Supplemental Material

Retrospective Exposure Estimation and Predicted versus Observed Serum Perfluorooctanoic Acid Concentrations for Participants in the C8 Health Project

Hyeong-Moo Shin¹, Verónica M. Vieira², P. Barry Ryan³, Kyle Steenland^{3, 4}, and Scott M. Bartell⁵

¹School of Social Ecology, University of California, Irvine, California, USA

²Department of Environmental Health, Boston University, Boston, Massachusetts, USA

³Department of Environmental Health, Emory University, Atlanta, Georgia, USA

⁴C8 Science Panel (http://www.c8sciencepanel.org)

⁵Program in Public Health, Department of Statistics, and Department of Epidemiology, University of California, Irvine, California, USA

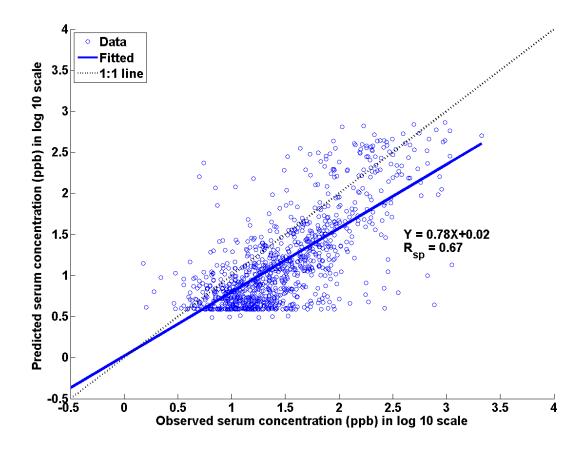
TABLE OF CONTENTS

Tables & Figures	3
Supplemental Material, Table 1. Summary of exposure concentrations assignment by data type	3
Supplemental Material, Table 2. The cord: maternal PFOA ratio in blood based on literature review	4
Supplemental Material, Figure 2. A log-log plot of predicted vs. observed concentrations from a	
random sample of 1000 participants drawn from all participants. Linear trends are shown as	a
solid line and predicted and observed concentrations are shown as points	5
Supplemental Material, Figure 3. A log-log plot of predicted vs. observed concentrations for	
participants (n =1,074) who had same residence & workplace in 1 of 6 water districts from	
2001 to 2005 and provided water consumption information. Linear trends are shown as a	
solid line and predicted and observed concentrations are shown as points	.6
Supplemental Material, Table 3. Summary of contribution of maternal transfer to children by speci-	fic
age range excluding Little Hocking children	7
Supplemental Material, Figure 4. Relative contribution of air inhalation exposure to total exposure	
from the Washington Works facility (%) as a function of time for each water district.	
Exposure was averaged based on historical water district	8
References	9

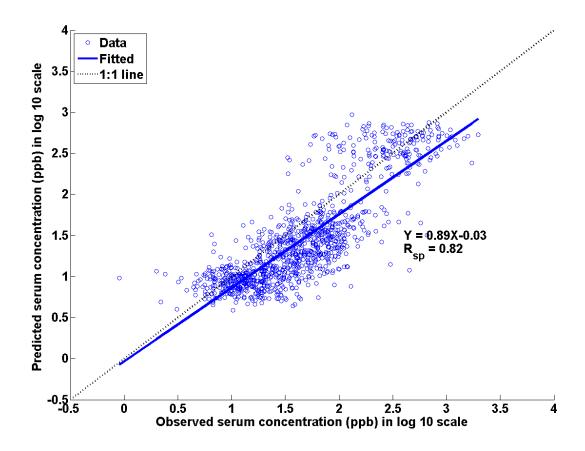
TABLES & FIGURES

Supplemental Material, Table 1. Summary of exposure concentrations assignment by data type

WD a code	Data Type (n)	Geographic Location	Number of Records	Air conc.	Water source
1-6 (n=65,470)	a 1 575	Inside Air & Inside GW b	22,689	V V	
	Geocode +ZIP (n=64,679)	Inside Air & Outside GW	16,706	X, Y	Public
		Outside Air & Outside GW	25,284	0	
	No Geocode+ ZIP (n=791)	Inside Air & Inside GW	12	X, Y (ZIP	
		Inside Air & Outside GW 148 centroid		centroid)	Public
	(II-771)	Outside Air & Outside GW	631	0	
7,8,0 (n=85,154)	C17ID	Inside Air & Inside GW	1,181	X, Y	Private
	Geocode +ZIP (n=78,992)	Inside Air & Outside GW	23,161	Λ, 1	Private ^c
	(' - ', - ', - ')	Outside Air & Outside GW	54,650	0	0
	No Geocode+ ZIP (n=5,082)	Inside Air & Inside GW	65	X, Y (ZIP	Private
		Inside Air & Outside GW	448	centroid)	Private ^c
	(11–3,002)	Outside Air & Outside GW	4,569	0	0
	No Geocode+ No ZIP (n=1,080)	NA	1,080	0	0
blank (n=1,247)	C 1 .7ID	Inside Air & Inside GW	97	v v	Mix (Public, Private)
	Geocode +ZIP (n=1,174)	Inside Air & Outside GW	235	X, Y	Mix (Public, Private ^c)
	(II-1,177)	Outside Air & Outside GW	842	0	Mix (Public, Private=0)
	No Coooda - ZID	Inside Air & Inside GW	0	X, Y (ZIP	Mix (Public, Private)
	No Geocode+ ZIP (n=73)	Inside Air & Outside GW	33	centroid)	Mix (Public, Private ^c)
	(n-75)	Outside Air & Outside GW	40	0	Mix (Public, Private=0)
Total	151,871		151,871		

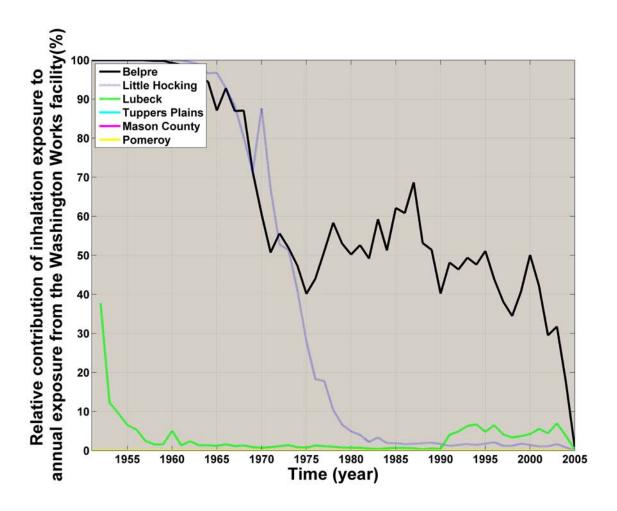

^a Water district code reported in the study

^b Groundwater model domain


^c Private well concentrations from the vadose zone model for outside groundwater model domain

Supplemental Material, Table 2. The cord: maternal PFOA ratio in blood based on literature review

Reference	Sample size	PFOA ratio	Method of estimating the PFOA ratio
Fromme et al. (2010) regression equation	27	0.745	calculated using the provided
Kim et al. (2011) regression equation	20	0.694	calculated using the provided
Midasch et al. (2007)	11	1.260	provided mean of ratio
Fei et al. (2007) mean ratio of maternal:cord	50	0.680	calculated from provided
Needham et al. (2010)	12	0.720	provided median of ratio
Monroy et al. (2008) mean	101	0.866	calculated ratio of provided
Hanssen et al. (2020) mean ratio of maternal:cord	58	0.710	calculated from provided


Supplemental Material, Figure 2. A log-log plot of predicted vs. observed concentrations from a random sample of 1000 participants drawn from all participants. Linear trends are shown as a solid line and predicted and observed concentrations are shown as points.

Supplemental Material, Figure 3. A log-log plot of predicted vs. observed concentrations for participants (n =1,074) who had same residence & workplace in 1 of 6 water districts from 2001 to 2005 and provided water consumption information. Linear trends are shown as a solid line and predicted and observed concentrations are shown as points.

Supplemental Material, Table 3. Summary of contribution of maternal transfer to children by specific age range excluding Little Hocking children

Source		No mater	No maternal transfer		Maternal transfer		
Age	N	R_{sp}	Predicted median (ppb)	R_{sp}	Predicted med	Observed dian (ppb)	
median							
1-2	7	0.00	8.7	0.61	33.9	19.0	
2-3	93	0.32	7.6	0.66	30.0	27.3	
3-4	136	0.44	15.2	0.50	34.4	21.1	
4-5	198	0.60	18.2	0.58	34.0	21.3	
5-6	213	0.50	19.8	0.68	28.3	24.9	
6-7	281	0.58	20.3	0.62	28.5	24.4	
7-8	336	0.59	21.1	0.65	28.0	23.6	
8-9	376	0.46	17.1	0.55	21.0	19.0	
Total	1692	0.52	17.8	0.61	28.5	22.7	

Supplemental Material, Figure 4. Relative contribution of air inhalation exposure to annual PFOA exposure from the Washington Works facility (%) as a function of time for each water district. Exposure was averaged based on historical water district

REFERENCES

Fei CY, McLaughlin JK, Tarone RE, Olsen J. 2007. Perfluorinated chemicals and fetal growth: A study within the Danish National Birth Cohort. Environ Health Perspect 115:1677–1682.

Fromme H, Mosch C, Morovitz M, Alba-Alejandre I, Boehmer S, Kiranoglu M, et al. 2010. Preand Postnatal Exposure to Perfluorinated Compounds (PFCs). Environ Sci Technol 44:7123–7129.

Hanssen L, Roellin H, Odland JO, Moe MK, Sandanger TM. 2010. Perfluorinated compounds in maternal serum and cord blood from selected areas of South Africa: results of a pilot study. J Environ Monitor 12(6): 1355–1361.

Kim SK, Lee KT, Kang CS, Tao L, Kannan K, Kim KR, et al. 2011. Distribution of perfluorochemicals between sera and milk from the same mothers and implications for prenatal and postnatal exposures. Environ Pollut 159(1): 169–174.

Midasch O, Drexler H, Hart N, Beckmann MW, Angerer J. 2007. Transplacental exposure of neonates to perfluorooctanesulfonate and perfluorooctanoate: a pilot study. Int Arch Occ Env Hea 80(7):643–648.

Monroy R, Morrison K, Teo K, Atkinson S, Kubwabo C, Stewart B, et al. 2008. Serum levels of perfluoroalkyl compounds in human maternal and umbilical cord blood samples. Environ Res 108(1):56–62.

Needham LL, Gandjean P, Heinzow B, Jorgensen PL, Nielsen F, Patterson DG, Sjodin A, Turner WE, Weihe P. 2011. Partition of environmental chemicals between maternal and fetal blood and tissues. Environ Sci Technol 45:1121-1126.