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Supplementary Text and Figures for Grilli et al.

S1. DESCRIPTION OF THE MODEL AND BASIC MEAN-FIELD RESULTS

This section discusses in more detail the analytical derivation of the scaling for the main ob-

servables of model I and II using a mean-field approach.

Consider a joint partioning of elementary units (domains or genes) in functional and evolutionary

categories, as illustrated in Figure 1 of the main text. The elementary units (in our case domains),

belong to a single evolutionary family i, and every family i belongs to one and only one functional

category c.

The generic stochastic growth model considered here defines how new units are introduced into

the system. The model is specified by a set of basic rates. The basic set of rates is constitued by

the probabilities pi that a newly added unit belongs to a certain class i. More in detail, we define a

probability piO (where O stands for “old”) that a new domain belongs to a family i which is already

present in the system (i.e. having at least one member) and the probability pN (where N stands

for “new”) that the added unit belongs to a family which is not already present in the system.

The choice of piO and pN defines the model as a stochastic process for the basic observables (such

as genome size n, family number f and its population ni, etc.), but one extra detail is needed.

When a new class is introduced, the model needs to specify the category it belongs to. As discussed

in the main text, in the model considered here a newly added family always belongs to a category

c with probability χc. The probabilities piO, pN and χc can depend, in principle, on the number of

units n and on their distribution in families, on the total number of families f and so on. Empirical

data indicate (see Figure 2 in the main text) that χc is a category-dependent constant, and thus

does not depend on n.

The mean-field approximation is useful to extract the basic information from the model [6]. In

each realization of the full stochastic process, the probabilities of the possible configurations at

time t + 1 are determined by the configuration at time t. The mean-field approximation assumes

that the configuration at time t is the average configuration. For example, if one is interested in

the number of domains belonging to family i, the average number of elements ni(t+1) at time t+1

will be equal to the average number of elements ni(t) at time t summed with the average number

of elements added in a time step, i.e. piO. For asymptotically large t this implies the approximate
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equation ∂tni = piO for the averages (here the averaging procedure is implicit in the notation).

Since typically, at each step one and only one element is added, the mean number of elements is

n = t. If this is not the case, we can obtain ∂nni simply from ∂tni divided by ∂tn. Considering

n = t we obtain, for a generic model, the following mean-field equations

∂nni = piO

∂nf = pN

∂nfc = χcpN

∂nnc = ∂n
∑
i∈c

ni =
∑
i∈c

∂nni + ∂nfc =
∑
i∈c

piO + χcpN .

(S1)

A. Models with correlations

We now deal with the scaling of the basic observables in the model taking into account the

correlation between categories growth (model I of the main text).

The correlation appears in the growth of the domain families of different categories. Thus the

probability piO that a domain is added to a given family i can be written as

piO =

∑f
j=1 ai,jnj − α∑f
i,j=1 ai,jnj + θ

. (S2)

The coordinated growth of functional categories is encoded by the coefficients ai,j , responsible for

the correlated expansion of evolutionary families i and j (See Equation 1 of the main text). The

standard Chinese Restaurant Process (CRP) is obtained by imposing ai,j = δi,j (where δi,j is equal

to 1 if i = j and 0 otherwise). We assume that these coefficients depend only on the functional

categories c and c′ to which the families i and j belong. The probability of introducing a new

domain is given by

pN =
αf + θ∑f

i,j=1 ai,jnj + θ
. (S3)

1. Model Ia.

We consider a model inspired by ref. [15] (the toolbox model, in which the growth of the number

of transcription factors is coupled to the number of added metabolic enzymes), extended to describe

a joint partitioning in functional and evolutionary categories. In the original version of the model
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the average increment of the main observables at each time step is
∆nmet =

U

nmet

∆nTF = 1 ,

(S4)

and thus ∆nTF /∆nmet = nmet/U , which gives a quadratic scaling for nTF with nmet.

Model Ia is an extension of the toolbox model is formulated following equation S2, by using

a proper definition of ai,j , such as the same equation of the toolbox model is valid. We observe

that, for our purpose, the time step of equation we can be defined arbitrarily, as genome growth is

eventually parameterized by n. Rewriting the equations as
∆nmet = nmet

∆nTF = nmet
nmet
U ,

(S5)

gives the summed probabilities piO relative to the two categories
pmetO :=

∑
i∈met

piO =
nmet − αfmet

C(n)

pTFO :=
∑

i∈TF p
i
O =

nmet
U

nmet−αfTF
C(n) ,

(S6)

while

pN =
αf + θ

C(n)
. (S7)

Accordingly, we extend the model to an arbitrary number of families by the choice ai,j =

nmet
U

ni
nTF

if i is a TF family and j a metabolic family and zero otherwise. This gives
piO =

∑
j∈met

nmet
U

ni
nTF

nj − α∑f
i,j=1 ai,jnj + θ

if i ∈ TF

piO =
ni − α∑f

i,j=1 ai,jnj + θ
if i ∈ met .

(S8)

This model gives the asymptotic quadratic scaling of nTF with nmet by definition, using the

exact same argument as the toolbox model. Other results have been obtained numerically (see

Supplementary Figure S4).

2. Model Ib.

This second formulation of a model with correlated recipe (model Ib) imposes a different corre-

lation rule. For example, consider the model involving only two functional categories, transcription

factors controlling metabolic processes and metabolic enzymes.
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In this variant the coefficients ai,j have both a diagonal and a non diagonal part, ai,j = δi,j+bi,j .

If b = 0 the model is the standard Chinese Restaurant Process. For this reason, model Ib is

simpler to treat analytically, exploiting previous results. This work focuses mainly on the case

bi,j = ni/nmet if i is a family from the functional category of transcription factors and j is a family

from the metabolic functional category (and bi,j = 0 otherwise).

In this case, the summed probabilities piO relative to the two categories are
piO =

ni +
∑

j∈met
ni
nmet

− α∑f
i,j=1 ai,jnj + θ

if i ∈ TF

piO =
ni − α∑f

i,j=1 ai,jnj + θ
if i ∈ met.

(S9)

Using the definitions given in Equation S1, one can see that,

C(n)∂nnTF = nTF + nTF − αfTF +C(n)∂nfTF = 2nTF − αfTF + αfTF + θχTF = 2nTF + θχTF ,

(S10)

while

C(n)∂nnmet = nmet − αfmet + C(n)∂nfmet = nmet + θχmet . (S11)

Hence, for large n, since ∂nfc = χcpN ' αfc, the terms in the r.h.s. of Equations (S10) and (S11)

cancel, giving the effective equation,

dnTF
dnmet

' 2nTF
nmet

, (S12)

and thus the scaling nTF ∼ n2met.

B. Model II (model with evolutionary potentials)

This section presents in more detail the uncorrelated version of the model for the joint scaling

(model II), assigning evolutionary potentials [3] ρc to the functional categories, related to the

probability that a gene added in a functional category is fixed by natural selection. This model is

an example of an “absolute recipe”, since each category grows with an intrisic rate ρc, summing

up the growth of the families belonging to the given category. The rate ρc acts on family growth

through the class-expansion move. The probability of class expansion of a family belonging to the

category c is equal to

piO =
ρc(i)ni − α∑f
j=1 ρc(j)nj + θ

, (S13)
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where ρc(i) = ρc if the evolutionary family i belongs to the functional category c. This model

assumes that the value of ρc(i) depends only on the category to which family i belongs. The

probability that a domain belonging to category c is added by class expansion is then

pcO :=
∑
i∈c

piO =
ρcnc − αfc∑f
j=1 ρc(j)nj + θ

. (S14)

Equally, the probability that the new domain is introduced by an innovation move (i.e. it belongs

to a new family) is equal to

pN =
αf + θ∑f

j=1 ρc(j)nj + θ
. (S15)

Under the assumption (confirmed by empirical data, see main text) that the growth of old func-

tional categories by adding new homology families through the innovation move is uniform (i.e.

that fc = Ac + χcf), the probability that a new family belonging to the category c is added by an

innovation move is

pcN := χcpN = χc
αf + θ∑f

j=1 ρc(j)nj + θ
=

αfc + θχc∑f
j=1 ρc(j)nj + θ

. (S16)

Evolutionary potentials can reproduce the combined scaling laws at finite sizes.

We tested this model by a combination of mean-field analytical arguments and direct simulation.

The mean-field equations are obtained from Equation S1 by using Equations S13 and S15. The

equation for the growth of the mean number of members nc of a functional category can be obtained

simply by summing on the homology families that belong to a given category,

∂nnc =
ρcnc + θχc
C(n)

, (S17)

where C(n) '
∑

i ρini. If C(n) ∼ n, equation (S17) corresponds to the evolution equation written

by Molina and Nimwegen. Simulations of this model (see Supplementary Figure S7) confirm that

this is the case. Thus, the mean-field argument predicts that this model can reproduce both scaling

laws.

Also note that a rescaling of C(n) is equivalent to a rescaling of α. Indeed, for large n, pN '

αf/C(n) (and pO = 1 − pN ), so imposing C(n) ' qn is equivalent to dividing α by the constant

factor q. Thus, one can choose q = 1 without loss of generality (by a rescaling of all the ρc), and the

solution for the population of a functional category will be nc ∼ nρc/q as in the Molina/Nimwegen

model, and thus ζc = ρc/q
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On the other hand, an important point regarding this model is that, asymptotically for any

choice over the ρc set, the maximum large-n exponent observed will be 1, Indeed, we can use

the approximation C(n) =
∑

i ρiNi ∼ ρmaxn
ρc/q, but C = qn, so that q = ρcmax . This means

that an exponent close to 2, such as that observed for transcription factors can only be obtained

in a transient regime of the model. Furthermore, the change of the evolutionary potential of

one functional category has repercussions on the other categories, as it implies a change in the

normalization costant C. These facts make a direct identification of the value of the evolutionary

potential with an intrinsic propery of a single functional category difficult. They also make the

direct identification of evolutionary potentials less straightforward (as it requires an arbitrary

rescaling).

However, the above remarks have little practical importance, and the large-n behaviour of the

model does not really affect its performance at the relevant values of n. Numerical simulations show

that at the empirical genome sizes, the scaling behaviour of the model can reproduce rather well

the empirical one. For simplicity we have restricted to three main categories (transcription factors,

metabolic genes and “others”) and we verified that in practice it is not hard to find a parameter set

in good agreement with the empirical data on protein domains (Supplementary Figure S3). The

general number of parameters to adjust increases with the number of functional categories that

one needs to consider.

S2. EXPONENTS OF FAMILY SIZE DISTRIBUTION HISTOGRAMS

This section discusses the family size distribution histograms, as obtained from the mean-field

approach. To fix the ideas, we will focus on model Ib, where the mean-field equations can exploit

the known results from the CRP. It is possible to write a mean-field “flux equation” for the

histograms [14], which implements the fact that each duplication adds a family with one extra

member to the histogram count and subtracts a family with its previous population,

∂nf(d, n) = pO(d− 1, n)f(d− 1, n)− pO(d, n)f(d, n) + pNδd,1 (S18)

where pO(d, n) = d−α
n+θ is the probability that a family with d domains add a new duplicated

member. The term pN = αf+θ
n+θ contains the innovation probability contributing to the growth of

the number of families with one member. Note that the flow between families can be written as∑
i∈

{
families with
j domains

} ∂nni = (d− α)
f(d, n)

n+ θ
.
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This equation requires an assumption on f(d, n) in order to be solved. We assume the ansatz

f(d, n) = P (d)f(n) which is justified by both simulation and empirical data [14]. Using the fact

that ∂nf(n) = pN , combined with Equation S18 gives the following equation for the probability of

a family to have d members

αP (d) = (d− 1− α)P (d− 1)− (d− α)P (d) , (S19)

which can be solved in discrete or continuous d to get

P (d) ∼
(

1

d

)1+α

. (S20)

This predicts the asymptotic behaviour of data and simulations (see Figure 6) with β = α, where

β is the asymptotic exponent of the family size distribution.

Let us now turn to the same distribution, restricted to transcription factors. In model Ib,

the flux from transcription factor families caused by family expansion is caused by two separate

contribution, the CRP standard one, plus additions of transcription factors to an existing family

caused by the addition of a metabolic enzyme

piO(n) =
1

C(n)

[
(ni − α) +

ni
nmet

nmet

]
, if i ∈ TF (S21)

i.e.

piO(n) =
1

C(n)
[2ni − α] , if i ∈ TF . (S22)

Thus, for the transcription factor families, the probability that a domain is added to a family with

d members will be

pTFO (d, n) =
1

C(n)
[2d− α] . (S23)

The quantity pTFO (d, n) is the probability that a new transcription factor domain is added to a

family with d members. The flux equation for TF families can be obtained by substituting

equation S23 in equation S18, (for d > 1)

C(n)∂nfTF (d, n) = [2(d− 1)− α] fTF (d− 1, n)− [2d− α] fTF (d, n) (S24)

This is solved using the usual ansatz fTF (d, n) = PTF (d)fTF (n) (as explained above it is confirmed

by both data and simulations). Using fTF (n) = χTF f(n), leads to the equation

αPTF (d) = (2d− 2− α)PTF (d)− (2d− α)PTF (d) , (S25)
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which gives:

P (d)TF ∼
(

1

d

)1+α
2

, (S26)

that is βTF = α/2 = β/2. In the above calculation we have supposed again that the number of

transcription factors is small with respect to to the total number of metabolic enzymes.

Furthermore, it can be argued that this fact is more general. Indeed, each time the per-family

duplication probability for the TF functional category will have the form

piO ' 2ni ,

when family i belongs to TF category, the coefficient 2 will appear in the equation for P (d)TF

modifying the exponent. In particular, this will also be true for models Ia (generalizing the toolbox

model) and II (generalizing evolutionary potentials).

In other words, each time a functional category scales with a given exponent, it can be argued on

rather general grounds that the exponent of the population histograms of the homology families that

form it will be affected. It is possible to to generalize this argument, and find a precise relationship

between the scaling exponent of a category and the family population histogram (restricted to

the same category). In other words, if ζc is the scaling exponent of the category c and βc is the

exponent of the cumulative distribution histogram for the families belonging to category c, that is

(see Equation S26):

P (d)c ∼
(

1

d

)1+βc

,

we suggest that βc = β/ζc. We tested this prediction in empirical data plotting 1/βc versus ζc in

Figure 6 (Pearson correlation coefficient 0.47).

S3. COMPARISON OF MODELS BY NUMERICAL SIMULATION

A. Correlated and absolute recipes

This section compares the correlated duplication and the evolutionary potential model variants.

We considered a three categories model (TF, Metabolic and “other”).

The evolutionary potential model needs to supply three parameters ρc, while the correlated

model needs to supply the correlation law between categories (aij). We impose a correlation only

between transcription factor and metabolic families with the correlated model Ib prescription, i.e.

aij = ni/nmet, (S27)
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where i is a TF family and j Metabolic, aij = 0 (no correlation) otherwise.

Figure S3 summarizes the results of this comparison. The correlated duplication model performs

better in reproducing the behavior of the transcription factor category (both scaling law and

histograms). Both models are unsatisfactory in reproducing the family population histogram of the

metabolism families. This is probably caused by the fact that neither model include a correlation

between metabolic families (Figure 7).

Figure S7 illustrates the behaviour of the normalization function C(n). C(n) is linear with n

in the range of empirical genome sizes (although the slope is not exactly 1). It becomes nonlinear

at larger sizes, and its linear behavior is restored only at very large values of n.

B. Model I can reproduce a set of different exponents

Extending a model (with absolute or correlated recipe) to a large number of categories is not

a simple task. In the case of an absolute recipe model, adding a new category c′ (and thus

introducing a new evolutionary potential ρc′) generally requires, in order preserve the scaling of

all the categories, a tuning of all the evolutionary potentials (both the old ones and the new one).

This is due to the fact that all the evolutionary potentials appear in the normalization constant

C(n) in the growth equation of each category (Equation (S13). In a model with a correlated recipe,

the main problem is related to the fact that the interaction laws between categories are not known,

they can be complex and possibly include feedback.

In order to produce the proof of principle that a model with correlated recipes can work with

more than three categories, we considered a trivial generalization of model Ib to multiple categories

that are slaved to a main one, and considered the question of whether this model would be able to

reproduce an arbitrary set of scaling exponents for the categories.

We consider a correlation matrix ai,j of the form δi,j + bi,j , where bi,i = 0. This model deals

with C+1 categories, the met category (in analogy with model Ib defined in the main text, this is

a category whose growth is not conditioned to the others), and an additional set of C categories

labeled from 1 to C. The non diagonal correlation coefficients bi,j are zero if family i belongs to the

met category, and γc(i)ni/nmet if family i belongs to category c, different from met, and j belongs

to the met category. Substituting this choice in equation S9, gives

dnc
dnmet

= (1 + γc)
nc
nmet

(S28)
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and thus

nc ∼ n1+γcmet . (S29)

Supplementary Figure S8 shows simulations from a model with 10 + 1 categories. The model is

able to reproduce an arbitrary set of exponents. We observe that this version has similar problems

as the model with evolutionary potentials, as, in absence of a biological underlying model, it needs

the tuning of a set of parameters to reproduce the scaling laws. The fitted exponent is typically

different from 1 + γc, specifically it seems to be closer to one. We interpret this as a finite size

effect, due to the fact that the contribution of innovation to the scaling exponents is relevant.

S4. DETAILS OF TF-DOMAIN SUPERFAMILY SCALING

We observe that the quadratic (or very nearly so) scaling for transcription factors is clearly

visible at in the two most populated families of transcription factor DNA-binding domains

(Homeodomain-like and Winged-helix), which have a rather clean slope (see Supplementary Fig-

ure S10). In fact, three families present a clearly observable scaling alone (Homeodomain-like,

Winged-helix and C-terminal), but just the first two follow a very nearly quadratic scaling.

Note however that removing the six most populated TF families, representing 80% of the total

TF-domain population, the remaining ones considered together still present a scaling when added

up, but with exponent ' 0.9 (see Supplementary Figure S11). This indicates that the collective

scaling of TF families cannot be entirely recunducted to properties of the most populated ones,

but these are the families responsible for the quadratic scaling.

Thus, the “pure” quadratic scaling is observable in the largest transcription factor families. Col-

lecting all the families, wemeasure a lower exponent in empirical data (close to 1.6). Supplementary

Figure S11 explains this behavior, showing the total contribution of the smaller transcription factor

families. These families collectively show a lower exponent (close to 1). Thus, we can interpret the

lower collective exponent as an effect of family size (i.e., in the language of statistical mechanics,

a “finite-size” effect) connected to the fact that for smaller family size, the innovation move is

more relevant and thus the family expansion process is slower. The same effect is present in our

simulations (see Supplementary Figure S12.)



11

0 400 800
Total Number of Families

0

100

200

300

400

F
a
m

ili
e
s
 i
n
 F

u
n
c
ti
o
n
a
l 
C

a
te

g
o
ry Translation

Regulation of Transcription
Metabolic Processes

Supplementary Figure S1: Scaling of the number of families in the three main functional cate-

gories. Linear scaling behaviour of the number of families in three important functional categories versus

total number of families from empirical data (for 753 bacteria in the SUPERFAMILY database). The slopes

for the three linear laws are 0.01 (Translation), 0.03 (Regulation of Transcription) and 0.47 (Metabolic

Processes).



12

200 300 400 500 600 700 800
Total number of classes

5

10

15

20

25

N
um

be
r 

of
 T

F
 F

am
ili

es
 

Supplementary Figure S2: Transcription factor families. Boxplot of the number of transcription factor

domain families versus total number of domain families (data from 753 SUPERFAMILY bacteria). There

appears to be a roughly linear scaling. This means that the number of TF domain families is compatible

with a null hypothesis of independent addition model. Charoensawan et al [22] propose that the number of

TF families follows a linear scaling with genome size. If this were to be the case, the innovation dynamics

of transcription factor families should be distinct form other families. In fact, if fTF (n) ∼ n, since the total

number of families is sublinear, f(n) ∼ nα in the CRP (Figure 1), then one would have fTF f2−α, which is

not confirmed by the SUPERFAMILY data analyzed here.
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Supplementary Figure S3: Comparison between models Ib and II. Comparison between simulation

of the correlated duplication model Ib (left panel) and evolutionary potentials (right panel) model variants

with empirical data. Simulations are run at α = 0.3 and θ = 140. (a) Number of TFs domains vs. number of

metabolic domains (the blue boxplot corresponds to simulations, red circles to empirical data). (b) Number

of metabolic domains vs. total number of domains (the blue boxplot corresponds to simulations, red circles to

empirical data). (c) Family population histograms restricted to the transcription factor functional category

(black circles are simulations, magenta lines empirical data). (d) Family population histograms restricted

to the metabolism functional category (black circles are simulations, magenta lines empirical data).
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Supplementary Figure S4: Simulations of the correlated duplication model Ia for two categories

(transcription factors and metabolic enzymes). The plots are obtained from 1000 realizations with

α = 0.3, θ = 140 and U = 7000. The observables are the same as in figure S3. (a) scaling of the number of

transcription factors with the number of metabolic enzymes. (b) Number of families as a function of genome

size n. (c) Family population (cumulative) histograms. (c) Family population histograms restricted to the

families belonging to the transcription factor functional category.
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Supplementary Figure S5: Linear relation between the number of domains and the number of

genes. (a) Number of Domains vs. number of protein-coding genes for the 753 bacteria in the SUPERFAM-

ILY database. There are, on average, 1.45 domains per gene. (b) Linear scaling behaviour of the number of

TF domains vs. number of TF genes. There are, on average, 1.09 TF domains in a TF gene.
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Supplementary Figure S6: Simulation of the number of transcription factor families. Comparison

between empirical data and simulations of the number of transcription factor domain families plotted against

total number of families. The scaling is empirically linear, i.e. the number of TF domain families is

reproduced by a null hypothesis of independent addition model. The choice of the parameter is 0.035.
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Supplementary Figure S7: Normalization constant inthe model with evolutionary potentials

(model II). Behavior of the ratio C(n)/n, where C(n) is the normalization factor for the evolutionary

potential model. Data from simulations with three categories run at parameters α = 0.3 and θ = 140.

C(n) is linear with n in the range of empirical genome sizes, it then looses linearity, to become linear only

asymptotically.
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Supplementary Figure S8: Simulation of model Ib with 10 + 1 categories. 10 categories are slaved

to one master category with different correlation laws, which determine the observed exponents). Panel A,

B and C show the simulations of the population of three categories (respectively with γc equal to 1, 0 and

−0.7). The red lines are power-law fits of the simulated data. Panel D shows the power-law fits of the

simulated data for all ten categories.
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Supplementary Figure S9: Correlation matrix for two sets of genomes with different sizes. Left

panel: Correlation matrix for genomes with size < 4000. Right panel: Correlation matrix for genome with

size > 4000. The correlations do not depend on size.
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Supplementary Figure S10: Most populated transcription factor superfamilies. Boxplots for the

population of the six most populated superfamilies of TF DNA-binding domains (y-axis in each panel) versus

number of domains of each genome (x-axis in each panel). The presence of scaling laws appears likely for

the three most populated families and arguable for the first five. Red lines represent best power law fit (1.8

for Winged Helix ,2.1 for Homeodomain-like and 1.7 for C-terminal effector)
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Supplementary Figure S11: Scaling of the least populated transcription factor superfamilies.

Collective scaling of the number of transcription factor domains after removing the six globally most pop-

ulated families. While a few genomes show large fluctuations from the typical trend, a clear scaling is still

observable for most genomes, with a fitted exponent equal to 0.9
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Supplementary Figure S12: MARCO Finite-size effects on the scaling exponent ζTF for transcrip-

tion factors in simulations of model Ib. The plot shows the fitted exponent (y-axis) from the curve

of the number of transcription factor domains versus the number of metabolic enzymes in 500 simulated

realizations of model Ib with parameter α = 0.3 and θ = 140. Each point on the x-axis corresponds to

simulated data stopped at a given size n. The mean-field prediction (ζTF = 2) is reached only in the limit

n → ∞. This plot shows that the fitted exponent 1.6 (instead of 2) for the growth of transcription factors

vs metabolic domains is due to a finite-size effect of a process that produces an exponent 2 in the large-n

limit. The same effect is present in models Ia and II.
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Supplementary Figure S13: Ratio between exponents of family population histograms. The plot

reports the ratio β/βTF between the exponent of the total family population histograms and the histograms

restricted to the transcription factor families (see Figure 5 in the main text), as a function of genome size.

The values of the ratio are distributed around 1.6 and the fluctuation range decreases with increasing genome

size.
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Supplementary Table S1: Fitted values of χc and offsets Ac from fc vs f for the ten largest

functional categories

Ac χc Reduced chi square

Transcription Factors 2.2± 0.4 0.0267± 0.0006 4.5

Translation 61.0± 0.35 0.0133± 0.0006 3.9

Small molecule binding 3.0± 0.2 0.01± 0.0002 0.9

Nucleotide transport and metabolism 5.6± 0.3 0.02± 0.0005 3.1

DNA replication/repair 9.5± 0.6 0.0437± 0.0009 9.8

Inorganic ion transport and metabolism 0.2± 0.4 0.0272± 0.0005 3.5

Redox −7.6± 0.5 0.0592± 0.0008 7.9

Transferases 5.3± 0.2 0.0213± 0.0004 1.6

Other enzymes −14.8± 1.1 0.155± 0.002 35.7

Signal transduction −3.2± 0.3 0.0282± 0.0005 3.3

The number of evolutionary families belonging to a functional category follows a linear law in empirical

data. The table reports fits of fc = Ac + χcf from the plots in Figure 2 of the main text, where fc

represents the number of families in category c on all genomes and f is the total number of families on the

genome. The third column is the reduced chi square.

Supplementary Table S2: Data of fitted exponents from Figure 6 of the main text, for the ten

largest functional categories

ζc βc

Transcription Factors 1.6± 0.02 0.47± 0.01

Translation 0.176± 0.003 1.46± 0.02

Small molecule binding 0.918± 0.006 0.25± 0.01

Nucleotide transport and metabolism 0.61± 0.01 0.71± 0.01

DNA replication/repair 0.54± 0.01 0.9± 0.01

Inorganic ion transport and metabolism 1.40± 0.02 0.46± 0.01

Redox 1.3± 0.01 0.52± 0.02

Transferases 1.09± 0.01 0.43± 0.01

Other enzymes 1.09± 0.01 0.64± 0.01

Signal transduction 1.77± 0.03 0.4± 0.01
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Supplementary Table S3: Correlation coefficients between the populations of metabolic functional

categories

En e- Ph Aa N Co Nu Ca Li Ps Ce 2M Rx Tr Ot

En 1 0.14 0.07 0.55 0.23 0.36 0.19 −0.06 −0.08 −0.14 0.02 0.22 0.31 −0.10 −0.004

e- 0.14 1 0.29 0.15 0.11 0.43 −0.09 −0.52 0.35 −0.29 0.13 0.19 0.47 0.09 0.05

Ph 0.07 0.29 1 0.12 0.21 −0.02 −0.09 −0.16 −0.21 0.14 −0.18 0.15 0.06 0.16 −0.05

Aa 0.55 0.15 0.12 1 0.08 0.39 0.19 −0.14 −0.07 −0.22 0.01 0.07 0.40 0.02 0.14

N 0.23 0.11 0.21 0.08 1 −0.13 −0.08 −0.003 −0.14 −0.09 0.09 0.26 0.04 −0.03 −0.02

Co 0.36 0.43 −0.02 0.39 −0.13 1 0.14 −0.33 0.44 −0.37 −0.04 0.08 0.51 0.12 0.16

Nu 0.19 −0.09 −0.09 0.19 −0.08 0.14 1 −0.03 −0.09 −0.10 −0.02 −0.10 0.03 −0.11 −0.13

Ca −0.06 −0.52 −0.16 −0.14 −0.003 −0.33 −0.03 1 −0.20 0.53 −0.18 0.02 −0.46 −0.11 0.16

Li −0.08 0.35 −0.21 −0.07 −0.14 0.44 −0.09 −0.20 1 −0.35 0.15 0.18 0.06 0.13 0.20

Ps −0.14 −0.29 0.14 −0.22 −0.09 −0.37 −0.10 0.53 −0.35 1 −0.12 −0.05 −0.36 0.09 −0.07

Ce 0.02 0.13 −0.18 0.01 0.09 −0.04 −0.02 −0.18 0.15 −0.12 1 −0.0002 0.01 −0.22 −0.31

2M 0.22 0.19 0.15 0.07 0.26 0.08 −0.10 0.02 0.18 −0.05 −0.0002 1 −0.11 0.20 0.08

Rx 0.31 0.47 0.06 0.40 0.04 0.51 0.03 −0.46 0.06 −0.36 0.01 −0.11 1 −0.10 0.14

Tr −0.10 0.09 0.16 0.02 −0.03 0.12 −0.11 −0.11 0.13 0.09 −0.22 0.20 −0.10 1 0.17

Ot −0.004 0.05 −0.05 0.14 −0.02 0.16 −0.13 0.16 0.20 −0.07 −0.31 0.08 0.14 0.17 1

Pearson’s correlation coefficients between the populations of 24 different metabolic functional categories

from the SUPERFAMILY database for 753 bacteria. Correlations are calculated from fluctuations of

categories from the average trend (see Methods). Both correlation and anticorrelation are present between

categories. Metabolism categories are highly (anti-)correlated. We used the following short forms for the

metabolic functional categories: En = Energy p/c, e- = Electrons transfer, Ph = Photosynthesis, Aa =

Amino acids m/tr, N = Nitrogen m/tr, Co = Coenzyme m/tr, Nu = Nucleotide m/tr, Ca = Carbohydrate

m/tr, Li = Lipid m/tr, Ps = Polysaccharide m/tr, Ce = Cell envelope m/tr, 2M = Secondary metabolism,

Rx = Redox, Tr = Transferases, Ot = Other enzymes. Where m/tr stands for “metabolism and

trasportation” and p/c means “production and conversion”.
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Supplementary Table S4: P-Values of correlation coefficients between the populations of

metabolic functional categories

En e- Ph Aa N Co Nu Ca Li Ps Ce 2M Rx Tr Ot

En 0 5 · 10−5 0.02 < 10−6 < 10−6 < 10−6 < 10−6 0.05 0.01 4 · 10−5 0.26 < 10−6 < 10−6 4 · 10−3 0.46

e- 5 · 10−5 0 < 10−6 2 · 10−5 1 · 10−3 < 10−6 8 · 10−3 < 10−6 < 10−6 < 10−6 3 · 10−4 1 · 10−6 < 10−6 7 · 10−3 0.08

Ph 0.02 < 10−6 0 1 · 10−3 < 10−6 0.29 2 · 10−3 < 10−6 < 10−6 2 · 10−4 < 10−6 5 · 10−5 0.06 2 · 10−5 0.08

Aa < 10−6 2 · 10−5 1 · 10−3 0 0.02 < 10−6 2 · 10−6 4 · 10−5 0.02 < 10−6 0.39 0.03 < 10−6 0.28 5 · 10−5

N < 10−6 1 · 10−3 < 10−6 0.02 0 2 · 10−4 0.01 0.47 7 · 10−5 5 · 10−3 8 · 10−3 < 10−6 0.13 0.18 0.31

Co < 10−6 < 10−6 0.29 < 10−6 2 · 10−4 0 1 · 10−4 < 10−6 < 10−6 < 10−6 0.13 0.02 < 10−6 2 · 10−4 4 · 10−6

Nu < 10−6 8 · 10−3 2 · 10−3 2 · 10−6 0.01 1 · 10−4 0 0.20 5 · 10−3 3 · 10−3 0.26 3 · 10−3 0.17 8 · 10−3 9 · 10−5

Ca 0.05 < 10−6 < 10−6 4 · 10−5 0.47 < 10−6 0.20 0 < 10−6 < 10−6 < 10−6 0.30 < 10−6 8 · 10−4 7 · 10−6

Li 0.01 < 10−6 < 10−6 0.02 7 · 10−5 < 10−6 5 · 10−3 < 10−6 0 < 10−6 3 · 10−5 < 10−6 0.06 3 · 10−4 2 · 10−6

Ps 4 · 10−5 < 10−6 2 · 10−4 < 10−6 5 · 10−3 < 10−6 3 · 10−3 < 10−6 < 10−6 0 5 · 10−4 0.07 < 10−6 6 · 10−3 0.03

Ce 0.26 3 · 10−4 < 10−6 0.39 8 · 10−3 0.13 0.26 < 10−6 3 · 10−5 5 · 10−4 0 0.50 0.38 < 10−6 < 10−6

2M < 10−6 1 · 10−6 5 · 10−5 0.03 < 10−6 0.02 3 · 10−3 0.30 < 10−6 0.07 0.50 0 8 · 10−4 < 10−6 0.01

Rx < 10−6 < 10−6 0.06 < 10−6 0.13 < 10−6 0.17 < 10−6 0.06 < 10−6 0.38 8 · 10−4 0 3 · 10−3 4 · 10−5

Tr 4 · 10−3 7 · 10−3 2 · 10−5 0.28 0.18 2 · 10−4 8 · 10−4 8 · 10−4 3 · 10−4 6 · 10−3 < 10−6 < 10−6 3 · 10−3 0 1 · 10−6

Ot 0.46 0.08 0.08 5 · 10−5 0.31 4 · 10−6 9 · 10−5 7 · 10−6 2 · 10−6 0.03 < 10−6 0.01 4 · 10−5 1 · 10−6 0

P-values of the Pearson’s correlation coefficients between the populations of 24 different metabolic

functional categories from the SUPERFAMILY database for 753 bacteria (the most significant values are

in boldface). Correlations are calculated from fluctuations of categories from the average trend (see

Methods). The (anti-)correlation is statistically significant for the most of the metabolic categories. We

used the following short forms for the metabolic functional categories: En = Energy p/c, e- = Electrons

transfer, Ph = Photosynthesis, Aa = Amino acids m/tr, N = Nitrogen m/tr, Co = Coenzyme m/tr, Nu =

Nucleotide m/tr, Ca = Carbohydrate m/tr, Li = Lipid m/tr, Ps = Polysaccharide m/tr, Ce = Cell

envelope m/tr, 2M = Secondary metabolism, Rx = Redox, Tr = Transferases, Ot = Other enzymes.

Where m/tr stands for “metabolism and trasportation” and p/c means “production and conversion”.


