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ABSTRACT

Double-stranded cDNA of alfalfa mosaic virus (AIMV) RNA 1 has been
cloned and sequenced. From clones with overlapping inserts, and other se-
quence data, the complete primary sequence of the 3644 nucleotides of RNA 1
was deduced: a long open reading frame for a protein of Mr 125,685 is flank-
ed by a 5'-terminal sequence of 100 nucleotides and a 3' noncoding region of
163 nucleotides, including the sequence of 145 nucleotides the three genomic
RNAs of AIMV have in common. The two UGA-termination codons halfway RNA 1,
that were postulated by Van Tol et al. (FEBS Lett. 118, 67-71, 1980) to ac-
count for partial translation of RNA 1 in vitro into Mr 58,000 and Mr 62,000
proteins, were not found in the reading frame of the Mr 125,685 protein.

INTRODUCTION
Alfalfa mosaic virus (AIMV) is a single-stranded RNA virus, belonging

to the family of the Tricornaviridae (1). The coat protein dependent, tri-
partite genome consists of RNA 1, RNA 2, and RNA 3. The coat protein is
translated from a subgenomic messenger, RNA 4 (for a review see ref. 2). In
vitro translation of the dicistronic RNA 3 results in a protein of Mr
35,000, while the coat protein cistron at the 3' end of this RNA (3) remains
silent (4, 5). RNA 2 codes in vitro for a Mr 100,000 protein (4, 5). In a
rabbit reticulocyte cell-free system RNA 1 is translated into a Mr 115,000
protein or, depending on the conditions, into mainly two smaller products of
Mr 58,000 and Mr 62,000, both with the same N-terminus as the larger product
(6). To account for this phenomenon, two leaky stopcodons were postulated to
be present in RNA 1 (7).

In order to investigate the AIMV genome and its expression in greater
detail, we have initiated a series of studies with the ultimate goal to elu-
cidate the primary structure of the viral RNAs. Previously, we have reported
the complete nucleotide sequence of RNA 4 (881 nucleotides) and information
on the 5'-terminal and 3'-sequences of RNAs 1, 2, and 3 (8-10). In this
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paper we report the synthesis, molecular cloning and subsequent sequencing
of complementary DNA to ATMV RNA 1.

MATERIALS AND METHODS

Enzymes and nucleotides. ATP:RNA adenyltransferase was isolated from
E. col? Q13 as described (11). AMV reverse transcriptase was kindly provided
by Dr. J.W. Beard (St. Petersburg, Florida). Nuclease S1 was purchased from
Sigma and terminal deoxynucleotidyl transferase from Enzo. Restriction endo-
nuclease Sinl, an isoschizomer of Avall (12), was a generous gift of Mrs.
Lupker (Leiden) and cvi, an isoschizomer of Saul, was kindly provided by
Dr. G. Grosveld (Rotterdam). A1l other restriction enzymes used in this study
were from New England Biolabs. T4 polynucleotide kinase and 32P nucleotides
were from New England Nuclear. Calf intestine alkaline phosphatase was ob-
tained from Boehringer, Mannheim, unlabeled nucleotides from P-L Biochemicals
and 3H nucleotides from Amersham. The primer dTlOdG was generously supplied
by Dr. J.H. Van Boom (Leiden).

Isolation of RNA and polyadenylation. AIMV (strain 425) was isolated
and RNA 1 was purified as described previously (13). To the 3' end of RNA 1
a poly(A) chain was attached with ATP:RNA adenyltransferase by the procedure
of Devos et al. (14). After 1 : 1 phenol/chloroform and diethyl ether extrac-
tions, the RNA was recovered by ethanol precipitation.

cDNA synthesis. Single-stranded cDNA was synthesized in reactions con-
taining 500 pg/ml1 3'-polyadenylated RNA 1, 60 ug/ml dTlodG, 50 mM Tris-Cl
pH 8.3, 10 mM DTT, 10 mM MgC] 40 mM KC1, 1 mM each dATP, dGTP, dTTP, and
( H)dCTP and 400 u/ml reverse transcriptase. After 2 hr at 46°C the reaction
was stopped by two successive phenol/chloroform extractions. The product/
template ratio was usually 0.01. Upon fractionation on a Sephadex G-50 column,
nucleic acids were ethanol precipitated. RNA was hydrolyzed in 0.2 N NaOH for
30 min at 60°C. The mixture was neutralized and passed over Sephadex G-50.
After lyophilization cDNA was taken up in a small volume of HZO' ss cDNA was
made ds by self-priming in a reaction identical to the synthesis of the
first strand, except that RNA and primer were omitted; ss cDNA was present
at 50 ug/ml; the labeled substrate was (32P)dCTP. ds cDNA was recovered as
described for ss cDNA, and treated with nuclease S1. Four to six ug ds cDNA
was incubated in 300 ul 50 mM NaAc pH 4.5, 3 mM ZnC]z, 200 mM NaCl with 20 u
nuclease S1 for 1 hr at 25°C. After phenol/chloroform extractions and ethanol
precipitation, the S1 treated ds cDNA was electrophoresed on a 1% agarose
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gel. After autoradiography material of 3 to 3.6 Kbp in length was excised
and the DNA was electroeluted.

Tailing and construction of recombinant plasmids. 0.05 pmol S1 treated
ds cDNA of 3 to 3.6 Kbp was incubated in 25 ul 100 mM Na Cacodylate pH 7.0,
1mM CoC]Z, 1 mM DTT, 0.1 mg/ml gelatine, 0.01 mM (3H)dCTP (a 2.5 to 3 x 103
molar excess over 3'-termini), 4 u terminal deoxynucleotidyl transferase for
10 min at 37°C. Under these conditions approximately 25 dC's were added per
3'-terminus. pBR322 DNA, linearized with PstI, was tailed with approximately
25 dG's per 3'-terminus in a reaction identical to the tailing of ds cDNA,
except that dCTP was substituted for dGTP. Tailed ds cDNA and an equimolar
amount of (dG) tailed plasmid DNA were annealed in 100 ul 100 mM NaCl, 10 mM
Tris-Cl pH 7.6, 1 mM EDTA by heating 10 min at 68°C and cooling to room tem-
perature over 6 hr.

Transformation of E. coli and isolation of DNA. Cells of E. colz HB101
were made competent and transformed according the procedure of Dagert and
Ehrlich (15). Ampicillin-sensitive and tetracycline-resistant clones were
selected; plasmid DNA was isolated from 1 ml cultures by the method of Birn-
boim and Doly (16) and analyzed ona 1% agarose gel. DNA of recombinant plasmids
with long inserts was isolated on large-scale essentially by scaling up the
procedure of Birnboim and Doly (16). After CsCl centrifugation and removal
of ethidium bromide with isoamyl alcohol, the DNA was dialyzed against two
changes of 10 mM Tris-Cl1 pH 7.6, 0.1 mM EDTA, precipitated with ethanol and
used in restriction analysis on 1% agarose gels or 5% polyacrylamide gels
after digestion by various enzymes.

DNA sequencing. After cutting DNA with an appropriate restriction
enzym, fragments were separated on and subsequently eluted from 5% polyacryl-
amide gels (17). Alkaline phosphatase treatment and labeling with (y-S2P)ATP
and T4 polynucleotide kinase was followed by digesting the fragments with a
second enzym. After isolation the single-end labeled DNA fragments, base
specific cleavage reactions (G, G+ A, A>C, C + T, C) were carried out
according to the method of Maxam and Gilbert (17). Thin sequence acrylamide
gels (8%, 10%, and 20%) containing 8.3 M urea were prepared as described
(18).

RESULTS

Cloning of DNA copies of ALMV RNA 1
Since the AIMV RNAs terminate with Cg, at their 3' end (19) RNA 1 was
polyadenylated in vitro to permit the use of dTlOdG as primer for reverse
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transcription into cDNA. The transcription reaction was carried out at 46°c.
Although cDNA synthesis at this temperature was lower than at 37°C or 42°C,
higher yields of long transcripts were obtained. On a 1% agarose gel glyoxyl-
ated transcripts showed numerous discrete bands which varried in length from
300 nucleotides upto full length copies of RNA 1 (result not shown).

After degradation of the RNA template with alkali, the single-stranded
cDNA was made double-stranded in a self-primed reaction with reverse trans-
criptase at 46°C. Nuclease S1 treated ds cDNA was sized on a 1% agarose gel
(result not shown) and copies with a length exceeding 3000 bp were eluted
and inserted into the PstI site of pBR322 vector-DNA by the dC/dG-tailing
technique. After transformation of E. colz HB101 with the hybrid plasmid,
ampicilin-sensitive tetracycline-resistant clones were selected. Analysis of
plasmids from these clones revealed the presence of several inserts of 1500
to 2000 bp in addition to smaller inserts, but none of the plasmids contained
a full length copy of RNA 1.

The 3'-terminal sequence of RNA 1, being ..... CCCCUAAGGGAUGCOH (10, 19),
contains the recognition site for the endonuclease CvZ, notably CCTNAGG. An
analysis of more than 50 of the available plasmids revealed that none of the
inserts contained a Cvi-site (result not shown), indicating the absence of
the 3'-terminal RNA 1 sequence in these clones. As will be shown below, how-
ever, several clones contained sequences corresponding to the 5'-terminal
region of RNA 1. We reasoned that in the preparation of ds cDNA the synthesis
of the second strand had not gone to completion. Therefore, a new batch of ss
cDNA was transcribed from polyadenylated RNA 1 at 37°C to obtain relatively
short transcripts in high yields. The fraction of 1000 to 1400 nucleotides
was selected by gel electrophoresis, and after conversion into ds cDNA it
was used for cloning in pBR322. In this way a number of transformants were
obtained with plasmids containing inserts corresponding to the 3'-terminal
sequence of RNA 1.

Nucleotide sequence of AIMV RNA 1

Previously, the sequences of the 5'-terminal 61 nucleotides and the 3'-
terminal 186 nucleotides of RNA 1 have reported (9, 10). Figure 1A shows an
alignment of overlapping DNA copies of RNA 1 that were used to construct the
complete primary sequence of this RNA molecule., Together, the clones cover
the RNA 1 sequence from nucleotide 37 to the 3' end. Figure 1B shows a map
of restriction sites and the sequence strategy that was used to sequence the
DNA by the method of Maxam and Gilbert. In several clones additional Sinl or
Haelll sites were generated by the tailing reaction. EcoRII sites are modi-
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Figure 1. (A) Alignment of the overlapping DNA copies of ATMV RNA 1 that
were used to construct the complete nucleotide sequence of this RNA mole-
cule. (B) Restriction endonuclease map and strategy used to sequence the

DNA clones of RNA 1.

fied in the system used here, raising the possibility that nucleotides,
appearing as gaps in the sequence gels, are overlooked. The use of BstNI,
which cuts methylated EcoRII sites, precluded this possibility.

Figure 2 shows an example of a sequence gel giving the sequence near
the 5'-terminus of RNA 1. It confirms the earlier evidence obtained by direct
sequencing of RNA 1 (E.C. Koper-Zwarthoff, personal communication) that the
first AUG-triplet from the 5' end (position 52 to 54) is followed by a UGA-
termination codon twelve triplets downstream (position 88 to 90). The second
AUG-triplet from the 5' end is found at position 101 to 103 and is the be-
ginning of a long open reading frame. The complete sequence of AIMV RNA 1 is
shown in Figure 3, together with the amino acid sequence encoded by the long
open reading frame.

Parts of the RNA 1 sequence have also been deduced in our laboratory by
other methods. We sequenced a number of single-stranded DNA transcripts of
RNA 1, generated by cutting random primed cDNA with the endonuclease Taql as
described by Rice and Strauss (20). Furthermore, DNA copies of large oligo-
nucleotides obtained by ribonuclease Tl digestion were used (9) as primers
to sequence internal regions of RNA 1 by the dideoxy-chain termination tech-
nique (D. Zuidema, personal communication). The data obtained by these
methods was in agreement with the sequence derived from cloned DNA. In three
cases, however, sequence divergency was observed. Nucleotide 1600 was read as
G in clone pAL1-36 whereas an A-residue was found in this position by direct
sequencing of RNA 1. Nucleotide 1632 was read as G in clone pAL1-36 and as A
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in clone pAL1-7; arbitrarily a G is mentioned in this position in Fig. 3.
Nucleotide 1743 was read as A in clone pAL1-36 and as G in clone pALl1-7; se-
quencing of RNA 1 by the dideoxymethod revealed a G-residue at this position.
It is not known whether this divergency reflects errors made by the reverse
transcriptase or the presence of minor variants in the virus preparation.

DISCUSSION

The sequence of 3644 nucleotides of AIMV RNA 1 appears to be nearly 12%
longer than the 3250 nucleotides calculated from molecular weight determina-

Figure 2. Autoradiogram of
a sequence gel, showing the
sequence near the 5'-termi-
nus of ATMV RNA 1. The
numbers of the bases
correspond to the nucleotide
position in ATMV RNA 1
(Figure 3).

1258



Nucleic Acids Research

tions by hydrodynamical methods (21). The total base content of RNA 1 as
determined some 20 years ago (22) agrees remarkably well with the base com-
position deduced from the sequence: 28.5% A, 20.4% C, 22.1% G, and 29.0% U.

From a study of the expression in cowpea protoplasts of single AIMV ge-
nome segments and mixtures thereoff, it was recently concluded that proteins
encoded by RNA 1 and RNA 2 are involved in viral RNA replication (23, 24).
The plus-strand of RNA 1 contains only one long open reading frame, coding
for a Mr 125,685 protein (1126 amino acids), which starts with the AUG-
triplet at residues 101 to 103 and terminates at an opal codon at positions
3479 to 3481, just before the 3'-terminal sequence of 145 nucleotides the
three genomic RNAs have in common (10, 19, 25). This Mr 125,685 protein might
be a subunit of the enzyme, responsible for viral RNA replication.

In addition to the coding region for the Mr 125,685 protein, RNA 1 con-
tains several open reading frames of 100-150 bases. The longest open reading
frame starting with an AUG-triplet codes for 35 amino acids (nucleotides
2469 to 2573). Inspection of the sequence complementary to RNA 1 shows sever-
al open reading frames with a length of 200 to 300 nucleotides. The longest
open frames in minus-strand RNA 1 starting with an AUG code for potential
polypeptides of 78 amino acids (nucleotides 2730 to 2497 of the plus-strand)
and 85 amino acids (nucleotides 392 to 138). The significance of such open
reading frames, which have also been noticed in the complementary sequence of
other plus-type RNA viruses (26-28), or in general in the non-coding DNA
strand of many structural genes (29), remains doubtful.

As already mentioned in the Introduction, cell-free translation of RNA 1
in the rabbit reticulocyte system leads to the synthesis of a Mr 115,000 pro-
tein or, depending on the conditions, to the synthesis of two proteins of Mr
58,000 and Mr 62,000. The translational barrier halfway RNA 1 could be over-
come by addition of an excess of glutamine or wheat germ tRNA to the reticu-
locyte system and it was postulated that a suppressor tRNA that can be charged
with glutamine is responsible for the read-through of two leaky UGA-termina-
tion signals for the Mr 58,000 and Mr 62,000 proteins (7). The Mr 125,685 pro-
tein encoded by RNA 1 probably corresponds to the Mr 115,000 Zn vitro trans-
lation product. However, we do not find the expected UGA codons in the read-
ing frame of the Mr 125,685 protein. Inspection of the codon usage (Table 1)
shows that both glutamine codons are frequently used. Moreover, Table 1 shows
that there is little preference in the usage of codons for other amino acids.
Thus, our sequence data do not provide information as to the nature of the
translational barrier halfway AIMV RNA 1. A modulation of expression of gene-
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Table 1. Codon utilization of the Mr 125,685 protein encoded by AIMV RNA 1.
The frequency of use of each codon is indicated.

Wy 32 ucu 22 UAU 24 UGy 13
Pe yuc 15 . ucc 16 V' uAC 18 Cys yec 13
Loy UUA 21 UA 21 o UM O  End UGA 1
we 30 uce 9 UG 0  Trp UGG 9
U 17 CCU 18 oo CAU 29 coU 14
e 7 ccC 6 CAC 7 6C 2
U cua 14 P occa 12, oAb 2l Arg cea 9
e 8 cce 9 CAG 10 66 6
AU 34 ACU 27 AAU 33 AGU 14
e AUC 22 . ACC 2l Asn aac 12 €T e 13
AUA 11 ACA 9 .o AMA 40, AGA 22
Met AUG 18 ACG 13 YS AAG 33 9 AG 12
GUU 29 GCU 33, GAU 50 GGU 28
Va7 GUC 18 aja 6CC 28 P Gac 27 ey 66C 3
GUA 11 GCA 21 Glu GAM 36 Y GGA 23
GG 17 6C6 10 GAG 20 GGG 6

tic information by read-through of leaky termination codons has been proposed
for several plant viruses (see references in 7). The recent completion of the
tobacco mosaic virus RNA sequence (28) confirmed the presence of an UAG-ter-
mination codon for the Mr 110,000 protein, suppression of which results in
the formation of a Mr 160,000 read-through protein (30).

In vitro the ATMV RNAs 1, 2, 3, and 4 are translated with comparable
efficiency (6). In vivo, however, only the translation product of RNA 4 is
detectable (23). Possibly, the translation of the genomic RNAs is suppressed
in vivo. Protein synthesis in eukaryotes is usually initiated at the AUG-
codon proximal to the 5'-terminus of a mRNA and in most cases the initiator
codon is flanked by purines at position -3 and +4 (the A in the AUG-codon is
denoted as position +1) (31). In ATMV RNA 4 the first AUG-triplet is indeed
the initiation codon (8). In RNA 3 of strain 425, the type strain used in our
laboratory, the first AUG is followed by a stopcodon two triplets later (9).
As can be seen in Fig. 2 the first AUG in RNA 1, at residues 52 to 54, is
followed by an UGA stopcodon at residues 88 to 90, thus forming a reading
frame of only 12 triplets. The second AUG, at residues 101-103, is followed
by the long open reading frame for the Mr 125,685 protein. In view of the
modified scanning model for the initiation of translation (31) it is worth
mentioning that out of the 7 AUG-codons within the first 180 nucleotides in
RNA 1 only one codon shows purines in the preferred positions, notably the
AUG that is followed by the long open frame. Moreover, the two methionine
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triplets with a purine in only one of the two preferred positions (the codons
at residues 140-142 and 176-178) are both read in phase with the AUG at resi-
dues 101-103. Further, when we consider the sequence of about 50 nucleotides
preceding the first and the second AUG-triplet respectively, they both show
characteristics of a 5' leader sequence of a plant virus messenger, notably

a low G content (12% in both cases) and a high U content (48% and 36% in the
sequence preceding the first and second AUG, respectively). The leader sequen-
ces of several plant viral RNAs are known. It is interesting to note that the
leader sequences of the subgenomic messengers from TMV, BMV, CCMV, TYMV, AIMV,
and CMV are relatively short: 10, 10, 10, 20, 37, and 53 bases, respectively
(32-36). In contrast, the genomic RNAs of plant viruses have relatively long
leader sequences: 68 nucleotides for TMV (28), 91 for BMV RNA 3 (27), 94 for
TYMV (37), and CMV RNA 3 (36), 115 and 207 for CPMV RNA M and B, respectively
(38), and 258 for ATMV RNA 3, strain S (39). In case of AIMV RNA 1 a leader
sequence of 100 bases, i.e. the sequence preceding the second AUG, confirms
the notion that plant viral genomic RNAs have long leaders.

As stated before, eukaryotic ribosomes use the first AUG-triplet on the
vast majority of cellular messenger RNAs as initiation codon. However, for an
increasing number viral mRNAs the first AUG appears not to be the initia-
tion point for protein synthesis (9, 36, 40-42 and references therein). More-
over, when AUGs are introduced artificially in the leader sequence of cellu-
lair messengers, there is no effect on correct initiation (43). Although we
feel that the second AUG-triplet in AIMV RNA 1 is the most likely initiation
codon, we cannot exclude the first AUG to be used as a start codon. If so,
we face a situation in which the large product, RNA 1 is coding for, only
will be synthesized after an event of reinitiation of translation at the
second AUG or slipping of ribosomes to a frame in phase with the second AUG.
This could provide a mechanism to modulate translation of AIMV RNA 1 7Zn vivo.
That reinitiation of translation may occur in vivo in other systems is sug-
gested by Subramani et al. (44). They studied the translation of a hybrid
mRNA containing the mouse dihydropholate reductase (DHFR) cistron preceded
by the initiator codons of SV40 VP2 and VP3 proteins. From their results,
these authors concluded that ribosomes that terminate translation from the
first AUG at a termination codon just upstream of the DHFR cistron, might re-
initiate translation at the DHFR initiator AUG.

The homologous sequence at the 3' end of the ATMV RNAs contains the
binding site for the viral coat protein (45, 46) and possibly the recognition
site for the replicase (10). The sequence at the 5'-terminus might reflect
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the complement of the recognition site for the replicase at the 3' end of
minus-strand RNA. The first eleven nucleotides at the 5' end of RNA 1 and
RNA 2 of AIMV strain 425 are homologous, but they show little homology, to
the 5'-terminus of RNA 3. The sequence of the first 38 nucleotides of RNA 1,
strain 425, is nearly identical to the sequence at the 5'-terminus of RNA 3
of strain S (38). In tobacco plants, strain 425 produces relatively large
quantities of RNA 1 and low amounts of RNA 3, whereas strain S produces
roughly equal amounts of RNAs 1 and 3 (47). A hybrid with RNA 3 of strain S
and RNAs 1 and 2 of strain 425 produces RNAs 1 and 3 in equal amounts (J.F.
Bol and M. Lak-Kaashoek, unpublished results). This suggest that the nucleo-
tide sequence at the 3'-terminus of viral minus-strand RNA has a regulatory
role in the synthesis of plus-strand RNA. The fact that mutations in RNA 2
also affect the component composition (Dr. J. Roosien, personal communication)
suggests that other factors are involved too.
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