Addition of Ascorbic Acid to the Extracellular Environment Activates Lipoplexes of a Ferrocenyl Lipid and Promotes Cell Transfection

Burcu S. Aytar,^a John P. E. Muller,^a Sharon Golan,^b Shinichi Hata,^c Hiro Takahashi,^c Yukishige Kondo,^c Yeshayahu Talmon,^{b,*} Nicholas L. Abbott,^{a,*} and David M. Lynn^{a,*}

^aDepartment of Chemical and Biological Engineering, University of Wisconsin - Madison, 1415 Engineering Drive, Madison, Wisconsin 53706. ^bDepartment of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel. ^cDepartment of Industrial Chemistry, Tokyo University of Science, Tokyo, Japan

Supplementary Data

Figure S1: Additional cryo-TEM images acquired during characterization of the samples of A) lipoplexes of oxidized BFDMA that were treated with AA and B) lipoplexes of oxidized BFDMA (both in Opti-MEM cell culture medium) used to acquire images shown in Figures 7B-D of the main text. The images were acquired in an area of the sample where lipoplexes were absent and show the presence of DNA threadlike structures in solution. C) Cryo-TEM image of a solution of plasmid DNA encoding EGFP (2.9 mg/ml in water). The arrows in images point at DNA threads dispersed in the solution.