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The sequence GGCaCGG is resistant to MspI cleavage
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ABSTRACT
XsjI essentially fails to cut the sequence GGCmCGG at enzyme concentra-

tions which give total digestion of CCGG, CmCGG and GGCCGG sites. This
result explains why certain sites in mammalian DNA are resistant to both MspI
and HpaII and shows that this results from an idiosynchracy of MspI rather
than a novel form of DNA methylation at this site in mammalian cells.

INTRODUCTION

The analysis of DNA methylation in eukaryotic cells has been greatly

aided by the use of restriction enzymes which are sensitive to the presence

of 5 methyl Cytosine (mC) residues in their recognition site. Thus, Bird and

Southern (1) showed that HhaI (GCGC) and HpaII (CCGG) would not cut Xenopus

rDNA if the internal C residue was methylated and that some, but not all of

these sites were methylated in genomic rDNA. The failure of these enzymes

to cut at a given site indicated the presence of MC in that sequence or the

absence of that site in the DNA because of a polymorphic difference in

primary DNA sequence. It became easier to discriminate between these two

possibilities for CCGG sites when Waalwijk and Flavell (2) showed that I4spI

would cut at CCGG, irrespective of mC at the internal C residue; IMsI could,

therefore, be used to show the presence of that site and HpaII to diagnose

the presence of mC residues.

An apparent exception to this rule was fortuitously observed in a study

of the methylation of the human ,-related globin genes (3). They showed that

MspI failed to cut at two CCGG sites present in the 5' flanking regions of the

Gy- and Ay-globin genes, respectively. Since this site was cut after cloning

the y-globin DNA in a phage vector (4), this effect had to be explained by

modification of the DNA in human cells. Furthermore, since it was shown (5)
that MspI could not cut the sequence mCCGG, it was suggested that the sites

in the human y-globin genes were modified at the external C residue (3, 4).
Others have also noted such sites (8). An alternative explanation would be,
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however, that those exceptional tjI sites are a subset of the CCGG sites

which are uncut when methylated at the internal C residue as a result of some

unique property of that site. We show here that these unique sites have the

consensus sequence GGCCGG and that when the internal C residue is methylated
(GGC CGG) !MsI cuts this site with great difficulty. That IMsI does not cut

at these sites is therefore an interesting enzymological artefact and does

not necessarily indicate meCGG sites in manmnalian DNA.

MATERIALS AND METHODS

Enzymes and reagents

Restriction enzymes, E. coli DNA polymeraseI, HpaII methylase and T4

DNA ligase were purchased from N.E. Bio Labs. -32 P-dATP (300OCi/mMol) and
-32P-dCTP (300 Ci/mMol) was from the Radiochemical Centre, Amersham, 5-methyl

dCTP from P-L Biochemicals, dATP, dCTP, dTTP from Boehringer Mannheim and

dextransulfate from Pharmacia.

M13 cloning and in vitro DNA methylation

The human Ay-globin gene was isolated on a 3300bp long HindIII fragment

from cosmid clone HG25 (9) and ligated into the HindIII site of the replica-
tive form of phage Ml3mp8 (10). The human al-globin gene was inserted into

Ml3mp8 as a 1500bp long PstI fragment isolated from DNA clone pRBal (11).

These ligated DNAs were used to transfect E.coli JM103 and single stranded

DNA of the recambinant phages named Myl and Mel, respectively, was isolated

according to Messing and Vieira (10). These phage DNAs were used as tem-

plates for the in vitro synthesis of hemimethylated DNA essentially as

described by Stein et al. (6) (Fig. 1). An M13-specific DNA primer (SP16)

was heat-denatured and added to a reaction mixture (100l ) containing 2jg of

single stranded phage DNA, 66mM Tris-HCl (pH7.5), 6.6mM MgC12, lOnM dithio-

threitol and 50*1 each of rATP, dATP, dGTP, dTTP and 5 methyl dCTP (5-methyl-
deoxycytidine-5'-triphosphate). The complementary strand was synthesized
at 300C for lhr. with E.coli DNA polymeraseI (25 units) in the presence of

T4 DNA ligase (400 units). The DNA was then extracted with phenol and

separated on a 0.8% low-melting agarose gel in the presence of EtBr (0.5al/
ml). The covalently closed circular DNA molecules were isolated from the

agarose by phenol extraction and ethanol precipitation and used directly for

transformation of L-cells. Methylation of DNA with H!paII methylase was per-

formed according to the instructions of the manufacturer (N.E.Biolabs) and

methylation with Bacillus phage methylase essential as in Jentsch et al.(5).
Under the conditions used (lhr. incubation) only the outer C residue of CCGG
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Fig. 1. Procedure used to study the inheritance of DNA methylation.
X denotes the restriction enzyme used for M13 cloning, i.e. PstI for the

al-globin gene and HindIII for the Ay-globin gene; the resulting phages are
named Mal and Myl, respectively. For experimental details see Methods section.

is methylated. This will be described in detail elsewhere (U. Gunthert et

al., in preparation).

Cell Culture and Transformation

Ltk mouse cells obtained from R. Axel were maintained in Dulbecco's

modified Eagle's (DME) medium supplemented with 5% new born calf serum. These

cells were transformed with the plasmid pTKLM4176 which contains the gene of

herpes simplex virus type I inserted into pBR322 (T. Lund and A. Mellor, un-

published data). 40ng of pTKLA16 DNA, together with 100-200ng of hemimethy-

lated Mal DNA and 20,Ag of salmon sperm DNA were added as calcium phosphate

coprecipitate to each petri dish containing 106 L-cells. In some experiments
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unmethylated replicative form DNA of Mal or myl were used as cotransforming

DNAs instead of hemimethylated DNA. Transformants (tk ) were selected in

DME medium supplemented with 5% new born calf serum and hypoxanthine, aminop-

terin and thymidine (HAT). Individual colonies were picked and grown into

mass cultures.

Restriction and Hybridization Analysis

DNA of transformed cells was isolated as described by Stein et al.,(6).

10-50pg DNA was digested with a 5 to 10 fold excess of restriction endonucle-

ase in the buffer recommended by the suppliers. After addition of the

enzyme, a sample (0.5,g) of the DNA digest was removed and incubated with

0.5t&g of phage 1DNA, which allowed us to monitor the digestion. DNA frag-

ments were electrophoresed on 1% or 1.5% agarose gels in Loening E buffer and

then blotted onto nitrocellulose filters. The filter strips were hybridized

overnight at 65°C to 32P-labelled Ay-globin, al-globin or M13 DNA probes in

2 X SSC, 10% dextran sulfate, 0.1% SDS, and 10 X Denhardt's solution contain-

ing 20pg[ml of sheared mouse liver DNA. Post-hybridization washes were

carried out at 650C in 1 X SSC, 0.1% SDS 0113 DNA probes) or in 0.1 X SSC,

0.1% SDS (globin DNA probes) for 1-2 hrs. All DNA probes were labelled by

nick-translation with a-32P-dATP or a-32P-dCTP to a specific activity of 108
cpmIjlg. Complete digestion with the methylation-sensitive enzymes MsI and

HpaII was controlled by adding a small amount of JDNA as internal control to

the digestion mixture. The restriction pattern of this ADNA was made

visible by hybridization of nick-translated ADNA to the blots previously

hybridized with globin of M13 DNA probes.

RESULTS AND DISCUSSION

MspI does not cut certain CCGG sites in methylated human globin genes

To determine whether the MspI resistant cleavage sites have aspecific
DNA sequence, we carried out a search for such sites in the human a- and y-

globin genes and in the M13 viral cloning vector. The two globin genes were

cloned into M13 and the single stranded DNA of the recombinant phages (Mal

and 14yl) was used as template for DNA synthesis using DNA polymerasel, a

short oligonucleotide as primer and as substrates dATP, TTP, dGTP anddmCTP
instead of normal dCTP. In this way, a duplex DNA methylated in one strand

is produced. Stein et al. (6) showed that the unmethylated template strand

of this hemimethylated DNA is methylated in vivo when this DNA is introduced

into L cells by DNA mediated gene transfer. The methylated residues are

predominantly or exclusively at mCpG sequences. The methylation pattern
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Fig. 2. pI does not cut the 5' CCGG site of the Ay-globin gene.

High molecular weight DNA of L-cells transformed with unmethylated (clone
1) or hemimethylated (clones 2, 3, 4) Myl DNA was digested with the restric-
tion enzymes indicated: HindIII (Hd), HpaII (Hp) and .4.I (Ms). DNA frag-
ments were electrophoresed on a 1% agarose gel, transferred to nitrocellulose
and hybridized to the nick-translated 3300bp HindIII fragment of the Ay-globin
gene. Myl denotes the M13 clone containing the y-globin HindIII insert and
was used as a size marker. The relevant restriction map of the y-globin
gene is shown in the bottom part with the sizes of the corresponding restric-
tion fragments indicated.
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thereby established is inherited faithfully fran one cell generation to the

next and can therefore be studied in transformed cell lines. DNA from L

cells (clone 2, 3, 4) transfected with hemimethylated Myl DNA was cleaved

with HindIII (to release the human DNA insert from the vector(, HindIII plus

HpaII or HindIII plus !IiI (Fig. 2). As expected, the two CCGG sites

present on this fragment are uncut by HpaII, showing that both sites are

methylated at the internal C residues of the CCGG site. MspI cleaves the

CCGG site present on the 3' side of the y-globin gene, but fails to cut the

site to the 5' side of the gene, resulting in a DNA fragment of 3150bp (Fig.

2). Since the same site is uncut (3) in human DNA from most tissues (Fig.

2), it follows that the 'inheritance' of this type of modification in this

transformation system is similar to that of other CpG's and that we can use

this method to find other such sites. When unmethylated y-globin DNA was

used in the transformations (clone 1), both CCGG sites were cut with MspI
and HpaII.

We next checked the cloned human a-globin gene (Mal) for CCGG sites

uncut by L4MI. One such site was detected (number 16 in Fig. 3). DNAfrom

transformed L cells was cut with PstI (to release the 1.5kb a-globin DNA in-

sert) and either EpaII or m'.I. Digestion with H!paII shows essentially no

cleavage of the PstI fragment in DNA from cells (clones 6, 7, 8) transformed

with hemimethylated a-globin genes, although total cleavage of this fragment

was obtained with DNA for cell lines transformed with unmethylated a-globin

DNA (clone 5). All 16 CCGG sites therefore retain the internal mC residue.

Since there are so many CCG sites in the PstI fragment cloned in Mal,

cleavage with MspI yields small fragments, most of which run off the gel show-

ing in Fig. 3. However, two M fragments can be seen of 490bp and 460bp,

respectively. The latter fragment results from cleavage at site 16. This

site is partially resistant to II digestion resulting in the larger 490bp

fragment. Digestion of DNA from unmethylated a-globin DNA (either cloned

DNA or DNA from transfected cells) gives only the 460bp fragment. That the

difference between methylated and unmethylated DNA is real is shown by mixing

cloned a-globin DNA with the DNA from the L cells transfected with hemimethy-

lated a-globin genes. Here two poorly resolved bands are found instead of a

single band (Fig. 3).

M13 DNA also contains f4spI-resistant CCGG Sites

Finally, we screened M13 vector DNA for CCGG sites which are resistant

to cleavage by MspI. Two such sites are found at residues 2552 and 7007, res-

pectively. To do this we purified the 818bp DNA fragment which flanks the
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Fig. 3. Cleavage in the human al-globin gene with !MsI.
High molecular weight DNA of L-cells transformed with unmethylated (clone

5) or hemimethylated (clone 6, 7, 8) Mal DNA was digested with the restriction
enzymes indicated: PstI (P), HpaII (Hp) and 4MaI (Ms). DNA fragments were

separated on 1.5% agarose, transferred to nitrocellulose and hybridized to
the nick-translated 1500bp long PstI fragment of the a-globin gene. Mal,
the M13 recombinant containing the £-globin PstI insert, was used as a size
marker. The HpaII restriction map of the a-globin gene, shown in the bottom
part, was determined by partial restriction mapping of the cloned PstI frag-
ment. The HpaII sites are numbered from left to right with the size of the
largest restriction fragment indicated. In one case (clone 8) we added MspI
digested cloned Mal to the cut L cell DNA (in lane b) to show the resolution
of the two bands.
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Fig. 4. Failure of MjspI to cut a CCGG site of phage M13.
DNA from L cells transformed with hemimethylated Myl (clones 2 and 4 of

Fig. 2) was cut with HipaII, MpI or HaeIII, electrophoresed on an agarose gel
and hybridized to the 818bp !jpI fragment shown in the scheme.

site at residue 2552 from M13 RF DNA and used this as a probe in our Southern

blots of DNA from L cells transformed with hemimethylated Myl DNA (clones 2

and 4). The 818bp fragment is however not seen upon !49I cleavage. Instead,

a fragment of about 970bp is seen which results from the failure of MspI to

cut at site 2552 (Fig. 4). We have performed the similar experiments with

the MI site at residue 7007 with identical results (not shown).

We have aligned the DNA sequences of the four MspI-resistant sites in

Fig. 5 (13, 14, 15). It can be seen that they have in conmon the sequence
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Msp I # 1 (At) TGAGGCCAGG66CC6GCGGCTGGCTA
MspI #16 (Q1) GTGAGCGGCG66CCGGGAGCGATCTG
Msp 1 2552 (M 13) CCATTAGCAAW6CCG6AAACGTCACC
Msp 1 7007 (M 13) GGGTGAGAAAG6CC66AGACAGTCAA

Fig. 5. Alignment of the MspI sequences uncut by IMsI in 'methylated' DNA.

(Pu)GGCCGG. Since the consensus sequence of the site contains overlapping

HaeIII(SrJrCC) sites, this permitted a direct test of the methylation status of

the two C residues of this sequence. If both C residues are methylated, then

the site will be resistant to cleavage by HaeIII (blocked by GGmCC) as well

as MspI (blocked by mCCGG). This GGkCCGG site at position 2554 of M13 is

however cut by HaeIII in the DNA from the L cells transformed with hemimethy-

lated DNA despite the fact that it is resistant to IMsI; a 2557bp HaeIII

fragment is seen rather than the 2836bp fragment which would be expected if

the site were uncut (see Fig. 4).

Modification with HpaII Methylase Blocks MspI Cleavage at (Pu)GGCCGG

Since the four sites have a common DNA sequence and because of the

HaeIII results, we were concerned that the failure of !4sI to cut at this site

could derive simply from the presence of the sequence GGC CGG, that is, asite

with only a single mC residue. We therefore used HpaII methylase tomethylate

the sequence of Myl and then digested the DNA with Ms.I, HpaII and HaeIII.

ipMI cleaves the unmethylated DNA much more readily than the methylated DNA.

In addition, !MsI only partially cuts at the MsI site at the 5' side of the

y-globin gene at enzyme amounts that give complete cleavage at other sites;

at extremely high enzyme doses (200X excess) about 50% cleavage is found.

Similar results are found for the M13 GGCCGrJ sites. In contrast, MspI cuts

the CCGG sites 3' to the y-globin gene and the remaining CCGG sites in the M13

vector to completion. As expected, EpaII fails to cut all CCGG sites (Fig.

6a). This result suggests that either MspI is blocked by the single mC resi-

due, or the HpaII methylase modifies both C residues.

To exclude the latter possibility we cleaved methylated DNA with HaeIII

and asked whether the GGCmCGG site of M13 was cut by HaeIII. If the sequence

was GGmCmCGG, HaeIII cannot cut this site (12). HaeIII, however, cleaves

the in vitro methylated DNA to completion (Fig. 6b). To establish beyond

doubt that the sequence CC GCGmC is not cut by HaeIII we used DNA methylase

of Bacillus phage SPRl9 which gives this modification pattern on short incuba-

tion times (U. Gunthert, unpublished). This methylated sequence is not cut

by HaeIII (not shown).
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Fig. 6. Cleavage of Myl DNA methylated in vitro with HpaII methylase.
Panel a, the left hand five lanes show the MlspI digestion of methylated

Myl DNA up to 200 units/rag of DNA. Lane 6 shows the HpaII
digest of methylated DNA. The right hand five lanes show the
same MspI digests of unmethylated Myl DNA. The last lane shows
the EpaII digest of unmethylated DNA.

Panel b, shows the input DNA followed by HpaII, MsDI and HaeIII digests
of methylated (M) and unmethylated (-) Myl DNA.

The results show that A4sI fails to cut DNA at the sequence GGCmCGG. It

is theoretically possible that HpaII methylase generates the sequence
GGCmC G G

CCG GmCmC at this specific site even though the only modification detected

up to now with the enzyme is
C
GmCC. We consider this highly unlikely. The

methylated strand of the 1413 DNA sequence introduced into the animal cells in

all our experiments was CGGCmCGG and our data show that the external C resi-
CCGGCC GCmC GG

due is lost after passaging through the cells (-> GmCC): it is implausible

that this lo.s is accompanied by a transfer of the methyl group to the exter-

nal C residue of the other DNA strand to give CCG GmCmC. loreover, the fact

3568

2 153 1

1584

947

565

1 2.5



Nucleic Acids Research

that we have observed the same phenomenon with both eukaryotic and bacterial

methylase makes this explanation still more unlikely.
It is not clear why Msp has such difficulty cleaving this site when the

internal C residue is methylated. mC residues have been implicated in the

transition of DNA from the B to Z configuration (7) and it is possible that

the site GGCCGG forms a non-B configuration (under MspI incubation conditions)

when the internal C residue is methylated. Whatever the explanation, this

phenomenon is clearly of some practical importance in the study of DNA methy-

lation since such sites cannot be characterized with 14spI. HaeITI and HpaII

are, however, diagno3,tic for the presence of methyl group's sequence GGCCGGG.
H. Cedar and his colleagues have independently examined this phenomenon

(see this issue of NAR) and have also concluded that the internal C residue

prevents cleavage of these sites by MIspI.
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