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RBC membrane

In the equilibrium state, the RBC keeps a biconcave shape as described by Ref. (1). In the present model,
the RBC membrane is represented by a two-dimensional triangulated network with Nv vertices where each
vertex is represented by a DPD particle. The vertices are connected by Ns visco-elastic bonds to impose
proper membrane mechanics (2, 3). Specifically, the elastic part of bond is represented by
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where lj is the length of the spring j, lm is the maximum spring extension, xj = lj/lm, p is the persistence
length, kBT is the energy unit, kp is the spring constant, and n is a power. Physically, the above two terms
represent the wormlike chain potential and a repulsive potential, respectively.

The membrane viscosity is imposed by introducing a viscous force on each spring. Following the general
framework of the fluid particle model (4), we can define the dissipative force F

D
ij and random force F

R
ij given

by
F

D
ij = −γT

vij − γC(vij · eij)eij, (S2)
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where γT and γC are dissipative parameters, vij is the relative velocity of spring ends, tr[dWij] is the trace
of a random matrix of independent Wiener increments dWij , and dWS

ij = dWS
ij − tr[dWS

ij]1/3 is the
traceless symmetric part.

To uniquely relate the model parameters and visco-elastic properties of the cell membrane, we extend
the linear analysis of (5) for a regular hexagonal network (3); the derived shear modulus of the membrane
µ0 is given by
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where l0 is the equilibrium spring length and x0 = l0/lm. The membrane shear viscosity is given by
ηm =

√
3γT + γC/4, where γT and γC are chosen such that the characteristic relaxation time of the

present RBC model (mainly determined by the ratio of the membrane elastic and viscous force) matches the
experimental measurements (6, 7).

The bending resistance of the RBC membrane is modeled by

Vb =
∑

j∈1...Ns

kb [1 − cos(θj − θ0)] , (S5)

where kb is the bending constant, θj is the instantaneous angle between two adjacent triangles having the
common edge j, and θ0 is the spontaneous angle. The relation between the model bending coefficient kb

1



and the macroscopic bending rigidity kc of the Helfrich model (8) can be derived as kb = 2kc/
√

3 for a
spherical membrane (3).

In addition, the RBC model includes the area and volume conservation constraints, which mimic the
area-incompressibility of the lipid bilayer and the incompressibility of the interior fluid, respectively. The
corresponding energy is given by

Va+v =
∑

j∈1...Nt

kd(Aj − A0)
2

2A0

+
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0 )2
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0

+
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0 )2
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0

, (S6)

where Nt is the number of triangles in the membrane network, A0 is the triangle area, and kd, ka and kv

are the local area, global area and volume constraint coefficients, respectively. The terms A and V are the
total RBC area and volume, while Atot

0 and V tot
0 are the specified total area and volume, respectively. The

corresponding area-compression K and Young’s modulus Y are given by

K = 2µ0 + ka + kd, Y =
4Kµ0

K + µ0

. (S7)

More details on the RBC model and the scaling between the model and the physical units can be found in
Ref. (3).

Construction of SS-RBC membrane

Different forces are applied at the anchor points on the cell membrane to mimic the various distortion
effect on the cell membrane. The sickle and elongated cells originate from SS-RBCs with intracellular HbS
polymer developing along a specific direction. The stretching force is applied on the anchor points “A” and
“C” as shown in Fig. 1 in the manuscript. On the contrary, granular cells originated from SS-RBCs with
intracellular HbS polymer domain with spherulitic configuration. Correspondingly, stretching forces are
applied on all of the four anchor points shown in Fig. 1. The detail parameters for the stretching force for
different shape of SS-RBC is shown in Tab. S1.

A B C D
S (0.0, 55, 54) (0.0, 0.0, 0.0) (0.0,−55, 54) (0.0, 0.0, 0.0)

G (0.0, 23, 31) (−23, 0.0, 31) (0.0 − 23, 31) (23, 0.0, 31)

E (0, 55, 11) (0, 0, 0) (0,−55,−11) (0, 0, 0)

Table S1: Stretching force (pN) applied on the anchor points for each type of the cell morphology.

Adhesion model

During the simulation of present work, the adhesive bond formation and dissociation are executed in a
stochastic way for each time step. First, all existing bonds between cell vertices and ligands are checked for
a potential dissociation. A bond is ruptured if the bond length is larger than doff , otherwise it is determined
according to the probability Poff . Second, a bond formation procedure is looped through all the free ligands.
For each free ligand, all the cell vertices within the distance don are examined, and bond formation is
accepted in a stochastic way according to the probability Pon. Finally, the forces of all existing bonds are
calculated and applied. Detail parameters for the adhesive interaction between the SS-RBC and ligands are
shown in Tab. S2.
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Parameters Simulations Physical
spring constant (ks) 400 1.85 × 10−5 N/m

equilibrium spring length (l0) 0.0 0.0 m

reactive distance (don) 0.5 4.8 × 10−7 m

rupture distance (doff ) 0.5 4.8 × 10−7 m

on strength (σon) 0.22 1.02 × 10−8 N/m

off strength (σoff ) 0.33 1.52 × 10−8 N/m

unstressed on rate (k0
on) 600.0 6.0 × 105 s−1

unstressed off rate (k0
off ) 0.25 250 s−1

Table S2: Simulation (in DPD units) and physical (in SI units) parameters for blood flow with adhesive
interaction with vascular endothelium.

Mathematical description of distorted RBC shapes

Sickle red blood cells (SS-RBC) undergo various morphological transitions in deoxygenated conditions. To
quantify the distorted shape of SS-RBC, we use a polynomial function z = f(x, y) to fit the surface of the
cell membrane for all the three types of cells, similar to the approach in Ref. (1). The polynomial function
is defined by

f(x, y) = α0 + α1x
2 + α2y

2 + α3x
4 + α4y

4 + α5x
2y2, (S8)

where α0, α1,..., α5 are fitting coefficients determined by the specific shape of the cell and the boundary of
the cell on the x-y plane is defined by

(x/b1)
p + (y/b2)

p = 1, (S9)

where b1, b2 and p vary for different cell morphologies.
For each cell, the membrane is divided into two parts according to the dual values in z direction; each

part is fitted by Eq. (S8) separately as shown in Figure S1. The combined surfaces define the cell membrane
for the classical “sickle” shape of cell as shown in Figure S2. Similarly, the elongated and granular shape of
cell membranes are fitted and plotted in Figure S3 and Figure S4.

We note that the basic morphological properties of the sickle cell can be interpreted from the fitting
parameters used above. First, b1 and b2 defines the maximum extension along the x and y direction, which
determines the length and width of the cells respectively. Second, the cell thickness can be quantified by
the average value ZT and the maximum extension Zm along the z direction, both determined by the fitting
parameter α0, α1,..., α5. Specifically, they are given by

ZT =

∫

(fu(x, y) − f l(x, y))dS/S0

Zm = max(fu(x, y)) − min(f l(x, y)),

(S10)

where S0 is the surface area determined by Eq. (S9). Finally, the mean curvature CH of the fitting surface
is determined by α1,..., α5 and given by
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. (S11)

Analytical solution can be obtained as f(x, y) defined by the polynomial function.
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Moreover, to quantify the difference between the fitting surface and the discrete cell vertices, we define
the L2 error of the fitting normalized by the average thickness of SS-RBC, as

ε =
1

Nv

√

√

√

√

Nv
∑

i=1

(f(xi, yi) − zi)2/Z
T , (S12)

where xi, yi and zi are the coordinates of a discrete cell vertex, Nv is the total number of vertices considered.
The fitting parameters and the basic cell morphological properties (length, width, thickness, etc.) for

each cell type are shown in Tab. S3 and Tab. S4.

Movie Description

Movie S1: Blood flow of sickle cell in a straight tube with diameter D = 9µm, Hct = 30%. The shear
modulus of the cell membrane is 100 times the value of healthy RBCs. Compared with blood plasma, the
flow resistance increases about 50% due to the introduction of SS-RBCs. However, no blood occlusion is
observed in the current work.
Movie S2: Blood flow of sickle cells with SS-RBC/wall adhesive interaction in a straight tube with diameter
of D = 9µm. The green dots represent the ligands coated on the wall. The cells with blue color represent
the “active” group of SS-RBCs exhibiting adhesive interaction with the coated ligands. The cells with red
color represent the “non-active” group of cells. The shear modulus of both groups of cell is 100 times the
value of healthy RBCs. The “active” cells show adhesion to channel wall in the region coated with ligands.
Moreover, the adherent “active” cells may further trap the “non-active” cells, resulting in the flow occlusion
in the channel.

α0 α1 α2 α3 α4 α5 ε

Sl −0.806 −0.1141 −6.78 × 10−3 2.12 × 10−3 2.01 × 10−2 2.84 × 10−2 0.0748

Su 1.36 −0.0403 0.306 −1.69 × 10−3 −3.60 × 10−2 −2.77 × 10−2 0.0748

El −0.995 −0.0361 −0.092 1.11 × 10−3 2.21 × 10−2 2.17 × 10−2 0.0581

Eu 1.04 8.36 × 10−3 0.203 −1.09 × 10−3 −2.89 × 10−2 −2.22 × 10−2 0.0581

Gl −0.237 −0.171 −0.180 6.35 × 10−3 6.84 × 10−3 4.40 × 10−2 0.0607

Gu 1.701 −0.0123 −0.0245 −5.06 × 10−3 −4.86 × 10−3 −1.85 × 10−2 0.0607

Table S3: The fitting parameters for the cell membranes with different morphologies. The label “S”, “E” and
“G” represent the sickle, elongated and granular shape respectively. The upper label “u” and “l” represent
the upper and lower part of the cell surface. The unit of x, y and z is in micrometer.

b1 b2 p ZT Zm 〈CH〉
S 5.80 3.05 1.54 1.58 3.87 0.22

E 6.40 3.1 1.45 1.56 2.37 0.25

G 4.58 4.58 1.25 1.52 2.75 0.21

Table S4: The parameters of Eq. (S9) representing the boundary of cell on the x-y plane, where the surface
of the cell membrane is defined. The label “S”, “E” and “G” represent the sickle, elongated and granular
shape, respectively. ZT and Zm are the average/maximum cell thickness defined by Eq. (S10). 〈CH〉 is the
average value of the mean curvature over the cell surface.
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Figure S1: Fitted surface of cell membrane for the sickle shape of SS-RBC. For illustration purposes, the
upper and lower surface is shifted by 1 and −1 in the z direction respectively. The blue dots represent the
cell vertices obtained from the procedure described in the current work. For details, see Morphology of
sickle red blood cell section of the main text.
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Figure S2: Cell vertices (blue dots) and the fitted surface of the cell membrane for the sickle shape of
SS-RBC.
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Figure S3: Cell vertices (blue dots) and the fitted surface of the cell membrane for the elongated shape of
SS-RBC.
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Figure S4: Cell vertices (blue dots) and the fitted surface of the cell membrane for the granular shape of
SS-RBC.
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