

Derivation explaining observed kinetic isotope effects for Pnc1 D51N. For Pnc1 D51N, both the 15 N and 13 C KIE are ~0.5% compared to ~1.25% for those of Pnc1 WT (Table 3). We believe this is due to an increase in one of the back reaction off rates. A truncated derivation demonstrating how this is possible is shown below. The entire reaction is described by equation S1.

$$E+A \xrightarrow{k_1} ES \xleftarrow{k_3} ES \xleftarrow{k_5} EX \xleftarrow{k_7} EQ^* \xleftarrow{k_9} EQ \xrightarrow{k_{11}} E+Q \quad (S1)$$

The KIE are on *V/K* which includes all steps up through and including the first irreversible step where k_1 is substrate binding, k_2 is substrate dissociation, k_3 is the formation of the tetrahedral intermediate, k_4 is the breakdown of the tetrahedral intermediate to reform nicotinamide, and k_5 is the isotope sensitive irreversible step (C–N bond cleavage and the loss of NH₃). *V/K* is expressed by:

$$\frac{V}{KE_{t}} = \frac{\frac{k_{1}k_{3}k_{5}}{k_{2}k_{4}}}{1 + \frac{k_{5}}{k_{4}} + \frac{k_{5}k_{3}}{k_{4}k_{2}}}$$
(S2)

However when the kinetic data are examined we see the k_{cat} and k_{cat}/K_m values have decreased compared to the wild-type enzyme. This is due to a decrease in binding of nicotinamide in the D51N mutant which leads to an increase in k_2 and a decrease in k_3 . As such k_3/k_2 would tend to be very small and can be ignored. Then using the ¹⁵N KIE notation the equation becomes:

$${}^{15}\left(\frac{V}{K}\right) = \frac{{}^{15}k_5 + \frac{k_5}{k_4}}{1 + \frac{k_5}{k_4}}$$
(S3)

where ${}^{15}\left(\frac{V}{K}\right)$ is the measured KIE and ${}^{15}k_5$ is the intrinsic KIE. ${}^{15}\left(\frac{V}{K}\right)$ is defined as

 $\frac{{}^{15}k_5 + C_f + {}^{15}K_{eq}}{1 + C_f + C_r}$ where C_f and C_r are forward and reverse commitments to catalysis and {}^{15}K_{eq} is the {}^{15}N

equilibrium isotope effect. In this reaction there is no reverse commitment since the C-N bond cleavage is irreversible and thus C_r and ${}^{15}K_{eq}$ can be disregarded and:

$$^{15}\left(\frac{V}{K}\right) = \frac{^{15}k_5 + C_f}{1 + C_f}$$
 (S4)

For this example, an intrinsic isotope effect of 3% will be assumed and then for wild type and D51N we have:

$$1.0122 \pm 0.0002 = \left(\frac{1.0300 + C_{\text{fwt}}}{1 + C_{\text{fwt}}}\right)$$
, and $C_{\text{fwt}} = 1.50 \pm 0.04$ (S5)

$$1.0045 \pm 0.0006 = \left(\frac{1.0300 + C_{\text{fDSIN}}}{1 + C_{\text{fDSIN}}}\right)$$
, and $C_{\text{fDSIN}} = 5.50 \pm 0.82$ (S6)

Equation 12 shows that $C_f = \frac{k_5}{k_4}$ and so the C_f values are $\left(\frac{k_5}{k_4}\right)_{WT} \sim 1.5$ and $\left(\frac{k_5}{k_4}\right)_{Mut} \sim 5.5$

These values show that the reaction partitions forward faster in the D51N mutant, resulting in a smaller KIE. The mechanism of this partitioning is unknown but indicates that k_5 (loss of NH₃) has increased or that breakdown of the tetrahedral intermediate (k_4) has decreased.

Pnc1 mutant	Primers
D8A	5′-CGAGATGAAGACTTTAATTGTTGTTGCTATGCAAAATGATTTTATTTCACC-3′
	5′-GGTGAAATAAAATCATTTTGCATAGCAACAACAATTAAAGTCTTCATCTCG-3′
D8N	5′-CGAGATGAAGACTTTAATTGTTGTTAATATGCAAAATGATTTTATTTCACC-3′
	5′-GGTGAAATAAAATCATTTTGCATATTAACAACAATTAAAGTCTTCATCTCG-3′
D8E	5′-CGAGATGAAGACTTTAATTGTTGTTGAGATGCAAAATGATTTTATTTCACC-3′
	5′-GGTGAAATAAAATCATTTTGCATCTCAACAACAATTAAAGTCTTCATCTCG-3′
D51A	5'-GTGGTCACCAGAGCTTGGCACCCTTCC-3'
	5'-GGAAGGGTGCCAAGCTCTGGTGACCAC-3'
D51N	5'-GTGGTCACCAGAAATTGGCACCCTTCC-3'
	5'-GGAAGGGTGCCAATTTCTGGTGACCAC-3'
H53A	5'-GGTCACCAGAGATTGGGCCCCTTCCAGAC-3'
	5'-GTCTGGAAGGGGCCCAATCTCTGGTGACC-3'
H94A	5'-TGTGGCCCGTAGCCTGTGTGAAAAACACC-3'
	5'-GGTGTTTTTCACACAGGCTACGGGCCACA-3'
K122A	5'-GATTGTCGACGCGGGTTTCTTGACTGACC-3'
	5'-GGTCAGTCAAGAAACCCGCGTCGACAATC-3'
K122R	5'-GATTGTCGACAGGGGTTTCTTGACTGACC-3'
	5'-GGTCAGTCAAGAAACCCCTGTCGACAATC-3'
C167A	5'-AGCTTTGGAGTATGCTGTCAAAGCCACCG-3'
	5'-CGGTGGCTTTGACAGCATACTCCAAAGCT-3'

Table S1. Primers used in Pnc1 mutagenesis	••
--	----

Figure S1. Double-reciprocal inhibition plots. Initial rates were determined as described under Experimental Procedures. (left) Nicotinic acid exhibits competitive inhibition toward nicotinamide during the Pnc1-catalyzed reaction. The following nicotinic acid concentrations were used: 0 (\bullet), 200 (\bullet), 400 (\bullet), 800 (\bullet), and 1200 µM (\bullet). (right) Nicotinaldehyde exhibits competitive inhibition toward nicotinamide during the Pnc1-catalyzed reaction. The following nicotinaldehyde concentrations were used: 0 (\bullet), 1 (\bullet), 2 (\bullet), 4 (\bullet), and 6 µM (\bullet). Data were fit to competitive inhibition models using KinetAsyst as described in Experimental Procedures. All reactions were performed at pH 7.5.

																													¥			ሐ				
												P	hr	rik	neh	ii P	рна	aa	1					ME	F	FΔ		٧N		мо	R	Ψ	мр	- 0	G	۵ 20
												м :	tuh	orc		eie	Pn	-Δ	1					IVI I	MI	2 4	1 1	1						- 0		5 1 8
* = active	-site											s ,	nne	010	on	iaa	Dn	~	1						лт I	~ ~		c		vч						2 20
φ = aroma	atic c	age										0. j	h	211	nar	nnii	Pn	~	1	м	ĸ	<u> </u>	<pre>k ∩</pre>	PC	N 1	ς Δ	IV	, v v		vo			тр	- 0		1 26
τ = nicotinamide access tunnel										2	2 0	ore	wie	 ioo	Dn	c1	1	101			νQ	r C	. NI 1	, т		v,					1 0			s 10		
zn = zinc ligation											с. С	مام	////3 ///3	100 10 E	- Dnc	1h	65			D		s i	D 1	, <u>,</u>		v		FO			vn			5 9 9		
 = oxyanion hole 											С. С	010	yai bai	101	Dn	~2	56	v	ц. н. 1 м		с т	л I	- N -	, 7 , c		· • •					vт		G	5 00		
I = mutated in this study											\tilde{c}	. C I	eya asi	2113 20 E	Pnc	12	20	v	L P			5 1	- n D 1	/ ^		. v .		FQ			vr		G	5 00 S 109		
										л	m	U. dal	200	yai Iasi	lor I	Nas	m	88	Ŵ		, т т		R	- N 1		FI			vo			1 5		G	S 100	
											υ.	m	siai	iog	431	0/1	Nac		00	• • •			v	Ľ J		ľ				vQ			13		U	5112
		τ																						z	n Z	n									1	τ
P. horikoshii PH999	21	LΡ	VP	' E	G D	Κ-				1	IP	N K	۷N	ΙE	ΥI	R	ΚF	ΚI	ΕK	GΑ	LI	V	ΑT	R [) W I	ΗP	ΕN	ΙH	IS	FR	Ε·					63
M. tuberculosis PncA	19	LΑ	V T	G	GΑ	Α-				L.	A F	₹A	1.5	5 D	ΥL	. A	ΕA	AC)Y-	·н	Н١	/ V /	ΑT	ĸ	F	H I	DP	G	DΗ	FS	G	ΓР				62
S. pneumoniae PncA	21	LT	ΑG	ΞA	ΡA	Q -			- A	A I	S C	D A	1.5	5 K	VТ	R	LΑ	FE	RQ	G D	ΥI	F	FΤ	1	A I	I E	ΕN	D	CF	ΗP	Ε·					64
A. baumannii PncA	27	LΑ	VA	۱D	A D	Т-				Т	IP	Ъ	I N	١Q	LA	G	CF	E١	1		- \	/ V	LΤ	Q) W I	ΗP	DN	IН	ΙS	FΑ	A	١Н	ΡG	KC	2 P	F 73
S. cerevisiae Pnc1	20	LΤ	VP	٧K	GΕ	Ε-				L	IN	۱P	1.5	5 D	LN	١Q	D A	DF	ND	NН	R	٧V	۷т	R) W I	ΗP	S R	н	ΙS	FΑ	κI	١Н	ΚD	ΚE	P١	Y 70
C. elegans Pnc1b	89	LΚ	16	ΞD	G D	AG	δQ	ΕP	S 5	5 A	ΙT	Р	LN	ΙE	LL	Q	LS	S۷	VD-		L١	۷ v	ΥT	К)WI	ΗP	ΗN	ΙH	IS	FL	. s (ΩA	ΗN	SE	۶R۱	/ 143
C. elegans Pnc2	81	LS	IK	(E	G D	ΑE	Q	DP	LE	ΞA	LP	'H	٧N	١N	LL	.Ε	NL	N۷	VN-		M	V	ΥT	Q	<mark>w</mark> l	ΗP	S N	н	ΙS	FΕ	EI	ΗA	RN	ΡC	R	E 135
C. elegans Pnc1a	109	LΚ	10	ΞD	G D	AG	δQ	ΕP	S 5	5 A	ΙT	Р	LN	ΙE	LL	Q	LS	SV	VD-		L١	۷ v	ΥT	КΙ)WI	ΗP	ΗN	н	IS	FL	. s (QΑ	ΗN	SE	۶R۱	/ 163
D. melanogaster Naam	113	L D	i I S	5 N	C S	AQ	QQ	QG	ΗE	Ξ.	LE	ΕP	I N	١K	LL	. D	тν	DI	D-		A١	/ F `	ΥS	L	<mark>w</mark>	ΗP	S D	н١	νs	FΙ	DI	٧V	ΚM	RF	M	D 167
																			ሐ		¥															
P horikoshii PH999	64			_								_		_		_	R G	G	φ W ι	DR		• v (א ר	тε	6	A F	ΕV	vr	וס	DF	D	۵v			_	1 01
M tuberculosis PncA	63			_						_		_		_		D	vs	5 0	. wi		Н	- v -	5 6	ΤĒ	, o		EH	10	S I	ינ	s	Δ Ι	F -		۵١	/ 03
S nneumoniae PncA	65			-						_		_		_		-	- 5	к і	FF	рр	н	. • . 	i G	т «	s G I	R N	i v	יהי		GI	F	20	БН	G-	_	5 94
A haumannii PncA	74	FТ	I F	E I	пv	G -						-		-		_	50	VI		Þκ	Н	- 1 0	n G	T F	101	A F	EH			NI	р.	ΓΔ.	0-		1	1 111
S cerevisiae Pnc1	71	ST	vт	T V	нс	PR	Р.			_		_	GГ	חו	sт	0	FG	i i	w		н	- v i	кN	τv		s n	iv	י הי	21	мг		. v	тĸ	н	ĸ	I 110
C elegans Prc1h	144	мп) F K	(D	FN	кт		G F	FΓ	20	vc) F	I K	P	I K	т	FO	vi	Y	P D	н		אר	s v	VG	50	ĽН		ς . Γ Ι	ΥI	Δ Ι	אכ	Δ_		E,	197
C elegans Pnc2	136	IA	PF	E D	ĸs	RK		RP	FF)]))	VE	< '	VK	(P	vs	. т	10	vi	 		н	- 1 0	ה ב ה ה	GV	VG	50	ĹН	110	GI	O R			Δ-		ц.	189
C elegans Prc1a	164	MD	. F K		FN	кт		G F	F	55	vc) F	I K	P	і к 1	т	FO	vi	 V I	חפ	н		אר	sv	VG	s n	ĽН		FI	v i		אכ	Δ_		E 1	217
D melanogaster Naam	168	FS	SA	41	DS		5 A I	кv	FF	от с	vi	I F	AC	ΞP	PP	м	κO	RI	w	PR	н	- v a	מ כ	sv	VG	A F	ĹН	ואו		κv	v	рн	G -			× 221
D. molanogablor Naam	100	23	1		0 0	0.					•		~~~		• •		Ň						20	5.						Ϊ	, • .		G			1 221
			¥				ملد	φ																						μ.	Ē					
P horikoshii PH999	92	LS	Ř A	٩т	FΡ	DK	Ē	ΑÝ	S C	ΞE					FG	т	DТ	A 14		I R	G١	IG	vк	R١	/ Y	ı c	GV		ΓF	Ϋ́	v	R A	ТА	П		142
M tuberculosis PncA	94	FY	KC	ς Α.	ŶТ	G-			50	F	FC	īν	D -	F	NG	.т	PI	1.1	JW		O F		חע	F \	ים <i>ו</i>	, v	GI	A	. с г р	нc	v	20	ТА	F		/ 147
S nneumoniae PncA	95		RV	/ F'	 w/м	ылк	R	нγ	S A	A F	ς _	-		-	- 6	; т	יח	D	R		FF		vs	т \		т	GV		חד	10	v	ц	ТΔ	1 0		Y 145
A haumannii PncA	112	IR	KC	; F	НА	ні	D	ςγ	S A	N E I	MF	Ξ Δ	DF	łТ	тŇ	т.	GI	тс	i Y	I K	FF	2 G	ם ו	τì	, y y	. v	GI		гD	FC	v	4 W	T A	i r		/ 168
S cerevisiae Pnc1	120	vn		S F	ιт	DR	F	v v	S A	A F	нг	211	w N	JF	нк	т			Y		K F	чн.	гр	F \	/ Y	iv	G V		IF	Y C	v	< A	ТА	1 9		A 176
C elegans Prc1h	198	I M		ŝv	DP	YI	D	s v	S A	A F	ΝГ) N	NO	R	S K	т	FI	FI) I		RF	= N	ם ו	Δ \	, v	ΙA	GI		v D	ic	v	R F	тс	I F		/ 254
C elegans Prc2	190	IK	KC	5 A	סע	YV	, D.		S A	A F	SI	2 N	c c	5 1	ĸc	ŝ	FI	FA			ĸ		IN	Δ \	/ 1 0	30	GI		ע י	ic	v	йн	ті	кг		\$ 246
C elegans Prc1a	218	I M		5 V	DP	v i	D	s v	S A	A F	ΝГ	2 N	NO	R	S K	т	FI	FI	21		RF	= N	חו	Δ	, v		GI		י ח י	ic	v	R F		1 1		1 274
D melanogaster Naam	272	VY	KC	ст.	NP	FV		s v	s v	(E)	wг	2 N	ĸĸ		SI	ст от	т і	NA		I K	MK	G	ΔТ		v v v		GI		ע י	vc	v	GΑ	ТА	vr		278
D. melanogaster Naam	~~~	• •					U				τ	- 11	IX I		56																	3 / 1		•		2/0
P. horikoshii PH999	143	КН	I G F	FΕ	VΥ	LL	. R	DA	٧ĸ	(G	Ĭk	(-	- F	ΡE	DE	ΕE	RA	LI	EEN	мκ	SF	≀ G	ιк	1 \	Q /	F -										- 180
M. tuberculosis PncA	148	RN	١G L	L A	ΤR	νL	. v	DL	ΤA	٩G	VS	5 -	- /	۱D	ТΤ	v	A A	LI	ΕĒ	ИR	Т	۱S ۱	VΕ	L١	/ C	s s										186
S. pneumoniae PncA	146	ΝL	GY	í D	ΙE	ιv	/ к	ΡA	V A	٩S	IV	V -	- F	ΡE	Νŀ	١Q	FΑ	LO	GΗ	FΚ	NT	L	G A	к	. V I	ΣE	ΝL	N	ΕL	SE						191
A. baumannii PncA	169	ΚQ	GF	FK	ΤL	V I	E	D A	C١	(G	1 0) -	LN	١G	SΙ	Ε.	Q A	wo	2 T I	NQ	QC	QG	v v	R	Q	sт	DL	. L I	ΝE	C -						214
S. cerevisiae Pnc1	177	ΕL	GY	Υ K	ΤТ	٧L	. L	DΥ	ΤF	۲P	1 9	S D	DF	ΡE	V I	Ν	кν	КΙ	ΕE	LK	Ał	1 N	I N	٧V	DI	< -										216
C. elegans Pnc1b	255	ΚQ	N F	FL	ΑA	vı	P	ΕC	s A	٩G	LT	Г-	- 1	К	GΙ	Е	ΕS	ΕN	ΛA	FΚ	кс	QG	V A	м	S	< D	ΕA	R	GΙ	ΤE	G	GΕ	LΡ	RI	w١	V 309
C. elegans Pnc2	247	КН	i G F	FL	т с	ΞV	/ к	S G	S١	(G	LS	5 -	- 9	ΣL	ΚN	۱D	ΕA	N	(M	FQ	ΚF	R G I	V A	Т	D	ΣE	M A	Q	LI	SR	R	ΕA	FΡ	11	w	I 301
C. elegans Pnc1a	275	ΚQ	N F	FL	ΑA	vı	P	ЕC	S A	٩G	LT	Г-	- 1	к	GΙ	Е	ΕS	ΕN	ΛA	FΚ	кс	QG	V A	м	S	< D	ΕA	R	GΙ	ТЕ	G	GΕ	LΡ	RI	w	V 329
D. melanogaster Naam	279	S A	GY	(R	тι	LI	D	DC	CF	۲ G	тг) -	- \	/ н	DI	Е	нт	КІ	EK	V N	IT S	5 D	Gν	1.	/ н -	ΓN	o v	к	АМ	AE	G	R D	RR	ΡI	EL (G 333

Figure S2. Multiple-sequence alignment of the nicotinamidases for which structures have been solved from *Pyrococcus horikoshii* (PDB entries 1ILW and 1IM5), *Mycobacterium tuberculosis* (PDB entry 3PL1), *Streptococcus pneumoniae* (PDB entries 3O90, 3O91, 3O92, 3O93, and 3O94), *Acinetobacter baumannii* (PDB entries 2WT9 and 2WTA), and *Saccharomyces cerevisiae* (PDB entry 2H0R and this work). Eukaryotic nicotinamidases from *Caenorhabditis elegans* and *Drosophila melanogaster* are also shown for comparison. The alignment was generated using ClustalW (*59*).