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ABSTRACT

The complete nucleotide sequence of the rat 18S ribosomal RNA gene has
been determined. A comparison of the rat 18S ribosomal RNA gene sequence
with the known sequences of yeast and frog revealed three conserved (stable)
regions, two unstable regions, and three large inserts. (A,T)—(G,C)
changes were more frequent than (G,C)—> (A,T) changes for three compar-
isons (yeast — frog, frog — rat, and yeast —>rat). GC pairs were
inserted preferentially over AT pairs for the same three comparisons. These
two factors contribute to the progressively higher GC content of 18S
ribosomal RNA of yeast, frog, and rat.

INTRODUCTION

The ribosomal RNA (rRNA) genes are essential genes existing in all life
forms from bacteria to man and they have been subjected to extensive
analysis. Nucleotide sequence comparison of rRNA genes of different
organisms should provide insight into evolutionary trends. There are two
high molecular weight RNA components (18S rRNA and 25-285 rRNA) in
eukaryotic ribosomes, and 185 rRNA sequences are known to be more highly
conserved than the other high molecular weight rRNA sequences (1, 2).

Complete nucleotide sequences of 185 rRNA genes of Saccharomyces
cerevisiae (3) and Xenopus laevis (4) have been reported recently. The
present study reveals the first complete nucleotide sequence of a mammalian
185 rRNA gene (rDNA) and analyzes the rat sequence compared with the yeast
and frog sequences.

MATERIALS AND METHODS

The characterization of rat rDNA cloned in lambda bacteriophages and
the recloning of the rDNA in plasmid pBR322 were previously described (5).
Plasmid pDF40 was used for sequencing the 3'-terminal region of the rat 18S
rDNA (6) and plasmid pDF15 was used for sequencing the 5'-terminal region
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Figure 1. Strategy of sequencing the central portion of the rat 18S rDNA.
Numbers reflect the distances from the 5'-terminus. Only the restriction
sites that were utilized for sequencing are shown. Arrows indicate the
directions of sequencing.

(7). Plasmid pDF8, which contains the central region of the rat 185 rDNA,
was used to complete the sequencing of the 18S rDNA. Restriction
endonucleases were purchased from BRL (Rockville, MD). DNA digestions with
restriction endonucleases and gel-electrophoresis were performed as describ-
ed previously (8, 9). DNA was sequenced by the method developed by Maxam
and Gilbert (10) with minor modifications. In addition to the 5'-terminal
labeling, in some cases, the 3'-termini of the fragments digested with
restriction enzymes were labeled with a-azP-dNTP and reverse transcriptase.

The strategy employed for sequencing the central portion of the rat 185 rDNA
is represented in Fig. 1.

RESULTS

An example of the sequencing gels is shown in Fig. 2. The region in
Fig. 2 includes large T1 RNase fragment 8 (UUUUCAUUAAUCAAG) that was
sequenced previously using the rat 185 rRNA (11). The total length of the
rat 185 rDNA is 1869 bp and the nucleotide sequence determined is shown in
Fig. 3 together with the yeast and frog sequences for comparison.

A11 the 19 large T1 RNase fragments, of which sequences were previously
reported (11), were located in the rat 18S rDNA sequence in Fig. 3. The
nucleotide sequences determined for these RNA fragments agree with the DNA
sequence except for fragment 15, the sequence of which was cited from the
work of other investigators who used HeLa cell 185 rRNA (12). Fragment 15
contains a hypermodified nucleoside identified as 1-methyl-3-y-(a-amino-
a-carboxypropyl) pseudouridine (13). The nucleotide sequence of fragment 15
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Figure 2. A typical sequencing gel. Numbers
show the distances from the 5'-terminus (Fig. 3).
The Ava II digested fragment was labeled with ATPyP
at the 5'-termini and secondarily digested with
Hae III. The electrophoresis was performed in a
6% polyacrylamide gel.
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(AC®™yCAACACG) is conserved among yeast, frog, and rat (3, 4).

In Fig. 3, the three sequences are arranged to give the best homology
and the nucleotides that are common to all the three species are in bold
letters. The whole sequence was sectioned every 10 nucleotides and the
numbers of the nucleotides conserved in every section were plotted in
Fig. 4. The sequence comparison was done in two ways: between frog and rat
(top) and among the three species (bottom). It was known that the nucleotide
sequence of the 3'-terminal region is well conserved among many species (6,
14, 15). This study shows that two additional larger conserved regions are
located inside of 185 rDNA (Fig. 4). The three completely conserved large
regions are: region A (nucleotides 424-499 in Fig. 3, 76 nucleotides long),
region B (nucleotides 600-665, 66 nucleotides Tlong), and region C (nu-
cleotides 1837-1885, 49 nucleotides long).

Region Ul (nucleotides 181-357 in Fig. 3, 177 nucleotides long and 42%
conserved) and Region U2 (nucleotides 690-805, 116 nucleotides long and 33%
conserved) were identified as two evolutionarily unstable regions which are
larger than 100 nucleotides and are less than 50% conserved (Fig. 4). Salim
and Maden (4) identified four variable regions from their comparison of
yeast and frog sequences. Two of the four regions correspond to Ul and U2
in this study. Unstable Region Ul contains two large insertions indicated
by arrows in Fig. 4. Another large insertion, 10 nucleotides long, is
located from nucleotides 1053 to 1062 in Fig. 3 and is indicated by an arrow
in Fig. 4.

Table 1 summarizes base composition data of the three 185 rRNA's.
The total  number of nucleotides increases in the order of
yeast —» frog—>rat, and the difference between rat and frog (44
nucleotides) 1is larger than the difference between yeast and frog (36
nucleotides). The numbers of U and A in 18S rRNA decrease in the order of
yeast =—» frog—>rat and the numbers of C and G increase. Hence, GC
content in 185 rRNA increases in the order of yeast —» frog —> rat. The
GC content difference between rat and frog (1.8%) is much smaller than the
difference between yeast and frog (8.8%).

A more detailed analysis of base changes is shown in Table 2. From the
data in Fig. 3, the number of base changes from A or T to G or C was counted
(1ine [a] in Table 2) and the number of opposite base changes from G or C to
A or T was also counted (line [b]). There is a clear preference for
(A,T) =/ (G,C) changes over (G,C)=—> (A,T) changes for the three compar-
isons (yeast —>»frog, frog —rat, and yeast—»rat, line [c]). Four
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Figure 4. Conserved sequence analysis of 18S rDNA between frog and rat
(top) and among the three species, yeast, frog, and rat (bottom). Sequences
in Fig. 3 were sectioned every 10 nucleotides from the 5'-terminus and the
numbers of the conserved nucleotides were plotted along the sequence. The
3'-terminal 5 nucleotides, conserved completely, were plotted as fully
conserved with a half width. Three long completely conserved regions (A, B,
and C) were marked. Arrows show positions of large (10 nucleotides or more)
imserts. Ul and U2 are two unstable regions.

Table 1. 18S rRNA base composition data

No. of nucleotides U A C G %G+C

Yeast 1789 509 475 347 458 45.0
Difference 36 98 43 120 57 8.8

Frog 1825 4 432 467 515 53.8
Difference 44 3 n 30 28 1.8

Rat 1869 408 421 497 543 55.6
Total Difference’ 80 101 54 150 85 10.6

'Total difference is the difference between yeast and rat.

4886



Nucleic Acids Research

Table 2.  18S rDNA base change data’

Yeast » Frog Frog » Rat Yeast » Rat
[a] (A, T) =(G,C) 217 46 224
[b] (G,C)—>(A,T) 70 21 65
[c]  [a)/[b] 30 2.2 3.4
[dl  (G,C) insertion 46 35 81
[e]l  (A,T) insertion 17 12 14
[f] [d1/[e] 2.7 2.9 5.8
[g]  (A,T) deletion 19 2 10
[h] (G,C) deletion 8 1 5
[i] [91/[n] 2.4 2 2

'Base changes were counted in Fig. 3.

portions of the genes where six or more consecutive A or T bases of yeast
sequence are changed mostly to G or C bases are framed in Fig. 3. There is
another clear preference for insertions of G or C over A or T for the three
comparisons (lines [d], [e], [f]). GC rich insertions in the 5'-domain of
rabbit 18S rRNA that are absent in both yeast and frog 185 rRNA were also
pointed out by Lockard et al. (16). Though the numbers are small, there are
also selective deletions of A or T over G or C (lines [g], [h], [i]).

DISCUSSION

In addition to other genetic systems that have been utilized for the
analysis of evolutionary trends (17, 18), the 185 rDNA sequence is an
excellent system to study evolutionary trends among various organisms.
Because the complete sequence information of 185 rDNA is limited to only
three species, it is not easy to discuss their evolutionary relationship.
But, these sequences will serve as an introduction to a detailed
phylogenetic analysis in the future. Recently, Eckenrode and Meagher
(personal communication) have determined the complete 18S rDNA sequence of
soybean. It is only 1807 nucleotides long and quite different from the rat
sequence. The other high molecular weight rRNA, 25S rRNA for yeast and 28S
rRNA for rat, is more variable than 18S rRNA and would be suitable to study
evolutionary trends between closer species. Nucleotide sequences of 25S
rDNA were compared between two yeasts, S. cerevisiae (19) and S. carlsber-
gensis (20), and 16 base differences were observed between the two species
(21).
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The present study shows that there are three completely conserved large
regions in the 185 rRNA (Fig. 4). These conserved regions are considered to
be functionally important. Possibilities of base-paired interactions
between the 3'-terminal region C (Fig. 4) of 185 rRNA and 5S RNA and between
the 3'-terminal region of 185 rRNA and the 5'-terminal region of many
eukaryotic mRNA's have been suggested (14, 15). Functions for internal
conserved regions A and B (Fig. 4) have not been suggested previously.

Two main factors are recognized which may have contributed to the
evolution of 185 rRNA. The first is a preference of point mutations of
(A,T) =—> (G,C) compared to mutations of (G,C)—> (A,T). The second is
preferential insertions of (G,C) over (A,T). Point mutations are more
frequent in the yeast —>frog comparison than in the frog — rat
comparison, but insertions are introduced almost to the same degree in these
two cases. The only large T1 RNase fragment found to be different between
rat and human 18S rRNA is fragment 12 (ACCCCCCUUCCCG) (22). This fragment
is missing in human 185 rRNA and a large portion of this rat fragment
(cuucccG) s located in the inserted region between frog and rat,
nucleotides 199-205 (Fig. 3). We can expect some difference between rat and

human 185 rRNA due to insertions. Fragment 12 is also missing in chicken
18S rRNA (11).

The closer relatedness of the rat and Xenopus 185 rDNA sequences

compared with the Saccharomyces cerevisiae sequence is consistent with the

contrast between the organization of rat and Xenopus rDNA repeat units,
which have the 5S and 455 rRNA information separated (23), and the S.
cerevisiae rDNA repeat unit, which contains both the 5S and 37S rRNA
information together (21, 24). Nevertheless, the 55 rDNA is not a part of
the repeat unit containing the 37S rDNA precursor in Neurospora crassa (25)
and Schizosaccharomyces pombe (26).

Comparing the base compositions of the 18S rRNA's,the total differences
of pyrimidines between yeast and rat were about twice the total differences
of purines (Table 1). In structural genes, because of wobble of the third
bases of triplets, pyrimidines have more freedom for change than purines
without changing the corresponding amino acids. The fact that pyrimidines
changed about twice more than purines between yeast and rat might lead to a
speculation that 18S rRNA functions, or functioned, as mRNA at some stage
before maturation or at some evolutionary stages. But, the present mature

X. laevis 185 rRNA is considered to be unsuitable as a template for protein
synthesis (27).
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