Supplement Material

Arteriolar function in visceral adipose tissue is impaired in human obesity

Melissa G. Farb PhD, Lisa Ganley-Leal PhD, Melanie Mott, YanMei Liang, Bahadir Ercan PhD,

Michael E. Widlansky MD, Sherman J. Bigornia MA, Antonino J. Fiscale, Caroline M. Apovian

MD, Brian Carmine MD, Donald T. Hess MD, Joseph A. Vita MD, Noyan Gokce MD

Supplemental Figure I Supplemental Figure II Supplemental Figure III Supplemental Figure IV Supplemental Figure VI Supplemental Table I

Supplemental Figure I: Adipose tissues arteriolar responses, paired data. In a subset of individuals (n=10) that provided paired samples simultaneously from both visceral and subcutaneous depots, endothelium-dependent vasorelaxation of visceral arterioles was severely impaired, similar in magnitude to results for the group as a whole (p<0.001 by ANOVA). Data presented as mean \pm SEM.

Supplemental Figure II: Adipose tissue arteriolar responses in non-diabetic (n=17) versus diabetic subjects (n=13). Visceral microvascular dilation was severely impaired compared to subcutaneous vasorelaxation irrespective of clinical diabetes status (p<0.001 by ANOVA). Data presented as mean \pm SEM. DM=diabetes mellitus

Supplemental Figure III: Adipose arteriolar histology. Representative cross-sectional histology of arteriolar staining for (A) endothelium-specific CD31 (B) H&E, demonstrating architecturally intact nucleated endothelium (indicated by arrows) surrounded by smooth muscle layers demonstrating endothelial integrity during experimental conditions.

Supplemental Figure IV: Representative cross-sectional histology of adipose arterioles stained for (A) elastica-van Gieson, and (B) CD68, demonstrating no evidence of atherosclerotic changes or vascular macrophage infiltration, respectively.

Supplemental Figure V: Adipose tissues arteriolar responses to sodium nitroprusside (SNP). No difference in endothelium-independent, SNP-mediated vasodilation was observed between visceral as compared to subcutaneous adipose arterioles. (n=6, p=0.5 by ANOVA). Data presented as mean \pm SEM.

Supplemental Figure VI: Vascular endothelial cell populations isolated from visceral fat exhibited higher expression of inflammatory cytokines as compared to the subcutaneous depot (n=6). Data are presented as fold difference in visceral compared to subcutaneous expression \pm SEM. * p<0.05.

	Gene	Fold difference in visceral compared to subcutaneous fat	p value
Immune cells markers	CD3	7.2	0.001*
	CD4	10.0	0.059
	CD8	20.7	0.004*
	CD68	1.7	0.192
	CD163	2.9	0.092
	FOXP3	1.8	0.576
Inflammation and oxidative stress	Adiponectin	0.5	0.503
	CCL2	1.2	0.773
	CCL5	10.6	0.006*
	CCR2	3.8	0.306
	FSTL1	3.5	0.132
	IFN-γ	1.1	0.980
	ICAM-1	1.8	0.395
	IL-1β	4.7	0.240
	IL-6	7.6	0.040*
	IL-10	1.8	0.232
	MYD88	2.1	0.150
	NF-κB	2.2	0.008*
	NOX1	1.6	0.090
	NOX4	1.3	0.650
	TGF-β	3.9	0.054
	TLR4	1.9	0.160
	TNF-α	4.4	0.213
	VCAM-1	1.4	0.459
	eNOS	0.8	0.588
Angiogenic and hypoxia-related genes	ANGPT2	3.5	0.109
	HIF1-α	2.3	0.108
	VEGF	2.8	0.002*

Supplemental Table I: Gene expression in visceral compared to subcutaneous adipose tissue, paired samples.