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SUPPORTING THEORY 
 
Fluorescence backgrounds and scale factors. We want to relate the units of three different quantities: 
the passive reporter CFP (

! 

Y
Z

); LuxR::YFP (

! 

Y
R

); and LuxI::CFP (

! 

Y
I
). To do this, we express each of them 

in turn (Lac-CFP, Lac-LuxR, Lac-LuxI; see Table S2) downstream of the pLac promoter and compare 
their levels at identical IPTG concentrations. Let the transcription rate be represented as 

! 

"•
 (defined with 

respect to the maximal level of the function 

! 

f  in Eq. 2): 

  

 

! 

dY•

dt
= "• Q•#• $Y•[ ] % Y• =Q•#• , Eq. S1 

 
where, as in the main text, the parameters 

! 

Q•
 are protein production rates per transcript, scaled by the 

protein decay rates 

! 

"•
. If we compare the output of all three proteins at identical IPTG concentrations, 

they will all have the same value of 

! 

"•
. This implies 

 

 

! 

Y
Z

= "
R
Y
R

= "
I
Y
I
,  where  

! 

"
R
#Q

Z
/Q

R
, "

I
#Q

Z
/Q

I
. Eq. S2 

 

In practice our actual measured quantities 

! 

Y•

#  will also include background fluorescence levels, 

represented 

! 

Y•

#
=Y• + B•. This gives us the following equations for lines of equivalence: 

 

 

! 

Y
Z

#
= "

R
Y
R

#
+ (B

Z
#"

R
B
R
) = "

I
Y
I

#
+ (B

Z
#"

I
B
I
) . Eq. S3 

 
These slope and intercept values can be determined by an affine fit (Fig. S2). The slopes correspond 
precisely to the term required on the right-hand side of Eq. 5. The background values 

! 

B•
 cannot be 

specified uniquely. However, as both y-intercepts are seen to be negative, the lowest possible 
background values can be found by setting 

! 

B
Z

= 0  and calculating the resulting 

! 

B
R

 and 

! 

B
I
. In the main 

text, data include background values unless otherwise indicated; in the discussion that follows, symbols 
without hashes indicate quantities with backgrounds subtracted. Table S3 gives fitted values (key: LoE). 
 
We will sometimes want to express transcription rates at pTet and pLac as functions of inducer 
concentrations (either aTc or IPTG). We can fit their induction profiles (e.g. Fig. 3A,B), with backgrounds 
subtracted, to Hill functions: 
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! 

Y•

#
" B• =Y• =Q•#• ,  with 

! 

"• = a b + (1# b)
x
c

K
c

+ x
c

$ 

% 
& 

' 

( 
) . Eq. S4 

 
Here, the quantity 

! 

x  represents either [IPTG] in µM or [aTc] in ng/ml or, for pLac and pTet respectively. 

We determined parameter values by least-squares fitting for the induction constructs pTet [LuxI::CFP] and 
pLac [LuxR::YFP] (see Table S2). All parameters were varied for the pTet construct; the Hill coefficient c 
was set to 2 for the pLac construct. Table S4 gives fitted values. 
 
Density dependence of AHL. Suppose cells are growing in a niche of volume 

! 

V ; AHL is synthesized by 

intracellular LuxI at specific rate 

! 

k  but diffuses rapidly across the cell membrane; and AHL is removed 
from this niche, or equivalently it is degraded, with rate constant 

! 

"# . In the limit that AHL diffusion is much 

more rapid than degradation, we can assume that its intracellular and extracellular concentrations are 

equal; experiments using radio-labeled AHL have shown that the ratio of intracellular to extracellular 
concentrations typically lies in the range 0.9 – 1.1 [37]. The accumulation of AHL is then described by the 
following equation: 
 

 

! 

d"

dt
= k

V
c

V
#Y

I
$ %"" , Eq. S5 

 
where φ is the AHL concentration, 

! 

Y
I
 is the intracellular LuxI concentration, 

! 

"  is the cell number density, 

and 

! 

V
c
 is the volume of a single cell. The ratio 

! 

V
c
/V  accounts for the fact that AHL is synthesized only in 

the intracellular volume, but diffuses throughout the niche [37]. Now consider the thought experiment in 
which cell growth is clamped at some nominal density 

! 

" . AHL levels would reach a steady state, found 

by setting 

! 

d" dt = 0 : 

 

 

! 

" =
k

#"

V
c

V
$Y

I
% µ$Y

I
, Eq. S6 

 
as shown in Eq. 1 of the main text. Next consider the case in which cell density is increasing 

exponentially, so 

! 

"(t) = "
0
e
#
c
t . If LuxI levels are given by 

! 

Y
I
(t) , we can integrate Eq. S5 to obtain: 

 

 

! 

"(t) = "(0)e
#$" t

+
kV

c
%
0

V ($
c

+ $" )
[Y

I
(t)e

$ c t #Y
I
(0)e

#$" t

]# e
#$" t & Y 

I
(' )e

($ c +$" )'
d'

o

t

(
) 

* 
+ 

, 

- 
. . Eq. S7 
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where 

! 

" Y 
I
(#)  represents a time-derivative evaluated at time 

! 

" . In the sender-cell experiment where LuxI 

levels are held fixed and 

! 

"(0) = 0 , the solution is: 

 

 

! 

"(t) =
kV

c

V (#
c

+ #" )
$
0
e
# c tY

I
% & µ $Y

I
. Eq. S8 

 
That is, the AHL concentration is proportional to the cell density at the time of measurement, as in Eq. 1 
of the main text (but with a different constant of proportionality than in the growth-clamped case of Eq. 
S6). Thus the same AHL-density proportionality law arises in the static growth-clamped case and in the 
dynamic exponential growth case. 
 
Modeling the promoter logic function. To study the range of possible steady-states of Eq. 4 under 

growth-clamped conditions, we must first specify the form of the function 

! 

f (",YR ). We start with the 

proportionality condition Eq. 1, which relates the AHL concentration (

! 

" ) to the current cell density (

! 

" ) 

and intracellular LuxI levels (

! 

Y
I
): 

 
 

! 

" = µ#Y
I
. Eq. S9 

 
AHL binds to and activates LuxR, which we can describe by a Hill equation with basal activity: 
 

 

! 

YR
*

YR
= " + 1#"( )

$m

K$

m + $m
% g($) , Eq. S10 

 

where 

! 

Y
R

 is the total concentration of LuxR, and 

! 

Y
R

* is the concentration of its active form. In turn, AHL-

bound LuxR activates transcription at promoter pR; we can describe this process, too, with a Hill equation: 
 

 

! 

f (",YR ) = # + 1$#( )
YR*
n

KR

n +YR*
n

= # + 1$#( )
YR
n
g(µ%YI )

n

KR

n +YR
n
g(µ%YI )

n
, Eq. S11 

 

where the maximum value of 

! 

f  is explicitly set to one, because it defines the unit rate of transcription 

(Eq. 2). The parameterization of 

! 

f  in terms of nested Hill equations, although being a convenient way to 

capture the cooperativity of AHL-LuxR binding and LuxR-DNA binding [12] is only one among several 
reasonable options. In the main text we determine this function by direct experimental measurement, 
rather than relying on any specific parameterization. 
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Parameter estimation. A biochemically-motivated parameterization is not strictly necessary, but it is 
useful to the extent that meaningful parameter values can be estimated from measured data. Applying Eq. 
4, the CFP output from the feedforward measurement that is used to determine the PLF is: 
 

 

! 

YZ = QZ f (µ"Y I ,Y R ) , Eq. S12 

 
where symbols with overbars indicate fixed input values. Assume for the moment that 

! 

" <<K"  (we will 

later show this is the case; see Eq. S15). Using Eq. S10, we can then approximate 

! 

Y
R

* as 

 

 

! 

YR

*

KR

= Y R
g(µ"Y I )

KR

#Y R ($ /KR + (1%$)(µ /K& )
m
/KR ' "

m
Y I

m
) . Eq. S13 

 

Setting 

! 

˜ " # " /K
R

 and 

! 

˜ µ m " (1#$)(µ /K% )
m

/K
R

, this gives us the final functional form: 

 

 

! 

Y
Z

Q
Z

= " + 1#"( )
Y 

R

n
( ˜ $ + ( ˜ µ %Y 

I
)

m
)

n

1+ Y 
R

n
( ˜ $ + ( ˜ µ %Y 

I
)

m
)

n
 Eq. S14 

 
We can now estimate parameter values. The nominal cell density for the sender-receiver experiment is 

! 

" = 0.1; this leaves 6 independent parameters that must be estimated. We performed nonlinear least-

squares fitting using the MATLAB fminsearch function (Mathworks). The dataset from the PLF has 42 
measured values of 

! 

Y
Z

, for all combinations of the 7 measured values of 

! 

Y
R

 and the 6 measured values 

of

! 

Y
I
. We fit these data to the form of Eq. S14, doing a bounded parameter search from random initial 

conditions, with chi-square calculated in log space assuming uniform measurement errors. The Hill 
coefficient 

! 

m  invariably increased without bound; to ensure numerical convergence, we clamped it at 

! 

m = 2 (Fig. S3A). This procedure robustly converged to a set of best-fit parameter values (Fig. S3B). We 
then ran Monte Carlo trials, generating synthetic datasets from Eq. S14 with the best-fit parameters, 
introducing Gaussian multiplicative noise for the 42 data points from standard errors of measurement, and 
re-running the least-squares routine [42]. This allowed us to estimate confidence intervals on the 
parameter values, as the standard deviation of best-fit values over 1000 Monte Carlo trials. This fit has a 
chi-square probability Q = 0.80 (Fig. S3C). Table S3 gives fitted values (key: PLF, with 

! 

˜ µ  explicitly listed 

as 

! 

˜ µ  [Sen] to distinguish it from the value 

! 

˜ µ  [Aut] which is determined from the autonomous loop 

measurements). 
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AHL and LuxR biochemistry. Urbanowski et al. [12] have used biochemical analyses to characterize 
AHL-LuxR binding, and the binding of activated LuxR to pR. We can compare the results of our fitting 
procedure to their direct measurements. 
 
AHL-LuxR binding. In our parameterized model, we set the value 

! 

m = 2 by hand. Our AHL titration curve 
has a broad range of uncertainty in its best-fit Hill coefficient: 

! 

m =1.9 ± 0.5 (Fig. S4C). For comparison, 
we show the gel-shift measurement of Urbanowski et al. with the same Hill coefficient (Fig. S4D). The 
results are reasonable, though not the best fit; Urbanowski et al. obtain a graphical estimate of 

! 

m =1. We 
find a half-saturation AHL concentration of ~ 825 nM, while Urbanowski et al. report a value of ~ 85 nM. 
This discrepancy is likely due to AHL degradation over the 12 h duration of our experiment (see Materials 
and Methods: AHL Calibration). 
 

LuxR-DNA binding. For LuxR-DNA binding, we estimate a Hill coefficient of 

! 

n =1.45 ; for comparison we 
show data from the protection assay of Urbanowski et al., which is in excellent agreement with the same 
Hill coefficient (Fig. S4E). Urbanowski et al. report that the half-saturation concentration for LuxR-DNA 
binding is ~ 0.1 nM. When we consider that 1 nM corresponds to approximately 1 molecule in a µm-sized 

bacterial cell, and that the constructs used in our experiments are expressed from high-copy plasmids, we 
can safely assume that 

! 

Y
R

>>K
R

. In turn, this means that only a small fraction of LuxR is active by the 

time LuxR-DNA binding is saturated; further increases in AHL levels cannot affect system behavior, and 
can effectively be ignored. This justifies the approximation made in Eq. S13: 
 

 

! 

YR >>KR " g(#) <<1 $ # << K# . Eq. S15 

 
Bifurcation analysis of feedback loops. In the feedback systems of Eq. 4, the protein in feedback (

! 

Y•
) 

is expressed from pR with transcription rate 

! 

f , while the fixed input protein (

! 

Y • ) is expressed from some 

constitutive promoter pX. Suppose the pX has a transcription rate 

! 

"  (where for convenience we have 
dropped the subscript that was explicit in Eq.  S1). It is convenient to introduce the following 
dimensionless measures of protein levels: 
 
 

! 

yR "YR /QR
, 

! 

yI "YI /QI
. Eq. S16 

 
We can then express the steady-state conditions of the constant-density thought experiment as algebraic 
equations in either 

! 

yR  or 

! 

yI . 
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LuxR feedback: Eq. S17 
 

 

! 

1

" I

dYI

dt
= QI# $YI %

SS

Y I = QI#

1

"R

dYR

dt
= QR f (µ&Y I ,YR ) $YR %

SS

yR = ' + 1$'( )
(QR ( yR )

n
( ˜ ) + ( ˜ µ &QI (#)

m
)

n

1+ (QR ( yR )
n

( ˜ ) + ( ˜ µ &QI (#)
m

)
n

 

  
LuxI feedback: Eq. S18 

 

 

! 

1

"R

dYR

dt
= QR# $YR %

SS

Y R = QR#

1

" I

dYI

dt
= QI f (µ&YI ,Y R ) $YI %

SS

yI = ' + 1$'( )
(QR (#)

n
( ˜ ) + ( ˜ µ &QI ( yI )

m
)

n

1+ (QR (#)
n

( ˜ ) + ( ˜ µ &QI ( yI )
m

)
n

 

 
 
The condition of Eq. S15 can be expressed as 

! 

Q
R
" >>K

R
 for LuxR feedback, or 

! 

Q
R
" >>K

R
 for LuxI 

feedback. As long as these are satisfied, Eqs. S17 and S18 are valid throughout their domains. Holding 
all parameter values except for 

! 

"  fixed, Eqs. S17 and S18 can be used to solve for either 

! 

yR  or 

! 

yI  as a 

function of cell density, up to some terminal value 

! 

"
max

. This is precisely the DDR of the LuxR-feedback 

or LuxI-feedback system, examples of which are shown in Fig. 1A. Now, for each combination of 

parameters 

! 

{", n,m, #, ˜ $ , %
max

, ˜ µ Q
I
,Q

R
}  we can classify the resulting DDR into one of 4 categories 

(monostable type M; bistable types B+, B±, B-) and can numerically identify the parametric boundaries 

that separate these functionally distinct response types. Figure 6 shows a 2-dimensional slice of this 
bifurcation diagram for LuxR-feedback and LuxI-feedback systems in 

! 

{", n}  space, with the remaining 

parameters set to the values shown in Table S3 (with

! 

˜ µ  and 

! 

"
max

 from autonomous loop experiments). 

In fact, the DDR bifurcation diagrams for LuxR-feedback and LuxI-feedback systems are always 
qualitatively identical to those shown in Fig. 6, though with different numerical values for transitions as 
parameters are varied. We now sketch the proof of this. 
 
The key feature of the bifurcation diagram in 

! 

{", n}  space is the line of critical points that separates the 

type M and type B regions. Transitions to the right of this line (between types B+, B±, and B-) arise from 

the fact that cell density cannot exceed the value  

! 

"
max

: transitions from B+ to B± to B- occur at 

successively smaller values of 

! 

"  as 

! 

"
max

 is increased, and in the limit 

! 

"
max

#$  only the type B+ 

region remains (Fig. S6). The point where the B+, B±, and B- regions meet satisfies a criticality condition; 
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we can trace out the critical line C by solving this condition as 

! 

"
max

 is varied from 0 to 

! 

" . Let time-

evolution equations Eq. S17 and S18 be represented as 
 

 

! 

dy•

dt
= g(y•; ",#, n, ...) , Eq. S19 

 
where we have explicitly highlighted parameters of special interest. The criticality conditions are: 
 

 

! 

g(y•; ",#, n, ...) =
$

$y•

g(y•; ",#, n, ...) =
$ 2

$y•

2
g(y•; ",#, n, ...) = 0 . Eq. S20 

 

These can be used to solve for 

! 

y•
 and two other unknowns: 

! 

"#
($,...), n#($,...), y•

#
($,...) , where the 

asterisk designates critical values. The first two terms trace the line of critical points in 

! 

{", n}  space 

parameterized by 

! 

" , keeping all other parameters fixed.  

 
Consider the LuxR-feedback system, Eq. S17: 
 

 

! 

g(yR ) = " + 1#"( )
xR
n $ yR

n

1+ xR
n $ yR

n
# yR , with 

! 

x
R
"Q

R
( ˜ # + ( ˜ µ $Q

I
%)

m
). Eq. S21 

 
Applying conditions S19, we find: 
 

 

! 

xR
" =QR ( ˜ # + ( ˜ µ $QI%

"
)
m

) = &
' & /(1+ & )

n
" = (1+ & ) /(1' & )

yR
" = &

 Eq. S22 

 

This is a degenerate case in which 

! 

n
"  is independent of 

! 

" , and increases monotonically from 1 to 

! 

"  as 

! 

"  is varied from 0 to 1. 

! 

x
R

"   is a peaked function of 

! 

"  bounded between 1 and 1.75. If 

! 

Q
R

˜ " < x
R

# , we can 

always find 

! 

"#  in terms of 

! 

" , giving us a vertical line of critical points; this happens to be the case for our 

fitted parameters. As 

! 

Q
R

˜ "  grows larger, the threshold value of 

! 

"  required to activate the system in the 

bistable region drops until, at 

! 

Q
R

˜ " = x
R

* , the system is either monostable for 

! 

n < n
", or constitutively 

active for 

! 

n > n
". For our fitted parameter values, we calculate 

! 

n
"

=1.40, as seen in Fig. 6A.  
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We next examine the LuxI-feedback system, Eq. S18: 
 

 

! 

g(yI ) = " + 1#"( )
(QR$)

n
( ˜ % + ( ˜ µ &QI yI )

m
)
n

1+ (QR$)
n
( ˜ % + ( ˜ µ &QI yI )

m
)
n
# yI . Eq. S23 

 

In general, the line of critical points will be some curve 

! 

{"#
($,...), n#($,...)} whose position depends on 

other parameter values, and must be found numerically. However, it is illuminating to ask what happens in 
the limit 

! 

" # 0 . Naively this seems to imply basal transcription; however, no matter how small 

! 

"  
becomes there will be some value of 

! 

"  at which the system can be induced (assuming throughout that 

condition Eq. S15 is valid). Therefore, we must take the joint limit 
 

 

! 

Lim
"#0,$#%

"$m &'m . Eq. S24 

 
Then we can write 
 

 

! 

Lim
"#0,$#%

 g(yI ) = & + 1'&( )
xI
mn ( yI

mn

1+ xI
mn ( yI

mn
' yI , with 

! 

x
I
"Q

R

1/m
Q
I
˜ µ # . Eq. S25 

 
This is solved similarly to the LuxR-feedback case, and we find: 
 

 

! 

xI
" =QR

1/m
QI

˜ µ # = $
% $ /(1+ $ )

mn
" = (1+ $ ) /(1% $ )

yI
" = $

 Eq. S26 

 

The critical value 

! 

n
"  for LuxI feedback can be lower than that for the LuxR-feedback case because it is 

only the product 

! 

mn
"  that matters. And unlike in the LuxR-feedback case, the equation for 

! 

x
I

"  can always 

be satisfied by some positive value of 

! 

" . For our fitted parameters, we have 

! 

n
"

= 0.70 on the 

! 

" = 0  

axis, as seen in Fig. 6B.  
 
The dual positive-feedback system. In a direct dual feedback system, both LuxI and LuxR would be 

expressed downstream of pR, and we would therefore have 

! 

yR = yI = y  in steady-state. More generally, 

we could imagine that the two genes are expressed at a fixed ratio (or equivalently, have distinct 
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translation rates): 

! 

yR /A = yI = y . Under these conditions, the steady-states are given by solutions of the 

following equation: 
 

 

! 

y = " + 1#"( )
(QRAy)

n
( ˜ $ + ( ˜ µ %QI y)

m
)
n

1+ (QRAy)
n
( ˜ $ + ( ˜ µ %QI y)

m
)
n

 Eq. S27 

 
We can calculate the DDR as before, giving the output transcription rate as a function of cell density (Fig. 
S7). 
 
The dual positive/negative-feedback system. We model the dual positive/negative-feedback system 
with the following ordinary differential equations: 
 

 

! 

1

"R

dYR

dt
=QR f (µ#YI ,YR ) $YR

1

"Lac

dYLac

dt
=QLac f (µ#YI ,YR ) $YLac

1

" I

dYI

dt
=QIg(YLac ) $YI

 Eq. S28 

 
where 

! 

Y
Lac

 is the concentration of the repressor LacI; we set the units of 

! 

Y
Lac

 by defining 

! 

Q
Lac

=Q
R

. For 

the function 

! 

f (") we use parameter values from the autonomous feedback loop experiments (Table S3), 

and set 

! 

" = 0.185 to match the cell density in the nitrogen-limited chemostat. The function 

! 

g(YLac ) 

describes the transcription rate of LuxI from the pLac promoter. In principle this function can itself be 
experimentally determined; here we use a previously described functional form [25]: 
  

 

! 

g(YLac ) = aLac
KLac

KLac +YLac
. Eq. S29 

 
The constant 

! 

a
Lac

 has already been measured (Table S4), so only the half-saturation parameter 

! 

K
Lac

 

must be set. Finally, our polycistronic reporter experiments do not allow us to directly measure response 
rates; for simplicity, we assume that 

! 

"
R

= "
Lac

=1 (thus setting the unit of time) and leave 

! 

"
I
 as a free 

parameter. The dynamical equations for 

! 

Y
R

 and 

! 

Y
Lac

 are identical in this setting, so we simply assume 

that 

! 

Y
Lac

=Y
R

 at all times, resulting in a two-dimensional system of ODEs. We numerically solve these 

equations using the MATLAB ode45 solver (Mathworks). Sample timecourses are shown in Fig. 7 of the 

main text, for the value 

! 

K
Lac

= 25 , and the two cases 

! 

"
I

= 0.1, 0.01.
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Table S1: List of BioBrick parts. 
 

Part Description 

BBa_R0011 pLac promoter 

BBa_R0040 pTet promoter 

BBa_R0062 pR promoter 

BBa_B0034 Ribosome binding site 

BBa_B0015 Transcription terminator 

BBa_C0161 LuxI 

BBa_C0062 LuxR 

BBa_E0020 CFP 

BBa_E0030 YFP 

 
See the Registry of Standard Biological Parts (partsregistry.org) for details. 
 

 
Table S2: Construct maps. 
 

ID Description 
BioBrick Map 

Sen pTet [LuxI::CFP] 
R0040.B0034.C0161.B0034.E0020.B0015 

Rec-FF pLac [LuxR::YFP] pR [CFP] 
R0011.B0034.C0062.B0034.E0030.B0015.R0062.B0034.E0020.B0015 

Rec-RFB pR [LuxR::YFP] 
R0062.B0034.C0062.B0034.E0030.B0015 

Aut-RFB pLac [LuxI::CFP] pR [LuxR::YFP] 
R0011.B0034.C0161.B0034.E0020.B0015.R0062.B0034.C0062.B0034.E0030.B0015 

Aut-IFB pLac [LuxR::YFP] pR [LuxI::CFP] 
R0011.B0034.C0062.B0034.E0030.B0015.R0062.B0034.C0161.B0034.E0020.B0015 

Lac-CFP pLac [CFP] 
R0011.B0034.E0020.B0015 

Lac-LuxR pLac [LuxR::YFP] 
R0011.B0034.C0062.B0034.E0030.B0015 

Lac-LuxI pLac [LuxI::CFP] 
R0011.B0034.C0161.B0034.E0020.B0015 

 
 
Key:  
Component descriptions are listed in Table S1.  
[ … ] indicate transcription start and stop sites; double colons :: indicate polycistronic transcripts. 
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Table S3: pR promoter logic parameter values. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Key: 
FL: Average per-pixel fluorescence intensity (Fig. 3, images) 
OD: Optical density at 600 nm 
LoE: Line of equivalence measurements (Fig. S2) 
IND: Inducible promoter measurements (Fig. 3A,B) 
PLF: Promoter logic function (Figs. 3C and S3)  
AUT: Aut-RFB and Aut-IFB measurements (Fig. 5) 

 
 

 
Table S4: Inducible promoter parameter values. 

Parameter Value StdDev Dimension Source 
BR 134.5 – FL LoE 
BI 130.2 – FL LoE 
BZ 0 – FL fixed 

! 

"
R
#Q

Z
/Q

R
 6.9 – – LoE 

! 

"
I
#Q

Z
/Q

I
 3.01 – – LoE 

     
QZ 2.52E4 1.4E4 FL PLF 
m 2 – – fixed 
n 1.45 0.22 – PLF 
β 0.0282 9.8E-3 – PLF 

! 

˜ "  4.53E-4 2.1E-4 FL-1 PLF 

! 

˜ µ  [Sen] 2.76E-4 6.2E-5 OD-1 FL-(1+m)/m PLF 

! 

"
max

[Sen] 0.1 – OD fixed 
     

! 

˜ µ  [Aut] 1.21E-3 – OD-1 FL-(1+m)/m AUT 

! 

"
max

[Aut] 0.05  OD fixed 
 

Promoter a b c K 
pTet 0.354 0.027 2.9 13.5 ng/ml aTc 
pLac 0.063 0.051 2 104.4 µM IPTG 
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Figure S1: LuxI/LuxR quorum-sensing systems. LuxI (blue circle) is an enzyme that synthesizes acyl-

homoserine lactone (AHL; white square). LuxR (orange circle) is a transcriptional activator. (A) At low cell 
densities, LuxR is expressed at high levels from the pL promoter, while LuxI is expressed at a basal level 
from the pR promoter. AHL is synthesized at low levels, and diffuses freely across the cell membrane. 
LuxR remains in an inactive form. (B) At high cell densities, the aggregate synthesis of AHL from many 
cells drives up its extracellular and intracellular concentration, promoting LuxR-AHL binding. AHL-bound 
LuxR activates transcription of LuxI at the pR promoter, driving a positive-feedback loop. 

 
 

 

 

 

 

 

 

 

 

Figure S2: Measuring lines of equivalence. We determined CFP, LuxR::YFP, and LuxI::CFP values for 
proteins expressed from pLac with IPTG = [0 5 10 50 100 500] µM. Each datapoint gives either the (A) 

LuxR::YFP or (B) LuxI::CFP level against the corresponding CFP level at equal IPTG concentrations; 
error bars represent standard errors of measurement over replicates. The lines of equivalence (red) are 
determined by affine fits. 
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Figure S3: Promoter logic parameter estimation. (A) We estimated the parameters of Eq. 6 / Eq. S14 
by non-linear least-squares fitting. We observed for an unconstrained fit that the value of the LuxR-AHL 
binding Hill coefficient 

! 

m  increased without bound; but if the value of 

! 

m  was fixed, the algorithm robustly 
converged to a set of best-fit parameters. Here we show fitted parameter values as a function of 

! 

m . The 
chi-square error (top left graph) decreases monotonically with 

! 

m ; this underlies the numerical instability. 
Throughout the paper, parameter values are those determined for 

! 

m  = 2. The value of the LuxR-DNA 
binding Hill coefficient 

! 

n  is only weakly dependent on 

! 

m  (bottom right graph). (B) Predicted vs. observed 
CFP values for the 42 datapoints of the PLF, from a 5-parameter fit. (C) The histogram shows the 
distribution of chi-square values found for 1000 Monte Carlo trials using synthetic datasets. A fraction Q = 
0.8 of these values are greater than value from the actual fit (vertical red line), showing that the deviations 
in Fig. S3B are within measurement error. 
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Figure S4: AHL calibration. (A) The area under the curve from HPLC measurements of absorption at λ 

= 253 nm, plotted against synthetic AHL concentration. The inset shows the absorption peak. (B) AHL 
decay measured using HPLC. The exponential fit shows that AHL decays with a half-life of ~ 4 h, 
independent of the presence or absence of cells in the medium. (C) Titration: the CFP levels of Rec-FF 
cells (with LuxR induced using 500 µM IPTG) plotted against the initial levels of synthetic AHL in the 
medium. The curve shows a Hill fit, with the best fit Hill coefficient 

! 

m  = 1.94 ± 0.5. (D) Data from gel-shift 

experiments of LuxR-to-AHL binding for 3.5 nm total LuxR, as a function of AHL levels. The curve shows 
a fit with the Hill coefficient fixed at 

! 

m  = 1.94. Datapoints estimated graphically from figures in 
Urbanowski et al. [12]. (E) Data from DNA protection experiments probing the binding of LuxR-AHL to 
DNA as a function of LuxR levels, when AHL is in excess (10 µM). The curve shows a fit with the Hill 
coefficient fixed at 

! 

n  = 1.45, as estimated from our PLF measurements. Datapoints estimated graphically 
from figures in Urbanowski et al. [12]. 
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Figure S5: Dynamic predictions and responses. We predicted the entire density-dependent response 
of the two autonomous loop constructs (using Eqs. S17 and S18, with parameters from Table S3), starting 
from low density and going up to the carrying capacity of our media (OD600 ~ 1). As expected given the 
high rates of change of cell density under these conditions, the observed feedback response lags the 
predicted DDR at all times. Nevertheless, the predictions correctly capture how changes in the regulator 
level accelerate the induction dynamics. Grey curves show the DDR  predicted from Eqs. S17 and S18, 
with parameters from Table S4. In principle the parameter 

! 

˜ µ  should be re-calculated for these new high-

density growth conditions, but we have used 

! 

˜ µ  [Sen] directly (Table S3). Datapoints show the observed 

responses for (A) the Aut-RFB system and (B) the Aut-IFB system. We determined responses at two 
different IPTG concentrations (hence two different levels of the regulator LuxI::CFP or LuxR::YFP, 
respectively). Measurements were made at 2 h intervals until the cultures entered stationary phase. 

 



17 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S6: Mapping the boundary between monostable and bistable regions. Using autonomous 
loop parameters from Table S3 and a fixed value of cell density 

! 

" , we can find the regions of 

! 

{",n} 

space that admit bistable solutions (regions within the taper emanating from a critical point, bounded by a 
set of black and red curves). As 

! 

"  is increased up to the level 

! 

"
max

, these tapers move toward lower 

values of 

! 

" . Any given point will transition from the un-induced (below taper) to the bistable (within taper) 
to the fully induced (above taper) regions, thus mapping out the DDR as a function of 

! 

" . Once we reach 

! 

"
max

, any point above the taper would have already been induced (B+); any point still inside the taper 

would be hysteretic (B±); and any point below the taper would be un-induced (B-); Fig. 6 was generated 

for 

! 

"
max

 = 0.05. By tracing out the critical points as cell density is increased from 0 to ∞, we can find the 

line that separates the type M and type B regions. 
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Figure S7: The dual positive-feedback system. (A) Dual positive feedback is achieved by placing both 
LuxR and LuxI downstream of pR. This system has no regulator, but is still sensitive to extracellular AHL 
levels. (B) We model the system using the autonomous loop parameters from Table S3. We further allow 
the relative translational efficiencies of LuxI and LuxR to be tuned: the condition 

! 

yR / yI =1 means we 

use the directly measured translation rates, while 

! 

yR / yI = 0.1 is equivalent to LuxR having a 10-times 

reduced translation rate (Eq. S27). As in Fig. 1 of the main text, we solve for the density-dependent 
response (DDR) of the system for various values 

! 

yR / yI , and of the Hill coefficient 

! 

n . As 

! 

n  is increased, 

the system moves from type M (white), through type B+ (grey) and eventually to type B± (white). (C) 

Sample DDRs, for 

! 

yR / yI = 0.1, and 

! 

n = 0.5, 0.8, 1.3 (shown as open circles in panel B). 
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Figure S8: Fluorescence loss measurements.  (A) We sampled Aut-IFB cells from various timepoints 
of the density-dependent protocol (see Materials and Methods: Autonomous loop density-dependent 
measurements). Cells were extracted for imaging, then re-diluted, just prior to the 0 h, 12 h, and 24 h 
timepoints; the OD600 values indicated correspond to pre-dilution densities. Three replicates of the same 
experiment are shown. Maximal LuxI::CFP fluorescence values increase throughout the first 12 h growth 
phase; however, a sub-population of cells show loss of fluorescence. Addition of AHL and subsequent 
growth to the 24 h timepoint does not lead to fluorescence recovery, indicating that the loss is irreversible. 
(B) Our constructs are carried on an ampicillin-resistant plasmid backbone. We measured the number of 
colony-forming units (CFUs) per ml of sample from the 0 h and 12 h extracts, in the presence and 
absence of ampicillin; errorbars represent standard error of the mean over triplicates. At 0 h all cells are 
ampicillin resistant (no significant difference between the two counts, p = 0.89), while at 12 h the fraction 
of resistant cells has fallen to less than a fifth (p = 0.003), suggesting plasmid loss is responsible for loss 
of fluorescence. 

 


