Supplemental Figure 1.

1-05 - +	1-17 - +	1-19 - +	1-20 - +	1-30 - +	1-34 - +	1-36 - +	1-37 - +	1-40 - + _	1-41 - +	2-03 - +	2-04 - +	2-21	2-29 - +	2-32
and the state of the second	WWW/YWWW	in strategy and the strategy of the strategy o	Contrained and	ALTHOUGH AND				NOW NAME AND ADDRESS OF A DESCRIPTION OF A DESCRIPTIONO OF A DESCRIPTION O					MANA/ROOM	CANCEL CONTRACTOR
2-33 - +	2-34 - +	2-37 - +	2-38 - +	2-43 - +	2-48 - +	2-55 - +	2-56 - +	2-57 - +	2-63 - +	3-18 - +	3-23 - +	3-38 - +	3-55 - +	
Martine Contraction	14/14/14/14/14/14	Net-Mill Million State					automotive	Million and Million	-11-6-04000000				NUMBER OF STREET, STRE	

Supplemental Figure 1. EMSA for binding of SmcR to *V. vulnificus* genomic DNA fragments and determination of SmcR-binding sequences. Each of the 29 radiolabeled DNA fragments (about 30 ng for each) was mixed with 200 nM of SmcR and then resolved on a 4% polyacrylamide gel. EMSAs were performed in the presence of 0.1 µg of poly(dI-dC) as a nonspecific competitor. The same labeled DNA fragments were incubated with 400 nM of SmcR and then digested with DNase I. Protection by SmcR is indicated by filled bars. For each panel, lanes G, A, T, and C (from the left) represent the nucleotide sequencing ladders of the individual clones containing the DNA fragments that were gel-shifted. Details are in the text. -, without SmcR; +, with SmcR. Same isolate numbers appeared in Fig. 2*A* are on the top of each panel.

Supplemental TABLE 1. Genes and their products of the *V. vulnificus* SmcR regulon identified using the consensus SmcR-binding sequence*

Functional Category	Locus tag	Gene	Product
Amino acid transport and	VV1_1370 [‡]	†	Acetylornithine deacetylase
metabolism	VV1_1371	—	N-acetyl-gamma-glutamyl-phosphate reductase
	VV1_1372	—	Acetylglutamate kinase
	VV1_1373	_	Argininosuccinate synthase
	VV1_1374	—	Argininosuccinate lyase
Carbohydrate transport and metabolism	VV2_1326	—	ABC-type sugar transport system, periplasmic component
Cell motility	VV1_1950 [‡]	_	Flagellar biosynthesis protein
	VV1_1951	—	Flagellar biosynthesis MinD-related protein
	VV1_1952	_	Flagellar biosynthesis sigma factor FliA
Cell wall/membrane biogenesis	VV1_1103	_	Membrane protein
	VV2_0929	—	Membrane-fusion protein
	VV2_0928	_	Cation/multidrug efflux pump
Coenzyme transport and metabolism	VV1_2257	_	6-pyruvoyl tetrahydrobiopterin synthase
Defense mechanisms	VV2_1089 [‡]	_	ABC-type multidrug transport system, ATPase and permease component
Function unknown	VV1_1265	_	Hypothetical protein
	VV1_1471	—	Predicted membrane protein
	VV2_0057	—	Hypothetical protein
	VV2_0058	—	Predicted membrane protein
	VV2_0279	—	Hypothetical protein
	VV2_0517	—	Hypothetical protein
	VV2_1111	—	Hypothetical protein
	VV2_1541	—	Hypothetical protein
	VV2_1542	—	Transcriptional regulator, MerR family
	VV2_1543		Deoxyribodipyrimidine photolyase
	VV2_1544	—	Hypothetical protein
General function prediction only	VV1_0300	—	Predicted Rossmann fold nucleotide-binding protein
	VV1_0840	—	ABC-type transport system, permease component
	VV1_0839	—	ABC-type oligopeptide transport system, periplasmic component
	VV1_0838	—	ABC-type dipeptide/oligopeptide/nickel transport
	VV1_0837	—	ABC-type oligopeptide transport system, ATPase component
	VV1_1085	_	Peptide ABC transporter, ATP-binding protein
	VV1_1456	—	Predicted Zn-dependent protease and their inactivated homologs
	VV1_1455		Predicted amidohydrolase
	VV1_1454	_	Predicted membrane protein
	VV1_1453	_	Ribonuclease G and E

	VV1_1452	maf	Maf-like protein
	VV1_1451	_	Cell shape-determining protein
	VV1 1450	_	Cell shape-determining protein
	VV1 2358	_	Probable hydrolase
	VV1 2976 [‡]	_	ABC-type uncharacterized transport system.
			permease component
	VV1_2975	—	ABC-type uncharacterized transport system,
			permease component
	VV1_2974	_	ABC-type dipeptide transport system, periplasmic component
	VV1_2973	_	ABC-type dipeptide/oligopeptide/nickel transport
	VV1_2972	_	ABC-type oligopeptide transport system, ATPase
			component
	VV2_0856	—	ATPase component of ABC transporter with duplicated ATPase domains
	VV2_0970	_	Predicted hydrolase/acyltransferase
	VV2_1270	_	Predicted Zn-dependent peptidase
	VV2_1527	—	Predicted acetyltransferase
Inorganic ion transport and	VV1 0842 [‡]	_	Outer membrane receptor protein
metabolism	VV1 0843	_	Hypothetical protein
lieuoonsiii	VV1_0844	_	TolR
	VV1_0845	_	TonB system transport protein ExbB2
	VV1 2805	_	Di- and tricarboxylate transporter
	VV2_1106	—	Arylsulfatase A
Intracellular trafficking and secretion	VV1_3112	_	Multiple antibiotic transporter
Nucleotide transport and	VV1 0302	_	DNA/RNA endonuclease G
metabolism	VV1 1635		Hypoxanthine phosphoribosyltransferase
	VV1 1636		Hypoxanthine phosphoribosyltransferase
Posttranslational modification,	VV1_0453	_	Peroxiredoxin
protein turnover, chaperones	VV2_0020 [‡]	—	Molecular chaperone
	VV2_1650	_	Predicted redox protein, regulator of disulfide bond formation
Replication, recombination and	VV1_1702	_	Superfamily II DNA helicase
repair	VV2_1406 [‡]	_	Endonuclease I
	VV2_1643	—	Alkylated DNA repair protein
Signal transduction	VV1 1489	_	HD-GYP domain
mechanisms	VV1 1931	_	FlaK protein
	VV1 2096 [‡]	_	Methyl-accepting chemotaxis protein
	VV1 2211	_	Hypothetical protein
	VV1_2868		Methyl-accepting chemotaxis protein
	VV1_2867		Pseudouridylate synthase, 23S RNA-specific
	VV1_2866		Predicted SAM-dependent methyltransferase
	VV1_2911	_	Predicted signal transduction protein
	VV2_0528		Methyl-accepting chemotaxis protein
	VV2_0823	_	ABC-type amino acid transport/signal transduction systems
	VV2_0825	—	Methyl-accepting chemotaxis protein

Transcription	VV1_0829 VV1_0830	slmA	Nucleoid occlusion protein Lipid A biosynthesis lauroyl acyltransferase
	VV1_1687	greA	Transcription elongation factor GreA
	V V 2_0446	_	Serine/threonine protein kinase
	VV2_0981	_	Transcriptional regulator
	v v2_1391*		Transcriptional regulator
Translation	VV1_1270	—	Lysyl-tRNA synthetase
	VV1_1271		Hypothetical protein
	VVI_2397	_	Threonyl-tRNA synthetase
	vv1_3016	_	Ribosomai large subunit pseudouridine synthase C
Not in COGs	VV1_0464		Polyphosphate kinase
	VV1_0522	—	Hypothetical protein
	VV1_0644		Pyruvate kinase
	VV1_1215		Hypothetical protein
	VV1_1216	_	Hypothetical protein
	VVI_1401	—	Thymidylate kinase
	VVI_1472	_	Predicted membrane protein
	VVI_14/3 VV1_1720	_	CODEE family protein
	VV1_1720 VV1_2362	_	Hypothetical protein
	VV1_2380	_	Hypothetical protein
	VV1_2430	_	Coenzyme F420-dependent N5 N10-methylene
	11_2150		tetrahydromethanopterin reductase
	VV1 2726	_	Histone acetyltransferase HPA2
	VV1 2957		Hypothetical protein
	VV1_2958		ISSod7
	VV2_0067	—	Hypothetical protein
	VV2_0133	—	Decaheme cytochrome c related protein
	VV2_0250 [‡]		Zn-dependent protease
	VV2_0364	—	Chromosome segregation ATPase
	VV2_0363	—	Biopolymer transport protein
	VV2_0362		Biopolymer transport protein
	VV2_0361	—	Biopolymer transport protein
	VV2_0360		Periplasmic protein TonB
	VV2_0359	_	FOG: TPR repeat protein
	VV2_0400	_	Glycosidase
	VV2_0414		Succinyl-CoA synthetase, alpha subunit
	V V 2_0429	_	Hemolysin-coregulated protein
	VV2_0038		Hypothetical protein Uncharacterized APC type transport system
	vv2_1055	—	permease component
	VV2 1046		AraC-type DNA-binding domain-containing
			protein
	VV2_1147	—	Hypothetical protein
	VV2_1179	—	Hypothetical protein
	VV2_1201	—	Hypothetical protein
	VV2_1281	—	Maltoporin
	VV2_1371	—	Hypothetical protein
	VV2 1398		Hypothetical protein

^{*}Functional categories, gene names, locus tag numbers, and annotation of gene products are based on the database of the *V. vulnificus* CMCP6 genome. Locus tags likely in an operon are indicated in boldface. [†]Locus tags without gene name.

[‡]Binding of SmcR to their upstream region was experimentally verified by EMSA. [§]Clusters of orthologous group.

Locus tag*	Oligonucleotide sequence, 5'-3'						
	Forward	Reverse					
EMSA and ChIP	assay						
VV1_0842	AGATCCACCCTCCAACACATACC	GAACGACGACCAAATGTGACG					
VV1_1370	ACTTCCCCTGTTGACAGTTGGG	AGTTGAGAAATGCACTTGCCCG					
VV1_1950	AGCAGTCTTACTCACCTCCGGC	GACATGATGACAGCATCAACGC					
VV1_2096	GACCCGTTGTTGTCATGTCTAGC	ACGTTTCTGAGAGAGCGCAAGC					
VV1_2976	TAATGCCAAGAAACGTCGGC	CCACACTTTCATACGTTTTACCG					
VV2_0020	ACTTGCCATTTGGATTGCTCC	CGTGGCAATCAATAAACACCG					
VV2_0250	CCTCCTAGGGTGTGTGATTGTGG	AACAGATAGCACGCTATTTCCCC					
VV2_1089	ACCACACAGTCTGCATTTTGGG	CCAGTTGGTTATCACTTTGCGG					
VV2_1391	CTGTGCCAATTGCTCAGATCG	GTTCTGCAATAGCCACAAAGGC					
VV2_1406	AATCGCCATTGAGTAGCTGTGC	CTCAAACACCACAAAACACCCG					
Quantitative RT-I	PCR						
VV1_0842	TCGCAGAAGAGCAGCAAGTCG	TGGTAATGACGGTGACAGGAGAAG					
VV1_1370	GCTATCCCATCTCCCACTCTTAACC	CCCACGCAACAGATTATCCAAACC					
VV1_1950	ACCGCCGTAAGCCTCAAACTG	TCCTGCCACAATAAACCCGATACC					
VV1_2096	CTCGGCGGCTGGACACATC	GCACGGGCGGCTTCTATGG					
VV1_2976	CCTTTCCGAAGATCAAATGGCAGAG	GACAAGAAGACGAGTCAACCAATCC					
VV2_0020	AAGATGTGGTGTTTGGTCAAGCG	GTGCCGAATGTTCTGCGTTGG					
VV2_0250	ATACCCGTTGGCAGGATGTGG	AAAGCCTCGCCCGTCAGC					
VV2_1089	TCCAGATGCCAGTGAAGAAGAGC	GCCAAACGGGTCGGTGAGG					
VV2_1391	GAACAAGGCAGTTTGTCTGGCG	ATCCGTGAGACTTTGTTTGCGG					
VV2_1406	GGCACACAAGGCAACACTGAC	CACCGACACCGAGAACTGATAGG					

Supplemental TABLE 2. Oligonucleotides used for EMSA, ChIP, and quantitative RT-PCR analysis of the ten genes randomly selected from the pool of the newly predicted SmcR-regulon

^{*}Locus tag numbers are based on the database of the *V. vulnificus* CMCP6 genome which was retrieved from GenBank (AE016795; AE016796).