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Figure S1
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Figure S1: Structural plasticity in the decapping complex

The different orientations the Dcp2 catalytic domain adopts with respect to Dcpl and the Dcp2
regulatory domain in three independent crystal structures. Left and middle: the two crystal forms for
the Dcpl:Dcp2 complex (pdb-code: 2QKM), right: crystal structure of the free Dcp2 enzyme (pdb-
code 2A6T) modeled on the Dcpl:Dcp2 complex structure. A large degree of structural variation is
possible between the regulatory and catalytic domains of Dcp2. Dcpl is colored yellow, the Dcp2
regulatory domain light green, the Dcp2 catalytic domain dark green and the HLM-1 sequence in
red. The structure on the left, where the Dcp2 regulatory and catalytic domains interact, is referred
to as closed, the middle and right structures are considered to be in an open conformation. The

HLM-1 sequence is not visible in the open conformations of the decapping complex.
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Figure S2
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Figure S2: The structures of the Edc3 LSm domain and the Edc3 LSm domain Dcp2 complex
The ensembles shown were obtained by superposition of the secondary structure elements of
the individual structures (residues V3-L58 for Figures S2A, S2C and S2D; residues V3-L58 and
A254-S267 for Figure S2B). An average structure (not shown) was calculated from the
superimposed ensemble by averaging the coordinates of the individual structures. The rmsd
(root mean square deviation) reported is the average rmsd of the individual members compared
to the average structure (+/- standard deviation) (See also Table S1).

A. Ensemble of the 19 lowest energy structures (from a total of 50 calculated structures) of the free
Edc3 LSm domain. The N-terminal helical turn is colored green for reference. The rmsd of the
ensemble is: 0.26 +/- 0.13 A (backbone) / 0.71 +/- 0.09 A (heavy atoms).

B. Ensemble of the 21 lowest energy structures (from a total of 50 calculated structures) of the Edc3
LSm domain (blue, green) in complex with Dcp2 residues 257-266 (red). The rmsd of the ensemble
is: 0 .54 +/- 0.14 A (backbone) / 0.84 +/- 0.11 A (heavy atoms).

C. Superposition of all 19 structures of the free Edc3 LSm domain (see panel A) and the 21
structures of the Edc3 LSm domain in complex with Dcp2 (panel B). The Edc3 LSm domains from
the Edc3:Dcp2 structures are colored red and orange. The Dcp2 helix is shown in grey for reference
and not included in the superposition of the ensemble. The rmds of the ensemble of 40 structures is:
0.44 +/- 0.08 A (backbone) / 0.83 +/- 0.08 A (heavy atoms).

D. Superposition of the average energy minimized structures of the Edc3 LSm domain (blue, green)
and the Edc3 Lsm domain in complex with Dcp2 (red, orange, grey). The rmsd of the 2 structures
is: 0.35 A (backbone) / 0.51 A (heavy atoms).

E. Structure of the Edc3 Lsm domain in complex with Dcp2. The NOE (nuclear Overhauser effect)
contacts used in the structure calculations are marked with black lines. For clarity reasons, the
protons are not shown and the NOE contacts are drawn between the heavy atoms that are directly
bound to the protons for which the NOE contact was observed. In some cases, multiple NOEs (e.g.

those resulting from the protons HB 1 and HB2) are thus represented with a single line only.
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Figure S3
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Figure S3: The LSm interaction motif is unfolded before interaction with Edc3

A.NMR spectra of the free Edc3 LSm domain (blue) in the presence (red) of the wild type HLM-1

(panel 1), HLM-1 where L260 is replaced with an alanine (panel 2), HLM-1 where 1L.264 is replace

with an alanine (panel 3), or HLM-1 where both L.260 and 264 are replaced with alanines (panel

4). Replacing one leucine residue with an alanine reduces the extend of the chemical shift changes

and thus the affinity between the Edc3 LSm domain and HLM-1. Replacing both leucine residues

with alanine abolished the interaction completely.

B. 2D 'H-"N spectrum of Dcp2 residues 96-266 (catalytic domain plus the first LSm interacting

motif, HLM-1), before (green, left) and after (blue, middle) addition of the Edc3 LSm domain.

Upon addition of the Edc3 LSm domain, peaks that are located in a spectral region indicative of an

unfolded backbone (green arrows) move to spectral regions that indicate secondary structure (red

arrows, right spectrum). This indicates the formation of the HLM-1 helix in solution upon Edc3

addition. Due to the lack of the regulatory domain in the Dcp2 96-266 construct, the HLM-1 helix
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is in a disordered conformation like in the open form of the decapping complex. In that regard, the

Dcp2 96-266 construct resembles the open conformation of the Dcpl:Dcp2 complex.
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Figure S4
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Figure S4: The Edc3-Dcp2 structure is the same in isolation and in the context of the complete
decapping complex

Top left: Overlay of a region of a 2D 'H-"N spectrum of active Dcpl:Dcp2 residues 1-289
(regulatory domain, catalytic domain plus the LSm interacting motif) without (green) and with the
(NMR inactive) Edc3 LSm domain (red). Upon addition of the LSm domain, a set of peaks appears
in the Dcpl:Dcp2 spectrum (red, boxes), that indicates the formation of a structured region in the
complex.

Top right: Overlay of the 2D 'H-"N spectrum of NMR active Dcpl:Dcp2 (residues 1-289) in
complex with Edc3 (red, same spectrum as in A) and a 'H-"N spectrum of the complex of NMR
active Edc3 LSm domain with Dcp2 residues 242 to 291 (blue). The resonances in the blue
spectrum (both the Edc3 LSm domain and Dcp2 are NMR active) were fully assigned and

correspond to the structure of the Edc3:Dcp2 complex we solved here. Assignments for the LSm
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domain in the complex are indicated with blue labels, assignments for Dcp2 in the complex are
indicated with red labels. Resonance frequencies for Dcp2 residues 242-291 are identical in the
minimal Edc3:Dcp2 complex and in the complete Dcpl:Dcep2:Edce3 complex (boxed regions are the
same in A and in B). This indicates that the Dcp2 helix is folded identically in the context of the
isolated Edc3 LSm domain (structure) and in the context of the full Dcpl:Dcp2 Ede3 bound
decapping complex. Cartoons of the complexes are indicated at the bottom, NMR inactive
components are colored in gray; Dcpl in yellow, Dcp2 in green, the LSm interaction motif in red

and Edc3 in blue.
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Figure S5
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Figure S5: Sequence alignment of yeast Dcp2

Sequence alignment of Dcp2 from different yeast species. Amino acids are colored according to
conservation. Note the highly conserved regulatory and catalytic domains. The first LSm interaction
motif (HLM-1) is enclosed in a red dashed box. The conserved motifs in the C-terminal part of
Dcp?2 are in black dashed boxes. The boundaries of the constructs used to probe for interactions are
indicated with vertical lines and contain one putative LSm interaction motif each. The location and
numbers of HLMs varies between different yeast species. Between HLM-1 and the Dcp2 catalytic
domain a potential HLM is absent in S. pombe. Additional HLMs might be present in the disordered

Dcp2 C-terminal region from other yeast species.
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Figure S6
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Figure S6: The disordered Dcp2 C-terminus interacts with Edc3

A. Spectrum of Dcp2 residues 553-741 (HLM-C1-CS5; green). The lack of chemical shift dispersion
indicates the disordered nature of the Dcp2 C-terminal extension.

B. Spectrum of Dcp?2 residues 553-741 without (green, as in A) and with the Edc3 LSm domain
(blue). The increase in chemical shift dispersion and the appearance of new resonances (e.g. red
circle) indicates the formation of secondary structure upon the complex formation between the
Dcp2 C-terminal tail and the NMR inactive Edc3 LSm domain. The Edc3 LSm domain is in ten

fold molar excess compared to the Dcp2 C-terminus, such that most of the potential LSm
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interaction motifs (HLM-C1 to HLM-C5) are bound to Edc3. The formation of the HLM-1 helix in
Dcp2 upon the interaction with Edc3 is shown in Figure S2.

C. As Figure 3B, however, not only the pull-down (PD), but also the input is shown. In all
experiments, MBP-HLM proteins were present in the soluble fraction. Only the HLM-1, HLM-C1,

HLM-C2 and HLM-C1-C5 sequences co-purified with the Edc3 LSm domain.
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Figure S7
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Figure S7: The Edc3 Yjef-N domain does not compete with Scd6:Dcp2-HLM-1 comlpex

formation

Left: Spectrum of "N labeled Scd6 LSm domain free (0.1 mM, blue) and in complex with

unlabeled Dcp2 HLM-1 (0.4 mM, red) (see also Figure 4B, left top in the main text).

Middle: Spectrum of "N labeled Scd6 LSm domain free (0.1 mM, blue) and a spectrum of a

mixture of N labeled Scd6 LSm domain (0.1 mM), Dcp2 HLM-1 (0.4 mM) and Edc3 Yjef-N

domain (0.4 mM) (green spectrum).

Right: Overlay of the spectra shown in the left and middle. The red (Scd6 + Dcp2 HLM-1) and

green (Scd6 + Dcp2 HLM-1 + Edc3 Yjef-N) spectra are identical. This shows that the Edc3 Yjef-N

domain does not release Dcp2 HLM-1 from Scd6, as opposed to the Edc3 LSm domain that

competes with the Scd6 LSm domain for binding to Dcp2 (Figure 4C).
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Figure S8
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Figure S8: Functional characterization of C-terminal Dcp2 truncations in vivo

A. Fluorescence micrographs of S. pombe strains expressing dcp2+-GFP or truncated versions
thereof in combination with Ism7+-mCherry. While the localization of the truncated Dcp2-GFP
proteins to P-bodies is abolished, Lsm7 is still enriched in these cytoplasmic foci. The nuclear
staining of Lsm7 reflects its additional function as a member of the LSm2-8 complex that is an
integral part of the U6 SnRNP. All images were scaled and processed in the same way. The length
of the scale bar corresponds to 10 um.

B. Growth test of different yeast strains expressing dcp2+(untagged), dcp2+-GFP, dcp2-
A553-741, dcp2-A290-741, or dcp2-A244-741. Upon deletion of all HLMs (dcp2-A244-741),
growth defects are observed at higher temperature indicating that the mutant protein no longer
exhibits full functionality.

C. Immunoblotting for the cellular abundance of the different Dcp2-GFP versions. S. pombe cell
extracts from the indicated strains were separated by SDS-PAGE and immunoblotted. Dcp2-GFP
and its truncated forms were detected using an anti-GFP antibody. Cdc2 served as a loading control.

The abundance of the truncated proteins was not reduced compared to the wild type protein.
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Figure S9
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Trimerization domain
Figure S9: Dcpl sequence alignment of metazoa
Alignment of the Dcpl sequences from metazoa. The Evh1 and trimerization domains are boxed in

yellow and blue, respectively. The motif I sequence (metazoan HLLM) is indicated with a red box.
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Table S1: Structural statistics

Table S1A: Edc3 LSm domain structure'

A. Structural statistics

R.M.S.D from distance restraints (A)’
all (356)
intra-residue (55)°
inter-residue sequential (102)
medium range (27)
long range (141)
hbond (28)

R.M.S.D from dihedral restraints (deg) (188)"

H-bond restraints average (A/deg)3 24)
H-bond restraints min-max (z&/deg)3

Deviations from ideal covalent geometry
Bonds (A*107)
Angles (deg.)
Impropers (deg)

Structure quality indicators*
Ramachandran Map regions (%)

SA
0.030 +0.001
0.009+ 0.007
0.025 +0.002
0.041+ 0.002
0.036+ 0.001
0.022 £ 0.004

0.07 £0.008
209 +£0.22/20.2+ 89

1.75-2.58/ 8.19-44 91

4.68 +0.001
0.58+0.003
1.15+0.04

87.9/21.1/0.0

<SA>,
0.030
0.015

0.024
0.040
0.036
0.031

0.06
20+0.20/18.76 £9.0

1.68-2.59/9.37-44.12

4.78
0.584
1.16

87.0/13.0/0.0

B. Atomic R.M.S. differences (A)°

SA vs <SA> SA vs <SA>,
Backbone All Backbone All
Secondary Structure’ 026+0.13 0.71+£0.09 0.44+0.13 1.00 £0.11
<SA> vs <SA>’ 0.36 0.80

See Table S1B for the legend.
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Table S1B: Edc3 LSm domain: Dcp2 complex’

A. Structural statistics

R.M.S.D from distance restraints (A)’ SA <SA>,
all (437) 0.031 £0.001 0.031
intra-residue (66)° 0.005+ 0.006 0.007
inter-residue sequential (128) 0.029 +0.001 0.030
medium range (41) 0.046= 0.002 0.048
long range (158)° 0.033+0.001 0.033
hbond (44) 0.036 +0.002 0.039
R.M.S.D from dihedral restraints (deg) (216)" 0.12 +0.003 0.11
H-bond restraints average (A/deg)3 44) 2.15+020/198+84 2.1+0.19/1942+9.1
H-bond restraints min-max (A/deg)? 1.83-2.58/3.92-42.16 1.82-2.43/0.8-42.35

Deviations from ideal covalent geometry

Bonds (A*107) 4.52 £0.001 4.55

Angles (deg.) 0.609+ 0.005 0.606

Impropers (deg) 1.13+£0.03 1.08
Structure quality indicators*

Ramachandran Map regions (%) 90.8/8.9/0.3 89.7/10.3/0.0
B. Atomic R.M.S. differences (A)*

SA vs <SA> SA vs <SA>,
Backbone All Backbone All
Secondary Structure’ 0.54+0.14 0.84+0.11 0.68+0.21 1.09 £0.16
<SA> vs <SA>’ 0.44 0.76

'Structures are labeled as follows: SA, the set of 19/ 21 (structure of the free/ Dcp2 complexed Ede3 LSm
domain) final simulated annealing structures; <SA>, the mean structure calculated by averaging the
coordinates of SA structures after fitting over secondary structure elements; <SA>_, the structure obtained by
regularising the mean structure under experimental restraints.

*Numbers in brackets indicate the number of restraints of each type.

?Hydrogen bonds were restrained by treating them as pseudo-covalent bonds (see Materials and Methods).
The average and minimum/maximum for distances and acceptor antecedent angles are stated for restrained
hydrogen bonds.

* Percentages are for residues in favoured/allowed/outlier regions of the Ramachandran map.

> Based on heavy atoms superimpositions.

® Defined as residues V3-L58 / V3-L58; A254-S267 (structure of the free/ Dcp2 complexed Edc3 LSm
domain)

"RMS difference for superimposition over ordered residues.

¥ 22 of which are intermolecular.

? Intra-residual contacts that were used to define dihedral angles were not used in the structure calculations
and are not included here.

" Includes backbone dihedral restraints derived from TALOS (Cornilescu et al, 1999) and sidechain
dihedral restraints derived from intra-residual NOE contacts and HNHB data.
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Table S1C: Individual proteins in the Ede3 LSm domain: Dcp2 complex’

A. Structural statistics

R.M.S.D from distance restraints (A)?
all (388/49)
intra-residue (56/10)’
inter-residue sequential (111/17)
medium range (33/8)
long range (158/0)
Hbond (30/14)

R.M.S.D from dihedral restraints (deg) (186/30)®

H-bond restraints average (A/deg)3 (30/14)
H-bond restraints min-max (A/deg) ’

Structure quality indicators

SAges
0.032 +0.001
0.007+ 0.006
0.028 +0.001
0.039+ 0.003
0.036+ 0.001
0.041 +0.003

0.12 £0.005

2.13+£0.20/ 19.8+ 8.1
1.81-2.55/ 4.74-42 .46

SADcpz
0.013 +£0.002
0.000+ 0.000
0.020 + 0.003
0.011+0.004

0.003 +0.002

0.01 £0.001

217+0.28/1582+7.7
1.80-2.53/7.21-24.80

Ramachandran Map regions (%)* 89.3/10.7/00 959/24/1.7
B. Atomic R.M.S. differences (A)°
SA vs <SA> SA vs <SA>
Backbone All Backbone All
Secondary Structure’ 0.27+0.05 0.68+0.09 0.77+0.21 1.13+£0.19

!'Structures are labeled as follows: SA, the set of 21 final simulated annealing structures; <SA>, the mean
structure calculated by averaging the coordinates of SA structures after fitting over secondary structure
elements, for the Edc3 protein and the Dcp2 peptide, respectively.
*Numbers in brackets indicate the number of restraints of each type. Intra-residual contacts that were used to

define dihedral angles were not used in the structure calculations and are not included here.

?Hydrogen bonds were restrained by treating them as pseudo-covalent bonds (see Materials and Methods).
The average and minimum/maximum for distances and acceptor antecedent angles are stated for restrained

hydrogen bonds.

* Percentages are for residues in favoured/allowed/outlier regions of the Ramachandran map.

> Based on heavy atoms superimpositions.
®Defined as residues V3-L58 (Edc3); A254-S267 (Dcp2)

7 Intra-residual contacts that were used to define dihedral angles were not used in the structure calculations

and are not included here.

® Includes backbone dihedral restraints derived from TALOS (Cornilescu et al, 1999) and sidechain
dihedral restraints derived from intra-residual NOE contacts and HNHB data.
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Table S2: Expression constructs used in this study

# | Protein/ Residues Solubility/

Protein complex Purification tag
1 Edc3 1-121 N-Hiss-TEV
2 | Edc3 1-94 Untagged
3 Dcpl:Dcp2 1-127 (Dcpl), 1-95 (Dcp2) N-His¢-TEV (Dcpl)
4 Dcpl:Dcp2 1-127 (Dcpl), 1-254 (Dcp2) N-His¢-TEV (Dcpl)
5 Dcpl:Dcp2 1-127 (Dcpl), 1-266 (Dcp2) N-His¢-TEV (Dcpl)
6 | Edc3 1-94 N-Hiss-TEV
7 | Dcp2 242-291 (HLM-1) N-Hiss-MBP-TEV
8 Dcp2 553-741 (HLM-C1-C5) N-Hiss-MBP-TEV
9 | Dcp2 553-576 (HLM-C1) N-Hiss-MBP-TEV
10 | Dcp2 577-640 (HLM-C2) N-Hiss-MBP-TEV
11 | Dcp2 641-678 (HLM-C3) N-Hiss-MBP-TEV
12 | Dcp2 679-708 (HLM-C4) N-Hiss-MBP-TEV
13 | Dcp2 709-741 (HLM-C5) N-Hiss-MBP-TEV
14 | Control - N-His¢-MBP-TEV
15 | Dcpl:Dcp2 1-127 (Dcpl), 1-289 (Dcp2) N-His¢-TEV (Dcpl)
16 | Edc3 195-454 N-Hiss-TEV
17 | Edc3 1-454 N-Hiss-TEV
18 | Scd6 1-86 C-Hisg
19 | Scd6 1-86 N-Hiss-TEV
20 | Dcpl:Dcp2 1-127 (Dcpl), 1-243 (Dcp2) N-His¢-TEV (Dcpl)
21 | Dcpl:Dcp2 L260A,L264A  1-127 (Depl), 1-289 (Dcp2) 2L2A N-His¢-TEV (Dcpl)
22 | Edc3 D.m. 1-101 N-NusA-Hise-TEV
23 | Dcpl D.m. 148-169 N-His¢-MBP-TEV
24 | Dcp2 L260A 242-291 N-Hiss-MBP-TEV
25 | Dcp2 L264A 242-291 N-Hiss-MBP-TEV
26 | Dcp2 96-266 N-Hise-TEV
27 | Dcp2 553-741 N-Hiss-TEV
28 | Edc3 1-94 C-Hisg
29 | Dcp2 242-291 (HLM-1) N-MBP-TEV
30 | Dcp2 553-741 (HLM-C1-C5) N-MBP-TEV
31 | Dcp2 553-576 (HLM-C1) N-MBP-TEV
32 | Dcp2 577-640 (HLM-C2) N-MBP-TEV
33 | Dcp2 641-678 (HLM-C3) N-MBP-TEV
34 | Dcp2 679-708 (HLM-C4) N-MBP-TEV
35 | Dcp2 709-741 (HLM-C5) N-MBP-TEV
36 | Dcp2 96-291 N-MBP-TEV
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Table S3: NMR Samples for the structure determination

Protein/ Protein complex Constructs  Labeling Concentration (mM)
Edc3 LSm 1 PN 09
Edc3 LSm 1 PN/PC 0.8
Edc3 LSm: Dcp2 HLM-1 2+7 PN 1.2
Edc3 LSm: Dcp2 HLM-1 2+7 PN/PC 14
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Table S4: Yeast strains used in this study

Figure 6a

RS002 h- leul ade6-M216 dcp2+-GFP<<kanR dcp1+-mCherry<<natR

RS003 h+ leul ade6-M216 dcp2-A553-741-GFP<<kanR dcp 1+-mCherry<<natR

RS008 h- leul ade6-M210 dcp2-A290-741-GFP<<kanR dcp 1+-mCherry<<natR

RSO11 h- leul ade6-M216 dcp2-A244-741-GFP<<kanR dcp 1+-mCherry<<natR
Figure 6b

RS001 h+ leul ade6-M216 dcp2+-GFP<<kanR edc3+-mCherry<<natR

RSO013 h+ leul ade6-M210 dcp2-A553-741-GFP<<kanR edc3+-mCherry<<natR

RS006 h+ leul ade6-M210 dcp2-A290-741-GFP<<kanR edc3+-mCherry<<natR

RS009 h+ leul ade6-M216 dcp2-A244-741-GFP<<kanR edc3+-mCherry<<natR
Figure S8a

RS016 h+ leul ade6-M210 dcp2+-GFP<<kanR Ism7+-mCherry<<natR

RS014 h+ leul ade6-M216 dcp2-A553-741-GFP<<kanR Ism7+-mCherry<<natR

RS007 h- leul ade6-M216 dcp2-A290-741-GFP<<kanR Ism7+-mCherry<<natR

RS010 h- leul ade6-M216 dcp2-A244-741-GFP<<kanR Ism7+-mCherry<<natR
Figure S8b and c

JY333 h- leul ade6-M216

RSO015 h- leul ade6-M216 dcp2+-GFP<<kanR

RS012 h- leul ade6-M216 dcp2-A553-741-GFP<<kanR

RS005 h- leul ade6-M216 dcp2-A290-741-GFP<<kanR

RS004 h- leul ade6-M216 dcp2-A244-741-GFP<<kanR
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Supplementary materials and methods

Protein purification

All proteins were purified using Ni affinity chromatography (50 mM sodium phosphate, pH
7.5, 10 mM imidazole, 150 mM NacCl; see main text). For the purification of protein complexes,
only one of the components contained an affinity tag; untagged proteins were co-purified due to a
tight intermolecular interaction with the tagged protein. Different proteins were co-expressed from a
dicistronic vector (see Table S2) or by transforming two vectors (see Table S2) with different
antibiotic resistance into E. coli. A potential excess of untagged protein was removed during the Ni
affinity chromatography step. When applicable, the purification tag was removed with TEV
protease. A potential excess of the tagged component was removed from the complex during the
size exclusion chromatography purification step (Superdex 200 or Superdex 75, GE Healthcare in

25 mM HEPES buffer pH 7.3, 125 mM NaCl and 1 mM DTT).

Pull down experiments

For the pull-down experiments shown in Figure 1D cells that had overexpressed Hise-
Dcpl:Dcp2 (constructs 3, 4 or 5) were supplemented with an equal amount of cells that had
separately overexpressed untagged Edc3 LSm domain (construct 2). For the pull-down experiment
shown in Figures 3B and S6, Edc3 1-94 C-His (construct 28) was co-expressed with the MBP-
tagged Dcp2 (constructs 30-36). For the pull-down experiments shown in Figure 4A Scd6 C-His
(construct 18) was co-expressed with Dcp2 (construct 36). In all cases, the soluble fraction of the
cell lysate (input) was applied to Ni affinity resin and the eluted proteins were applied to SDS
PAGE analysis and coomassie staining.

For the pull-down experiments shown in Figure 3D separately purified Hisg-Depl:Dep2
(construct 15; tag not removed), Dcpl:Dcp2 (construct 15; tag remoevd) and Edc3 (construct 6, 16

or 17; tag removed) were mixed at a 1:1:1 ratio (input). The mixture was applied to Ni affinity resin,
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washed with 10 volume of column buffer and eluted with imidazole. The eluted protein complexes

(PD) and the inputs were applied to SDS PAGE analysis and coomassie staining.

NMR titration experiments

NMR titration experiments shown in Figures 1E, 3C, 4B and S3A were performed by the
addition of a five fold molar excess of NMR inactive (unlabeled) MBP-Dcp2 (constructs 7-14, 21
or 24-25, the His¢-MBP tag was not removed during the purification) to a 0.1 mM sample of
separately purified '°N labeled Edc3/ Scd6 (constructs 6 or 19; tag removed). The NMR titration
experiment shown in Figure 7A was performed by the addition of a five fold molar excess of NMR
inactive (unlabeled) MBP-Dcpl motif 1 (construct 23) to a 0.1 mM sample of separately purified an
>N labeled Edc3 (construct 22; tag removed). Addition of MPB (control) did not cause any
chemical shift changes in the spectra of Edc3 or Scdbé.

NMR titration experiments shown in Figure 4C and S7 were performed by addition of a four
fold molar excess of unlabeled Dep2 HLM-1 (construct 7; tag not removed) to 0.1 mM "N labeled
Scd6 (construct 19; tag removed). Subsequently, unlabeled Edc3 LSm domain (construct 6; tag
removed; Figure 4C) or unlabeled Edc3 Yjef-N domain (construct 16; tag removed; Figure S7) was
added in a stepwise manner to a final concentration of 0.4 mM.

The NMR titration experiment show in Figure S3B was performed by the addition of NMR
inactive (unlabeled) Edc3 (construct 6; tag removed) to separately purified '°N labeled Dcp2 96-
266 (construct 26; tag removed).

The NMR titration experiment shown in Figure S4 was performed by the addition of an
equimolar amount of NMR inactive (unlabeled) Edc3 (construct 6; tag removed) to a 0.4 mM
sample of separately purified ’N’H labeled Dcpl:Dep?2 (construct 15; tag removed), where
Dcpl:Dcp2 deuteration was achieved by overexpression of the complex in D,O based minimal
medium. Prior to the NMR analysis, the backbone amides of the deuterated Dcp1:Dcp2 complex

were re-protonated. To that extent, the 6M GuHCI denatured proteins were refolded by rapid
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dilution into H,O-based buffer containing 1.1 M guanidine, 55 mM Tris, 21 mM NaCl, and 88 mM
KClI pH 8.2, followed by dialysis into size exclusion buffer.

The NMR titration experiment shown in Figures S6AB was performed by the addition of a
ten fold molar excess of NMR inactive (unlabeled) Edc3 (construct 6; tag removed) to a 0.2 mM
sample of separately purified '°N labeled Dcp2 553-741 (construct 27; tag removed).

Figures displaying NMR spectra were prepared with NMRview (Johnson, 2004).

NMR sample preparation

NMR samples containing the Edc3 LSm domain were prepared using an N-terminally
Hiss-tagged version of the protein (construct 1; tag removed). The NMR samples of the Edc3
LSm domain Dcp2 complex were obtained from the co-expression of untagged Edc3-LSm
(construct 2) domain and an Hise-MBP-TEV tagged peptide that corresponds to Dcp2 residues
242-291 (construct 7). The complex was purified using Ni affinity chromatography, where
Edc3 co-purified with Dcp2 due to the very tight interaction between the two proteins. The
Hiss-MBP tag was cleaved from Dcp2 using TEV protease and removed from the Edc3:Dcp2
complex using a second Ni affinity chromatography step. A potential excess of Edc3 was
removed from the complex during the first Ni-affinity step, a potential excess of Dcp2 was
removed from the complex during the size exclusion chromatography purification step. The
purified Edc3 LSm domain was in a 1:1 complex with Dcp2 as judged from NMR spectroscopy;
no free Edc3 LSm domain or free Dcp2 was visible in any of the NMR spectra. The co-
expression of Edc3 and Dcp2, resulted in a complex were both components were labeled with
NMR active nuclei. Based on the backbone assignment and on an NMR sample that was
labeled only in Edc3 (Figure 1E), resonances from Edc3 and Dcp2 could be distinguished. Due
to the relatively small size of the complex there was no overlap between Edc3 and Dcp2
amide resonances. Filtered NMR experiments were not required to distinguish between intra-

and intermolecular NOE restraints, due to the asymmetric nature of the complex and the low
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extend of signal overlap in the NOE spectra. The elevated pH of the NMR sample (7.3) and the
higher temperature during the measurements (303 K) resulted in the almost complete
disappearance of the amide resonances of unstructured regions of the complex. This is due to

the fast exchange rates of the labile amide protons with the bulk solvent.

NMR structure determination

NMR spectra were processed with the software provided by the spectrometer
manufacturer (Topspin 2.1) or with the NMRPipe/ NMRDraw software suit (Delaglio et al,
1995). Spectra were analyzed using Sparky (T. D. Goddard and D. G. Kneller, SPARKY 3,
University of California, San Francisco) and NMRView (Johnson, 2004).

For both the free Edc3 LSm domain and the Edc3:LSm complex, the backbone
sequential assignment was completed using HNCA, HNCACB, HNCO and HN(CA)CO
experiments optimized for fast pulsing using the extended flip-back scheme (Diercks et al,
2005), in combination with an CC(CO)NH-TOCSY experiment. Side-chain assignments were
completed using 3D-CC(CO)NH-TOCSY and 3D-CCH-TOCSY spectra. Proton-proton distances
were recorded on a >N-labeled sample (sample 1 or 3) using 3D-15N-HSQC-NOESY (HNH-
NOESY) and 3D-1>N-HSQC-NOESY-1>N-HSQC (NNH-NOESY) spectra and on a 1>N13C-labeled
sample (sample 2 or 4) using 3D-13C-HSQC-NOESY (HCH-NOESY), 3D-13C-HSQC-NOESY-13C-
HSQC (CCH-NOESY) and 3D-13C-HSQC-NOESY-1>N-HSQC (CNH-NOESY) spectra (Diercks et al,
1999). Aromatic contacts were observed in 15N-filtered 2D-NOESY spectra.

The %1 angle and the stereospecific assignment of Hf} protons was determined based
on an HNHB experiment (Archer et al, 1991) and relative NOE intensities of the intra-residual
HN-HP1, HN-HB2, Ha-HB1 and Ha-HP2 crosspeaks (Wagner et al, 1987) in 3D HNH-, HCH-
and CCH-NOESY spectra. For valine residues the %1 angle was determined based on the HNHB
experiment and relative NOE intensities of intra-residual HN-H@, HN-Hy1 , HN-Hy2 and Ha-

HB, Ha-Hyl, Ha-Hy2 crosspeaks in 3D HNH-, HCH- and CCH-NOESY spectra. This can also
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provide the stereospecific assignment of the methyl groups. For isoleucine and threonine
residues the x1 angle was determined based on the HNHB experiment and relative NOE
intensities of the intra-residual HN-Hf, HN-Hy2 and Ha-Hf, Ha-Hy2 crosspeaks in 3D HNH-,
HCH- and CCH-NOESY spectra. For leucine residues the 2 angle was determined based on
relative intra-residual NOE intensities of the Ha-H81, Ha-H62, HP1-H&1, HP1-HO2,
HP2-Ho61 and HP2-HH2 cross-peaks in 3D HCH- and CCH-NOESY spectra. This can also
provide the stereospecific assignment for the methyl groups. For isoleucine residues the x2
angle was determined based on relative intraresidual NOE intensities of the Ha-Hd1, Hy2-
HO1, HB-Hd1, Ha-Hyl1, Hy2-Hy11, HP-Hy11, Ha-Hy12, Hy2-Hy12 and HPB-Hy12 crosspeaks
in 3D HCH- and CCH-NOESY spectra. This can also provide the stereospecific assignment for
the methylene y protons. The determined 1 and %2 angles were used in the structure
calculations. To that extend, the corresponding dihedral angle was restrained to +60 (+/- 30),
-60 (+/- 30) or 180 (+/- 30) degrees depending on the rotameric state. The inter-residual
NOE distances that were used to define the %2 angle were not used as distance restraints in
the structures calculations to avoid the use of redundant information.

Secondary chemical shift information derived from TALOS (Cornilescu et al, 1999) was
used to generate backbone conformational restraints. NOESY cross peak intensities were
scaled to the corresponding HSQC intensities and converted into four classes of distance
restraints with upper distances of 2.7, 3.2, 4.0 and 5.0 A, respectively. Lower distance
restraints with a minimum distance of 3.2 A were included for absent and very weak
sequential HN-HN NOE contacts. Lower distance restraints with a minimum distance of 2.7 A
were applied for weak or medium intensity sequential and intraresidue HN-Ha NOE
crosspeaks. Pseudoatoms allowances (using r-¢ averaging) were added for methyl groups and

non stereo-specifically assigned methylene groups.
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Hydrogen bond restraints were applied for residues in secondary structure elements
where donor-acceptor pairs were consistently identified in the calculations and where the
typical NOE patterns were observed. The H-bonds were treated as covalent bonds between
the amide proton and the carbonyl oxygen as described in (Truffault et al, 2001). In X-PLOR,
these additional bonds were added to the molecular structure through the PATCH statement.
To ensure proper hydrogen bond geometry, the bond length was weakly (14 kcal/mol per A2)
restrained to 2.12 A, whereas the bond angle was weakly (4 kcal/mol per rad?) restraint to 0
degrees. It should be noted that force constants used are designed to be very weak compared
to other restraints. In addition, an NOE distance restraint between the amide proton and the
carbonyl oxygen was applied with a lower bound of 1.9 A and an upper bound of 2.6 A that
prevents the hydrogen bond from being unrealistically short or long.

Structures were calculated with XPLOR (NIH version 2.9.3)(Schwieters et al,
2006; Schwieters et al, 2003) using a three-stage simulated annealing protocol. During the
structure refinement, we compare experimental NOE strips (derived from HNH-, NNH-, HCH-,
CCH- and CNH-NOESY spectra) with back-calculated NOE strips. The back-calculation was
performed using in house written software that makes use of the full relaxation matrix (to
include effects of spin diffusion) and the current structural model. This procedure allows us to
identify potential inconsistencies between the data and the model that were due to wrongly
assigned resonances, wrongly assigned NOE contact or wrongly determined rotameric states.
These potential errors were then corrected in a novel round of structure refinement until no
more inconsistencies were present. It should be noted that the large number of NOESY
spectra we recorded (that resolves potential spectral overlap) and the back-calculation of the
NOESY spectra (taking spin diffusion into account) are fundamental for this procedure to
function properly.

Ensembles of 50 structures were calculated and a final set of 19 (Edc3 LSm domain) / 21

(Edc3:Dcp2 complex) was selected based on the basis of lowest restraint violations. For both
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ensembles an average structure was calculated and regularized. Structural statistics are presented in

Tables S1A, S1B and S1C).

S. pombe strain construction and imaging

Fission yeast strains used in this study are listed in Supplementary Table 4. Truncations and
tagging of endogenous dcp2+ with GFP and tagging of depl+, edc3+ and Ism7+ with mCherry
(Shaner et al, 2004) were performed using the PCR-based gene targeting method for S. pombe
(Bahler et al, 1998). For imaging, cells were grown at 30 °C to logarithmic growth phase in sterile
filtered Edinburgh minimal medium (Moreno et al, 1991) containing the necessary supplements.
Images were acquired at room temperature under identical imaging conditions using a 63x/ 1.4 oil
objective on a Zeiss Axio Imager microscope coupled to a charged-coupled device camera. Images

were processed with MetaMorph software (Molecular Devices Corporation).

S. pombe growth test

Serial dilution growth tests were performed by growing cells at 30 °C to logarithmic growth
phase in liquid YEA (yeast extract containing adenine sulfate) medium (Moreno et al, 1991) and
spotting a 1:5 serial dilution onto YEA plates containing Phloxin B plates (2 mg/mL, Sigma-

Aldrich).

S. pombe cell extracts, SDS-PAGE and immunoblotting

Cells were grown in liquid YEA medium at 30 °C to logarithmic growth phase. 5%10° cells
were harvested and sequentially washed with 1 mL ice-cold 20 % trichloroacetic acid and 1mL 1M
TRIS (unadjusted pH). Pellets were resuspended in 200 uLL 2x SDS buffer (125 mM TRIS pH 6.8, 4
9% SDS, 0.01 % bromophenol blue, 20 % glycerole, 200 mM DTT). Samples were boiled and
subjected to a beat-beating procedure using a volume of 1200 pL acid-washed glass beads (Sigma,

G8772) and the Biol101 FastPrep FP120 Homogenizer (three times 5 m/s for 40 s). Samples were
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separated from beads by centrifugation and boiled again. Volumes corresponding to 2*10° cells
were subjected to SDS-PAGE. Proteins were blotted onto a PVDF membrane (Immobilon-P,
Millipore) and detected by mouse anti-GFP (Roche, 11814460001) or rabbit anti-Cdc2 (Santa Cruz,
SC-53). Secondary antibodies were anti-mouse and anti-rabbit HRP-conjugates respectively

(Dianova, 115-035-003 and 111-035-003) and were detected using chemiluminescence.
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