Genetic variation near *IRS1* associates with reduced adiposity and an impaired metabolic profile

Tuomas O Kilpeläinen, M Carola Zillikens, Alena Stančáková, Francis M Finucane, Janina S Ried *et al.**

* A full list of author names appears in the main paper.

SUPPLEMENTARY INFORMATION

1. SUPPLEMENTARY TABLES AND FIGURES P. 2							
1.1 Supplementary Tables	P. 2						
1.2 Supplementary Figures P							
2. SUPPLEMENTARY NOTE	р. 20						
2.1. Supplementary Note - Tables	p. 20						
2.2. Author Contributions	p. 31						
2.3. Acknowledgements	p. 33						
2.4. Competing interests statement	p. 37						

1. SUPPLEMENTARY TABLES AND FIGURES

1.1. SUPPLEMENTARY TABLES

- Supplementary Table 1Stage 1 results for the 14 SNPs that reached an associationP value < 10^{-6} with body fat percentage in the stage 1genome-wide association meta-analysis and were takenforward for follow-up.
- Supplementary Table 2 Association of the 14 SNPs that were taken forward for replication from stage 1 with body fat percentage in a metaanalysis of stage 2 follow-up studies.
- Supplementary Table 3 Association of the 14 SNPs that were taken forward for replication from stage 1 with body fat percentage in the combined meta-analysis of stage 1 and stage 2.
- Supplementary Table 4 Comparison of the combined stage 1 and stage 2 results for the rs2943650 SNP near *IRS1*, rs534870 SNP near *SPRY2*, and rs8050136 SNP in *FTO* in meta-analyses of 'European individuals only' vs. 'Europeans and Indian-Asians combined'
- Supplementary Table 5 Association of the body fat percentage decreasing (T) allele of rs2943650 near *IRS1* with anthropometric traits in a meta-analysis of stage 2 follow-up studies.
- Supplementary Table 6 Association of the body fat percentage decreasing (T) allele of rs2943650 near *IRS1* with blood lipids, insulin sensitivity traits, leptin, and adiponectin in a meta-analysis of stage 2 and stage 3 follow-up studies.
- **Supplementary Table 7** Significant associations (*P* < 0.05) of the rs2943650 SNP near *IRS1* and the rs534870 SNP near *SPRY2* with *cis* gene expression (*cis*-eQTLs) in subcutaneous adipose tissue, omental adipose tissue, blood, and liver.
- Supplementary Table 8 Association of the body fat percentage increasing (G) allele of rs534870 near *SPRY2* with anthropometric traits and blood lipids in a meta-analysis of stage 2 follow-up studies.
- Supplementary Table 9 Association of established susceptibility loci for BMI, waist circumference, extreme obesity, and waist-to-hip ratio with body fat percentage in the stage 1 genome-wide association meta-analysis.

Supplementary Table 1 Stage 1 results for the 14 SNPs that reached an association P value < 10^{-6} with body fat percentage in the stage 1 genome-wide association meta-analysis and were taken forward for follow-up

				Alle	eles	Stage 1 All individuals (n=36,626) (includes 7,557 Indian Asians)		Stage 1 Europeans (n=29,069)			69)	Stage 1 Men (n=19,815) (includes 6,535 Indian Asians)			Asians)	Stage 1 Women (n=16,811) (includes 1,022 Indian Asians)					
Chr	Nearby Gene	Lead SNP	Position (bp)	Effect	Other	n	Freq (%)	beta	P	n	Freq (%)	beta	Р	n	Freq (%)	beta	P	n	Freq (%)	beta	Р
1	GRIK3	rs12739617	36,945,244	G	С	35803	86	0.048	3.2x10 ⁻⁵	28246	90	0.069	8.6x10 ⁻⁷	19388	86	0.046	2.4x10 ⁻³	16415	89	0.042	2.4x10 ⁻²
2	IRS1	rs2943650	226,814,165	С	Т	36574	36	0.044	7.9x10 ⁻⁹	29017	37	0.039	3.1x10 ⁻⁶	19751	35	0.059	4.1x10 ⁻⁸	16823	36	0.034	2.7x10 ⁻³
2	SNED1	rs7425888	241,575,678	А	G	33997	15	0.029	7.1x10 ⁻³	26713	13	0.016	2.2x10 ⁻¹	18859	16	0.077	1.4x10 ⁻⁷	15138	14	-0.027	1.1x10 ⁻¹
5	HTR1A	rs7736910	63,076,529	G	А	32629	50	0.039	5.9x10 ⁻⁷	27275	48	0.045	2.0x10 ⁻⁷	16706	52	0.029	1.0x10 ⁻²	15924	49	0.048	4.0x10 ⁻⁵
5	MARCH3	rs7738021	126,230,059	G	т	32629	68	0.033	1.9x10 ⁻⁴	27275	71	0.036	2.6x10 ⁻⁴	16706	66	0.009	4.5x10 ⁻¹	15924	69	0.065	9.9x10 ⁻⁷
6	WISP3	rs6909893	112,466,236	А	G	34831	26	0.045	7.6x10 ⁻⁷	27274	28	0.043	9.9x10 ⁻⁶	18908	25	0.059	6.5x10 ⁻⁶	15923	27	0.028	3.6x10 ⁻²
8	PPP1R3B	rs17706711	9,116,692	А	Т	29050	81	0.060	1.5x10 ⁻⁷	27274	81	0.060	1.5x10 ⁻⁷	13240	82	0.070	9.4x10 ⁻⁵	15811	82	0.051	1.4x10 ⁻³
8	RP1L1	rs9657518	10,504,999	С	Т	34558	39	0.038	1.9x10 ⁻⁵	27274	34	0.050	7.4x10 ⁻⁷	18635	41	0.035	3.4x10 ⁻³	15923	35	0.036	8.3x10 ⁻³
8	FDFT1	rs17149412	11,719,247	С	Т	32628	28	0.044	8.8x10 ⁻⁷	27274	27	0.054	7.5x10 ⁻⁸	16705	29	0.032	1.1x10 ⁻²	15923	27	0.054	6.3x10 ⁻⁵
8	SLC39A14	rs12674913	22,319,562	G	С	36612	69	0.043	1.6x10 ⁻⁷	29055	72	0.035	1.4x10 ⁻⁴	19777	68	0.046	4.0x10 ⁻⁵	16835	71	0.043	6.0x10 ⁻⁴
10	GFRA1	rs180585	117,797,907	С	Т	36603	84	0.049	7.9x10 ⁻⁷	29046	84	0.054	1.1x10 ⁻⁶	19726	84	0.026	6.5x10 ⁻²	16830	84	0.074	6.7x10 ⁻⁷
13	SPRY2	rs534870	79,857,208	G	А	36488	33	0.036	3.2x10 ⁻⁶	28931	31	0.044	7.9x10 ⁻⁷	19726	35	0.034	1.6x10 ⁻³	16763	32	0.039	9.0x10 ⁻⁴
16	FTO	rs8050136	52,373,776	А	С	36537	39	0.063	3.9x10 ⁻¹⁷	28980	41	0.067	4.6x10 ⁻¹⁶	19739	38	0.058	2.5x10 ⁻⁸	16798	40	0.063	1.2x10 ⁻⁸
18	MC4R	rs590215	56,055,068	т	С	36571	31	0.034	1.9x10 ⁻⁵	29014	29	0.025	5.4x10 ⁻³	19752	32	0.055	4.6x10 ⁻⁷	16820	29	0.013	2.8x10 ⁻¹

Body fat percentage was inverse normal transformed to approximate normality (mean = 0, sd = 1) in men and women separately. Alleles, effect is the fat % increasing allele, other is the fat % decreasing allele; beta, change in inverse normal transformed body fat percentage per effect allele; Chr/Position: the chromosome and position (in Build 36) of the SNP; Freq, frequency of the effect allele; Nearby Gene, gene nearest the SNP used in analyses.

				All	eles		r ² between -		Stage 2 All individuals			Stage 2 Men				Stage 2 Women			
Chr	Nearby Gene	Lead SNP	Position (bp)	Effect	Other	Proxy SNP	lead and proxy	n	Freq (%)	beta	Р	n	Freq (%)	beta	Р	n	Freq (%)	beta	P
1	GRIK3	rs12739617	36,945,244	G	С	rs7554980 rs12063010	1 1	34,254	88	0.015	1.8x10 ⁻¹	20,490	88	0.009	5.2x10 ⁻¹	13,764	89	0.026	1.7x10 ⁻¹
2	IRS1	rs2943650	226,814,165	С	т	rs2972143 rs2943634	1 0.83	39,576	36	0.025	1.9x10 ⁻⁴	24,047	36	0.035	3.4x10 ⁻⁵	15,529	36	0.008	4.7x10 ⁻¹
2	SNED1	rs7425888	241,575,678	А	G	rs4521036	1	34,392	14	0.021	4.1x10 ⁻²	20,562	13	0.016	2.3x10 ⁻¹	13,830	14	0.029	7.9x10 ⁻²
5	HTR1A	rs7736910	63,076,529	G	А	rs10805383	1	24,407	55	0.015	7.9x10 ⁻²	15,506	57	0.010	1.6x10 ⁻¹	8,901	50	0.015	2.9x10 ⁻¹
5	MARCH3	rs7738021	126,230,059	G	т			24,437	64	-0.003	7.5x10 ⁻¹	15,543	62	0.004	6.8x10 ⁻¹	8,894	67	-0.018	2.4x10 ⁻¹
6	WISP3	rs6909893	112,466,236	А	G	rs2280153	0.85	34,428	26	0.022	6.9x10 ⁻³	20,555	24	0.023	3.1x10 ⁻²	13,873	28	0.021	1.0x10 ⁻¹
8	PPP1R3B	rs17706711	9,116,692	А	т	rs2929313	1	34,403	83	-0.003	7.6x10 ⁻¹	20,550	84	0.001	9.2x10 ⁻¹	13,853	82	-0.009	5.5x10 ⁻¹
8	R1P1L1	rs9657518	10,504,999	С	т			34,556	45	0.004	6.3x10 ⁻¹	20,632	49	0.006	5.0x10 ⁻¹	13,924	62	-0.001	9.4x10 ⁻¹
8	FDFT1	rs17149412	11,719,247	С	т			24,435	33	-0.005	5.7x10 ⁻¹	15,534	34	-0.005	6.7x10 ⁻¹	8,901	27	-0.017	2.9x10 ⁻¹
8	SLC39A14	rs12674913	22,319,562	G	С	rs2293145 rs13256933	1 1	31,715	71	0.013	9.9x10 ⁻²	17,804	70	0.017	1.1x10 ⁻¹	13,911	72	0.008	5.2x10 ⁻¹
10	GFRA1	rs180585	117,797,907	С	Т	rs180566	1	34,405	84	0.012	2.2x10 ⁻¹	20,574	83	0.010	4.3x10 ⁻¹	13,831	84	0.015	3.3x10 ⁻¹
13	SPRY2	rs534870	79,857,208	G	А			34,342	30	0.023	2.6x10 ⁻³	20,537	30	0.030	2.1x10 ⁻³	13,805	30	0.012	3.4x10 ⁻¹
16	FTO	rs8050136	52,373,776	А	С	rs9939609 rs1121980	1 0.85	34,105	40	0.047	4.4x10 ⁻¹¹	20,624	41	0.045	6.0x10 ⁻⁷	13,481	40	0.051	1.6x10 ⁻⁵
18	MC4R	rs590215	56,055,068	Т	С	rs17782313	0.71	33,826	24	0.017	4.2x10 ⁻²	20,244	22	0.024	3.1x10 ⁻²	13,582	26	0.008	5.8x10 ⁻¹

Supplementary Table 2 Association of the 14 SNPs that were taken forward for replication from stage 1 with body fat percentage in a meta-analysis of stage 2 follow-up studies

All individuals were of white European descent. Body fat percentage was inverse normal transformed to approximate normality (mean = 0, sd = 1) in men and women separately. Alleles, effect is the fat % increasing allele, other is the fat % decreasing allele; beta, change in inverse normal transformed body fat percentage per effect allele; Chr/Position, the chromosome and position (in Build 36) of the SNP; Freq, frequency of the effect allele; Nearby Gene, gene nearest the SNP used in analyses

				Alle	eles	Stage 1 + 2 All individuals (includes 7,557 Indian Asians)			Stage 1 + 2 Europeans			Stage 1 + 2 Men (includes 6,535 Indian Asians)				Stage 1 + 2 Women (includes 1,022 Indian Asians)					
Chr	Nearby Gene	SNP	Position (bp)	Effect	Other	n	Freq (%)	beta	Р	n	Freq (%)	beta	Р	N	Freq (%)	beta	Р	n	Freq (%)	beta	Р
1	GRIK3	rs12739617	36,945,244	G	С	70,057	87	0.031	1.2x10 ⁻⁴	62,500	89	0.036	4.2x10 ⁻⁵	39,878	86	0.025	1.3x10 ⁻³	30,179	89	0.034	1.0x10 ⁻²
2	IRS1	rs2943650	226,814,165	С	Т	76,150	36	0.034	3.8x10 ⁻¹¹	68,593	36	0.031	6.0x10 ⁻⁹	43,798	36	0.044	2.9x10 ⁻¹¹	32,352	36	0.021	9.0x10 ⁻³
2	SNED1	rs7425888	241,575,678	А	G	68,389	14	0.025	8.9x10 ⁻⁴	61,105	13	0.019	1.9x10 ⁻²	39,421	15	0.044	9.3x10 ⁻⁶	28,968	14	0.002	8.8x10 ⁻¹
5	HTR1A	rs7736910	63,076,529	G	А	57,036	52	0.028	1.5x10 ⁻⁶	51,682	51	0.030	1.2x10 ⁻⁶	32,212	55	0.021	6.0x10 ⁻³	24,825	50	0.034	1.2x10 ⁻⁴
5	MARCH3	rs7738021	126,230,059	G	Т	57,066	66	0.015	1.7x10 ⁻²	51,712	67	0.014	3.2x10 ⁻²	32,249	64	0.006	4.2x10 ⁻¹	24,818	68	0.030	3.2x10 ⁻³
6	WISP3	rs6909893	112,466,236	А	G	69,259	26	0.033	8.7x10 ⁻⁸	61,702	27	0.031	9.5x10 ⁻⁷	39,463	24	0.038	5.5x10 ⁻⁶	29,796	28	0.024	8.4x10 ⁻³
8	PPP1R3B	rs17706711	9,116,692	А	Т	63,453	82	0.023	1.6x10 ⁻³	61,677	82	0.023	1.6x10 ⁻³	33,790	83	0.024	2.1x10 ⁻²	29,664	82	0.019	7.9x10 ⁻²
8	R1P1L1	rs9657518	10,504,999	С	Т	69,114	42	0.018	1.9x10 ⁻³	61,830	41	0.019	1.1x10 ⁻³	39,267	46	0.017	2.1x10 ⁻²	29,847	37	0.016	8.5x10 ⁻²
8	FDFT1	rs17149412	11,719,247	С	Т	57,063	30	0.018	5.3x10 ⁻³	51,709	30	0.019	4.2x10 ⁻³	32,239	32	0.011	1.8x10 ⁻¹	24,824	27	0.025	1.7x10 ⁻²
8	SLC39A14	rs12674913	22,319,562	G	С	68,327	70	0.028	1.1x10 ⁻⁶	60,770	71	0.023	1.7x10 ⁻⁴	37,581	69	0.030	6.5x10 ⁻⁵	30,746	72	0.026	3.5x10 ⁻³
10	GFRA1	rs180585	117,797,907	С	Т	71,008	84	0.030	1.6x10 ⁻⁵	63,451	84	0.030	3.7x10 ⁻⁵	40,300	84	0.017	7.0x10 ⁻²	30,661	84	0.046	2.0x10 ⁻⁵
13	SPRY2	rs534870	79,857,208	G	А	70,831	32	0.030	6.5x10 ⁻⁸	63,273	30	0.032	3.2x10 ⁻⁸	40,263	32	0.032	1.1x10 ⁻⁵	30,568	31	0.026	2.2x10 ⁻³
16	FTO	rs8050136	52,373,776	А	С	70,642	40	0.055	2.7x10 ⁻²⁶	63,085	41	0.056	5.6x10 ⁻²⁵	40,363	40	0.051	1.3x10 ⁻¹³	30,279	40	0.058	1.1x10 ⁻¹²
18	MC4R	rs590215	56,055,068	т	С	70,397	28	0.026	6.2x10 ⁻⁶	62,840	26	0.021	7.5x10 ⁻⁴	39,996	27	0.040	3.2x10 ⁻⁷	30,402	28	0.011	2.4x10 ⁻¹

Supplementary Table 3 Association of the 14 SNPs that were taken forward for replication from stage 1 with body fat percentage in the combined meta-analysis of stage 1 and stage 2

Body fat percentage was inverse normal transformed to approximate normality (mean = 0, sd = 1) in men and women separately. Alleles, effect is the fat % increasing allele, other is the fat % decreasing allele; beta, change in inverse normal transformed body fat percentage per effect allele; Chr/Position: the chromosome and position (in Build 36) of the SNP; Freq, frequency of the effect allele; Nearby Gene, gene nearest the SNP used in analyses

Supplementary Table 4 Comparison of the combined stage 1 and stage 2 results for the rs2943650 SNP near *IRS1*, rs534870 SNP near *SPRY2*, and rs8050136 SNP in *FTO* in meta-analyses of 'European individuals only' vs. 'Europeans and Indian-Asians combined'

Locus	Meta-analysis	Ν	Freq (%)	beta	Р	l ²
rs2943650 (near IRS1)	All, European + Indian Asian	76,150	64	-0.034	3.8x10 ⁻¹¹	22%
Chr2: 226,814,165 bp Effect allele: T	All, European	68,593	64	-0.031	6.0x10 ⁻⁹	21%
	All, Indian Asian	7,557	71	-0.065	2.7x10 ⁻⁴	0%
	Men, European + Indian Asian	43,798	64	-0.044	2.9x10 ⁻¹¹	22%
	Men, European	37,263	64	-0.042	5.8x10 ⁻⁹	21%
	Women, European + Indian Asian	32,352	64	-0.021	9.0x10 ⁻³	8%
	Women, European	31,330	64	-0.018	0.030	1%
rs534870 (nearSPRY2)	All, European + Indian Asian	70,831	68	-0.030	6.5x10 ⁻⁸	14%
Chr13: 79,857,208 bp Effect allele: A	All, European	63,273	70	-0.032	3.2x10 ⁻⁸	15%
	All, Indian Asian	7,557	58	-0.011	0.52	0%
	Men, European + Indian Asian	40,263	68	-0.032	1.1x10 ⁻⁵	23%
	Men, European	33,727	70	-0.041	3.6x10 ⁻⁷	23%
	Women, European + Indian Asian	30,568	69	-0.026	0.0022	0%
	Women, European	29,546	69	-0.024	0.0064	0%
rs8050136 (<i>FTO</i>)	All, European + Indian Asian	70,642	60	-0.055	2.7x10 ⁻²⁶	17%
Chr16: 52,373,776 bp Effect allele: C	All, European	63,085	59	-0.056	5.6x10 ⁻²⁵	17%
	All, Indian Asian	7,557	68	-0.044	0.012	0%
	Men, European + Indian Asian	40,363	60	-0.051	1.3x10 ⁻¹³	29%
	Men, European	33,828	59	-0.050	1.9x10 ⁻¹¹	29%
	Women, European + Indian Asian	30,279	60	-0.058	1.1x10 ⁻¹²	0%
	Women, European	29,257	60	-0.057	2.9x10 ⁻¹²	9%

Indian-Asian individuals were only available for the stage 1 meta-analysis. Body fat percentage was inverse normal transformed to approximate normality (mean = 0, sd = 1) in men and women separately. The effect allele for each locus is the body fat percentage decreasing (major) allele. Chromosomal positions are indicated according to Build 36 and allele coding based on the positive strand.

beta, change in inverse normal transformed body fat percentage per effect allele in the combined stage 1 and stage 2 metaanalysis; bp, base pairs; Freq, frequency of the effect allele **Supplementary Table 5** Association of the body fat percentage decreasing (T) allele of rs2943650 near *IRS1* with anthropometric traits in a meta-analysis of stage 2 follow-up studies

		All individuals			Men			Women		
Trait	n	beta (se)	Р	n	beta (se)	Р	n	beta (se)	Р	P _{diff}
BMI , kg/m	43,291	-0.026 (0.026)	0.32	24,731	-0.046 (0.032)	0.16	18,560	0.012 (0.045)	0.79	0.30
Height, m	43,205	-0.018 (0.044)	0.68	24,692	0.014 (0.060)	0.82	18,513	-0.055 (0.064)	0.39	0.43
Weight, kg	43,208	-0.076 (0.085)	0.37	24,688	-0.156 (0.113)	0.17	18,520	0.029 (0.129)	0.82	0.28
Waist circumference, cm	21,850	0.063 (0.098)	0.52	10,609	0.062 (0.134)	0.65	11,241	0.065 (0.143)	0.65	0.99
Hip circumference, cm	21,834	-0.040 (0.072)	0.58	10,604	-0.026 (0.088)	0.76	11,230	-0.068 (0.128)	0.59	0.77
Waist-to-hip ratio	21,832	0.0009 (0.0006)	0.13	10,602	0.0007 (0.0008)	0.40	11,230	0.0011 (0.0008)	0.19	0.72
	n	OR (95% CI)	Р	n	OR (95% CI)	Р	n	OR (95% CI)	Р	P _{diff}
Obesity (BMI ≥30 vs. BMI <25)	26,009	0.98 (0.94-1.02)	0.36	13,518	0.94 (0.89-1.00)	0.044	12,491	1.03 (0.96-1.10)	0.40	0.048
Overweight (BMI ≥25 vs. BMI <25)	42,551	1.01 (0.98-1.04)	0.67	24,557	0.99 (0.95-1.03)	0.56	17,994	1.03 (0.99-1.08)	0.19	0.18

All models were adjusted for age and age squared. The meta-analyses on BMI, height, weight, obesity, and overweight included all 11 stage 2 cohorts whereas the meta-analyses on waist circumference, hip, circumference, and waist-to-hip ratio included three cohorts (EPIC-Norfolk, Fenland, and MRC Ely) (**Supplementary Note**). beta, change in phenotype per each fat percentage decreasing (T) allele of rs2943650; *P*_{diff}, *P* value for the difference between sexes

Supplementary Table 6 Association of the body fat percentage decreasing (T) allele of rs2943650 near *IRS1* with blood lipids, insulin sensitivity traits, leptin and adiponectin in a meta-analysis of stage 2 and stage 3 follow-up studies.

		All individuals			Men			Women		
Trait	n	beta (se)	Р	n	beta (se)	Р	n	beta (se)	Р	P _{diff}
HDL cholesterol	20,596	-0.054 (0.010)	1.0x10 ⁻⁷	9,937	-0.077 (0.015)	1.7x10 ⁻⁷	10,659	-0.033 (0.014)	0.019	0.027
LDL cholesterol	20,596	0.020 (0.010)	0.045	9,937	0.031 (0.015)	0.033	10,659	0.010 (0.013)	0.44	0.26
Triglycerides	21,168	0.042 (0.010)	2.0x10 ⁻⁵	10,320	0.066 (0.014)	5.8x10 ⁻⁶	10,848	0.022 (0.013)	0.11	0.025
M/I-ratio	1,953	-0.032 (0.031)	0.30	1,410	-0.035 (0.037)	0.34	543	-0.025 (0.058)	0.67	0.88
Ins-AUC / Glu-AUC	9,572	0.047 (0.015)	0.0014	8,376	0.051 (0.016)	0.0011	1,196	0.017 (0.042)	0.69	0.45
Matsuda index	13,520	-0.036 (0.012)	0.0043	11,333	-0.035 (0.014)	0.010	2,187	-0.037 (0.030)	0.22	0.95
Gutt index	13,815	-0.033 (0.012)	0.0083	11,472	-0.033 (0.014)	0.015	2,343	-0.029 (0.028)	0.31	0.89
Leptin ^a	4,641	-0.027 (0.021)	0.21	3,530	-0.027 (0.024)	0.26	1,111	-0.026 (0.044)	0.55	0.98
Adiponectin ^b	9,769	-0.061 (0.015)	4.7x10 ⁻⁵	8,681	-0.072 (0.016)	6.1x10 ⁻⁶	1,088	0.024 (0.044)	0.58	0.040

All traits were inverse normal transformed to approximate normality (mean = 0, sd = 1) in men and women separately. All models were adjusted for age and age squared. The meta-analyses on blood lipids included three cohorts (EPIC-Norfolk, Fenland, and MRC Ely). The meta-analyses on Matsuda index and Gutt index included five cohorts (METSIM, MRC Ely, RISC, ULSAM, and Whitehall) of which all but Whitehall II had also data available on Ins-AUC / Glu-AUC. The M/I-ratios were available only from the RISC and ULSAM cohorts. The meta-analysis on adiponectin levels included four cohorts (METSIM, MRC Ely, MrOS, and RISC), of which all but METSIM had also data on leptin (**Supplementary Note**). Beta, change in phenotype per each body fat percentage decreasing (T) allele of rs2943650; M/I-ratio, glucose infused (M) derived by the circulating insulin concentration (I); Ins-AUC / Glu-AUC, insulin area under the curve / glucose area under the curve; P_{diff} , *P* value for the difference between sexes. ^a Analyses for leptin had smaller sample size and thus statistical power than analyses for adiponectin. Assuming the beta-coefficient in the meta-analysis of all individuals represents the true effect size, a sample of more than 11,000 individuals would be needed to show a significant association (*P* < 0.05) between rs2943650 and leptin. ^b As the adiponectin sample consists mainly (89%) of men, the analysis in women is underpowered. Nevertheless, the beta-coefficient in women is different than in men and does not suggest any association between the near-*IRS1* locus and adiponectin.

Supplementary Table 7	Significant associations (P < 0.05)*	of the rs2943650 SNP	near IRS1 and the rs	534870 SNP near
SPRY2 with cis gene exp	ression (cis-eQTLs) in subcutaneous	adipose tissue, omenta	I adipose tissue, blood	d, liver, and brain
from three populations ^{a, l}	b, c			

SNP	Tissue	Sample	Gene	n	Effect ^d	Р*	P_{adj}^{e}	Peak SNP ^f	r ^{2 g}	Р	P_{adj}^{h}
All individual	5										
rs2943650	Subcutaneous fat	Surgery patients ^a	IRS1	590	-	4.2x10 ⁻⁴	0.93	rs2943653	0.81	6.3x10 ⁻⁶	0.37
			BC018684	607	+	0.0017	NA	NA	NA	NA	NA
			Contig24493_RC	605	-	4.9x10 ⁻⁴	0.98	rs2943653	0.81	5.3x10 ⁻⁵	0.64
			Contig50189_RC	600	-	0.0098	NA	NA	NA	NA	NA
			ENST00000272907	609	+	0.032	NA	NA	NA	NA	NA
	Subcutaneous fat	General population ^b	IRS1	604	-	9.6x10 ⁻¹⁰	0.63	rs2176040	1.00	9.6x10 ⁻¹⁰	0.62
			Contig 50189_RC	604	-	7.1x10 ⁻⁵	0.72	rs2943653	0.79	3.7x10 ⁻⁵	0.25
	Omental fat	Surgery patients ^a	IRS1	714	-	2.3x10 ⁻⁸	0.97	rs908252	0.89	3.0x10 ⁻⁹	0.74
			Contig24493_RC	738	-	2.6x10 ⁻⁴	0.85	rs10933137	0.66	5.9x10 ⁻⁵	0.51
			Contig39389_RC	739	-	0.024	NA	NA	NA	NA	NA
			Contig50189_RC	735	-	0.013	0.0087	rs3769647	0.00	1.6x10 ⁻⁵	1.1x10 ⁻⁵
			ENST00000272907	740	-	0.0080	NA	NA	NA	NA	NA
	Blood	General population ^b	COL4A4	745	-	0.03	0.16	rs13398103	0.00	5.4x10 ⁻³⁰	3.2 x10 ⁻²⁹
rs534870	Blood	General population ^b	SPRY2	745	-	3.7x10 ⁻⁴	7.9x10 ⁻⁴	rs7995973	0.00	4.2x10 ⁻¹⁴	9.1x10 ⁻¹⁴
Men											
rs2943650	Subcutaneous fat	Surgery patients ^a	IRS1	171	-	0.017	0.52	rs2943653	0.82	5.7x10 ⁻⁵	0.20
			Contig24493_RC	175	-	0.010	0.49	rs2943653	0.82	0.0012	0.37
			Contig50189_RC	174	-	0.0095	NA	NA	NA	NA	NA
	Subcutaneous fat	General population ^b	IRS1	252	-	2.2x10 ⁻⁸	0.61	rs2943645	0.97	2.1x10 ⁻⁸	0.59
			Contig 50189_RC	252	-	0.0091	0.0084	rs11694119	0.01	2.9x10 ⁻⁴	2.7x10 ⁻⁴
	Omental fat	Surgery patients ^a	IRS1	188	-	9.7x10 ⁻⁴	0.92	rs908252	0.85	4.5x10 ⁻⁵	0.60
			COL4A4	192	-	0.014	0.066	rs6706802	0.02	3.5x10 ⁻⁶	2.1x10 ⁻⁵
			Contig39389_RC	192	-	0.0070	NA	NA	NA	NA	NA
rs534870	Omental fat	Surgery patients ^a	HSS00006179	193	+	8.6x10 ⁻⁴	NA	NA	NA	NA	NA
			XM_090673	192	+	0.035	NA	NA	NA	NA	NA
	Blood	General population ^b	ARF4	312	-	0.022	0.031	rs12583018	0.01	0.002	0.0028
Women											
rs2943650	Subcutaneous fat	Surgery patients ^a	IRS1	416	-	0.017	0.91	rs2943653	0.80	0.011	0.73
		0 /1	BC018684	430	+	0.011	NA	NA	NA	NA	NA
			Contia24493 RC	427	-	0.015	0.89	rs2943653	0.80	0.0088	0.76
	Subcutaneous fat	General population ^b	IRS1	352	-	2.7x10 ⁻⁴	0.0010	rs1190117	0.01	1.1x10 ⁻⁴	4.4x10 ⁻⁴
			Contia50189 RC	352	-	0.0019	0.88	rs2138157	0.89	0.0019	0.87
	Omental fat	Surgery patients ^a	Contia24493 RC	543	+	0.0024	0.73	rs10933137	0.69	7.3x10 ⁻⁴	0.57
			Contia50189 RC	539	-	0.037	0.45	rs3769647	0.00	3.0x10 ⁻⁴	3.7x10 ⁻⁴
			ENST00000272907	545	-	0.0094	NA	NA	NA	NA	NA
	Liver	Surgery patients ^a	HSS00339567	405	+	0.045	NA	NA	NA	NA	NA
	Blood	General population ^b	SPRY2	433	-	0.0012	0.0083	rs518627	0.01	1.0x10 ⁻⁹	7.3x10 ⁻⁹

The gene transcripts that were tested for rs2943650 were BC014369, BC018685, BC035052, Contig24493_RC, Contig39389_RC, Contig50189_RC, ENST00000272907, hCT1970673, HSS00207461, HSS00339567, *COL4A3* (NM_000091 and NM_031362), *COL4A4* (NM_000092), *IRS1* (NM_005544), and *RHBDD1* (NM_032276).

The gene transcripts that were tested for the rs534870 SNP were AB032991, BC036310, BC039360, HSS00006179, HSS00020342, HSS00085876, HSS00097095, HSS00303580, *SPRY2* (NM_005842), *RBM26* (HM_022118), and XM_090673. NA, data not reported as the body fat percentage associated SNP and the most significant SNP for the gene transcript were the same.

*Only associations with *P* value <0.05 with gene expression are reported. As altogether 26 genes were tested in the gene expression analyses, the threshold for a statistically significant association with Bonferroni correction is *P*=0.0019; ^a Tissue samples from patients who underwent bariatric surgery (see Supplementary Note - Methods); ^b Tissue samples from general population (see Supplementary Note - Methods); ^c Neutopathologically normal cortical brain samples from 193 individuals (mean age 81 years) of European descent (see Supplementary Note – Methods). No significant associations with brain expression were found. ^d Direction of effect for the body fat percentage decreasing allele; ^e *P* value for the body fat percentage SNP after conditioning on the most significant SNP for the gene transcript; ^f Most significant SNP associated; ^g Correlation between the body fat percentage SNP and the peak SNP with the gene transcript; ^h *P* value for the peak SNP after conditioning on the body fat percentage SNP. **Supplementary Table 8** Association of the body fat percentage decreasing (A) allele of rs534870 near *SPRY2* with anthropometric traits, blood lipids, and insulin sensitivity traits in a meta-analysis of stage 2 follow-up studies.

		All individuals			Men			Women		
Trait	n	beta (se)	Р	n	beta (se)	Р	n	beta (se)	Р	P _{diff}
BMI, kg/m²	43,132	-0.087 (0.027)	0.0014	24,694	-0.073 (0.034)	0.031	18,438	-0.114(0.046)	0.014	0.47
Height, m	43,047	-0.034 (0.046)	0.46	24,656	0.083 (0.062)	0.18	18,391	-0.169 (0.067)	0.012	0.0060
Weight, kg	43,049	-0.284 (0.089)	0.0014	24,652	-0.138 (0.118)	0.24	18,397	-0.473 (0.134)	0.043	0.060
Waist circumference, cm	21,607	-0.119 (0.102)	0.24	10,516	-0.078 (0.139)	0.57	11,091	-0.167 (0.150)	0.26	0.66
Hip circumference, cm	21,591	-0.070 (0.074)	0.35	10,510	0.025 (0.092)	0.78	11,081	-0.259 (0.129)	0.045	0.031
Waist-to-hip ratio	20,431	-0.0003 (0.0006)	0.62	10,602	-0.0011 (0.0009)	0.20	9,829	0.0005 (0.0009)	0.55	0.18
HDL cholesterol	20,351	0.010 (0.011)	0.36	9,847	-0.006 (0.015)	0.69	10,504	0.025 (0.015)	0.10	0.15
LDL cholesterol	20,351	0.005 (0.010)	0.62	9,847	0.000 (0.015)	0.99	10,504	0.009 (0.014)	0.50	0.65
Triglycerides	20,897	-0.014 (0.010)	0.16	10,311	-0.000 (0.015)	0.97	10,803	-0.026 (0.014)	0.060	0.21
M/I-ratio	1,974	0.052 (0.034)	0.13	1,410	0.069 (0.041)	0.094	564	0.015 (0.060)	0.81	0.46
Ins-AUC / Glu-AUC	9,454	-0.010 (0.016)	0.54	8,308	-0.000 (0.017)	0.98	1,146	-0.072 (0.044)	0.10	0.13
Matsuda index	11,379	0.013 (0.014)	0.33	9,777	0.003 (0.015)	0.82	1,612	0.100 (0.037)	0.0062	0.014
Gutt index	11,569	0.032 (0.014)	0.032	9,917	0.021 (0.015)	0.18	1,754	0.089 (0.035)	0.011	0.072
	n	OR (95% CI)	Р	n	OR (95% CI)	Р	n	OR (95% CI)	Р	\pmb{P}_{diff}
Obesity (BMI ≥30 vs. BMI <25)	25,940	0.93 (0.89-0.97)	0.0010	13,521	0.92 (0.87-0.98)	0.0095	12,419	0.93 (0.87-1.00)	0.041	0.79
Overweight (BMI ≥25 vs. BMI <25)	42,371	0.98 (0.95-1.01)	0.16	24,520	0.99 (0.95-1.03)	0.61	17,851	0.96 (0.92-1.01)	0.12	0.42

Anthropometric traits were non-transformed, whereas blood lipid and insulin sensitivity traits were inverse normal transformed to approximate normality (mean = 0, sd = 1) in men and women separately. All models were adjusted for age and age squared. The meta-analyses on BMI, height, weight, obesity, and overweight included all 11 stage 2 studies whereas the meta-analyses on waist circumference, hip, circumference, waist-to-hip ratio, and blood lipids included three studies (EPIC-Norfolk, Fenland, and MRC Ely) (**Supplementary Note**). The meta-analyses on Matsuda index and Gutt index included five cohorts (METSIM, MRC Ely, RISC, ULSAM, and Whitehall) of which all but Whitehall II had also data available on Ins-AUC / Glu-AUC. The M/I-ratios were available only from the RISC and ULSAM cohorts. beta, change in phenotype per each body fat percentage decreasing (A) allele of rs534870; M/I-ratio, glucose infused (M) derived by the circulating insulin concentration (I); Ins-AUC / Glu-AUC, insulin area under the curve / glucose area under the curve; *P*_{diff}, *P* value for the difference between sexes

Chr	Nearest gene	SNP	Effect allele	Other allele	N	Freq (%)	β	Р	Established trait	Original reference
1	TNNI3K	rs1514175	А	G	36,563	44	0.009	2.4x10 ⁻¹	BMI	8
1	PTBP2	rs10489741	А	G	36,568	57	0.020	7.8x10 ⁻³	BMI	8
1	NEGR1	rs2815752	А	G	36,602	62	0.022	4.3x10 ⁻³	BMI	6,7
1	SEC16B	rs10913469	С	т	36,580	19	0.030	1.5x10 ⁻³	BMI	6
2	LRP1B	rs2890652	С	т	29,035	18	0.001	9.4x10 ⁻¹	BMI	8
2	FANCL	rs887912	Т	С	29,049	29	0.019	3.4x10 ⁻²	BMI	8
2	RBJ	rs713586	С	т	36,542	47	0.015	4.7x10 ⁻²	BMI	8
2	TMEM18	rs7561317	G	А	36,351	66	0.032	9.3x10 ⁻⁴	BMI	6,7
3	CADM2	rs13078807	G	А	27,275	20	0.018	7.8x10 ⁻²	BMI	8
3	ETV5	rs7647305	С	т	36.546	79	0.013	1.5x10 ⁻¹	BMI	6
4	SLC39A8	rs13107325	Т	С	27.275	8	0.027	1.2×10^{-1}	BMI	8
4	GNPDA2	rs10938397	G	A	36.610	43	0.026	1.2x10 ⁻³	BMI	7
5	ZNF608	rs4836133	A	C	27,274	47	0.032	2.4×10^{-4}	BMI	8
5	El 135779	rs2112347	т	G	36 600	59	0.003	6.9x10 ⁻¹	BMI	8
6		rs206936	Ġ	^	36,000	24	0.005	2.5×10^{-1}	BMI	8
6	TEAD2B	rs987237	G	^	36,614	18	0.010	2.7×10^{-3}	BMI	8
0	IDDNCC	rc10069576	G	~	26 610	20	0.025	7.4×10^{-2}	DIVII	0
9		1510908570	G	A	30,018	29	0.015	7.4X10	BIVII	8
11	RPLZ/A	rs4929949	C	1	32,629	50	0.007	3.7X10	BIVII	8
11	WITCH2	rs10838738	G	A	30,587	34	0.017	3.0X10	BIVII	
11	BDNF	rs4923461	A	G	36,599	//	0.023	6.4x10	BIMI	6
12	FAIM2	rs7138803	A	G	36,572	37	0.025	1.0x10 ⁻¹	BMI	6
13	MTIF3	rs4771122	G	A	34,832	22	0.011	2.3x10 ⁻	BMI	8
14	PRKD1	rs11847697	Т	С	27,872	5	0.061	5.2x10 ⁻³	BMI	8
14	NRXN3	rs10146997	G	A	29,012	20	0.003	8.1x10 ⁻¹	BMI	8
15	MAP2K5	rs2241423	G	A	29,064	78	0.013	2.0x10 ⁻¹	BMI	8
16	GPRC5B	rs12444979	С	Т	29,021	87	0.016	2.0x10 ⁻¹	BMI	8
16	SH2B1	rs7498665	G	А	36,598	36	0.029	2.3x10 ⁻⁴	BMI	6,7
16	FTO	rs8050136	А	С	36,537	39	0.063	3.9x10 ⁻¹⁷	BMI	3,5
18	MC4R	rs17782313	С	Т	35,798	28	0.039	2.1x10 ⁻⁶	BMI	4
19	TMEM160	rs3810291	А	G	34,832	62	0.001	9.4x10 ⁻¹	BMI	8
19	QPCTL	rs2287019	С	Т	22,188	82	0.036	5.0x10 ⁻³	BMI	8
19	KCTD15	rs29941	G	А	34,408	66	0.013	1.0x10 ⁻¹	BMI	6,7
6	TFAP2B	rs987237	G	А	36,613	18	0.025	8.2x10 ⁻³	Waist	26
8	MSRA	rs7826222	G	С	18,566	23	0.012	3.8x10 ⁻¹	Waist	26
14	NRXN3	rs10146997	G	А	29012	20	0.003	8.1x10 ⁻¹	Waist	25
1	SDCCAG8	rs12145833	т	G	36,342	84	0.014	1.7x10 ⁻¹	Extreme obesity	28
8	TNKS/MSRA	rs473034	Т	С	34,832	11	0.012	4.5x10 ⁻²	Extreme obesity	28
10	PTER	rs10508503	С	Т	26,034	91	0.018	3.1x10 ⁻¹	Extreme obesity	27
16	MAF	rs1424233	Т	С	36,309	52	0.005	4.8x10 ⁻¹	Extreme obesity	27
18	NPC1	rs1805081	т	С	33,460	60	0.016	4.5x10 ⁻²	Extreme obesity	27
1	TBX15	rs984222	G	С	36,596	58	-0.006	4.2x10 ⁻¹	WHR adj BMI	29
1	LYPLAL1	rs4846567	G	Т	36,591	73	-0.024	4.4x10 ⁻³	WHR adj BMI	26,29
1	DNM3	rs1011731	G	А	36,522	43	-0.005	5.1x10 ⁻¹	WHR adj BMI	29
2	GRB14	rs10195252	Т	С	34,832	60	-0.025	1.3x10 ⁻³	WHR adj BMI	29
3	ADAMTS9	rs6795735	С	т	36,603	51	-0.011	1.4x10 ⁻¹	WHR adj BMI	29
3	NISCH	rs6784615	Т	С	34,291	94	0.003	8.5x10 ⁻¹	WHR adj BMI	29
5	CPEB4	rs6861681	А	G	32,628	29	-0.012	1.8×10^{-1}	WHR adj BMI	29
6	RSPO3	rs9491696	G	С	36,564	49	-0.009	2.1x10 ⁻¹	WHR adj BMI	29
6	VEGFA	rs6905288	А	G	36,332	59	0.000	9.8x10 ⁻¹	WHR adj BMI	29
6	LY86	rs1294421	G	т	36,604	58	-0.005	5.5x10 ⁻¹	WHR adi BMI	29
7	NFE2L3	rs1055144	Т	С	36,548	24	-0.013	1.4x10 ⁻¹	WHR adi BMI	29
12	ITPR2	rs718314	G	Ā	36,339	24	-0.011	2.0x10 ⁻¹	WHR adi BMI	29
12	HOXC13	rs1443512	Δ	r r	35,670	25	0.006	5.1×10^{-1}	WHR adi BMi	29
22	KREMEN1	rs4823006	A	G	36,475	54	-0.011	1.3x10 ⁻¹	WHR adj BMI	29

Supplementary Table 9 Association of established susceptibility loci for BMI, waist circumference, extreme obesity, and waist-to-hip ratio with body fat percentage in the stage 1 genome-wide association meta-analysis

Effect allele is the BMI, waist circumference, extreme obesity risk, or waist-to-hip ratio increasing allele. Chr, chromosome; Freq, frequency of

the effect allele; WHR adj BMI, waist-to-hip ratio adjusted for BMI

1.2. SUPPLEMENTARY FIGURES

Supplementary Figure 1 Study design and participating cohorts.

- Supplementary Figure 2 Manhattan plots showing the significance of association with body fat percentage for all SNPs in the stage 1 metaanalysis in all individuals (n=36,626), individuals of European descent (n=29,069), men (n=19,815), and women (n=16,811).
- Supplementary Figure 3 Association of the rs2943650 SNP (near-*IRS1*) body fat percentage decreasing (T) allele with body fat percentage and insulin sensitivity (measured with the Matsuda index) among 6,489 men from the METSIM (Metabolic Syndrome in Men) study with and without adjustment of each trait with the other.
- Supplementary Figure 4 Association of SNPs within ±1 Mb from the rs2943650 SNP and ±1 Mb from the rs534870 SNP with the expression of *IRS1* and *SPRY2*, respectively, in omental and subcutaneous adipose tissue.
- **Supplementary Figure 5** Expression of the *IRS1* gene in isolated adipocytes from visceral and subcutaneous adipose tissues of male and female mice.
- **Supplementary Figure 6** Expression of the *IRS1* gene in visceral and subcutaneous adipose tissues of men and women.
- Supplementary Figure 7 Quantile-quantile plots and genomic control parameters (λ) for the association with body fat percentage in all individuals (n=36,626), individuals of European descent (n=29,069), men (n=19,815), and women (n=16,811).

STAGE 1 GWA meta-analysis of body fat percentage

STAGE 2

Follow-up of body fat percentage for the 14 most significant loci

Meta-analysis of 2.5M SNPs with body fat percentage (n_{max}=36,626) AGES Amish CHS CoLaus EPIC-Norfolk ERF FamHS Fenland Framingham GOOD KORA S3 KORA S4 Lolipop Rotterdam TwinsUK

Meta-analysis of 14 SNPs with body fat percentage, BMI, height, weight, risk of obesity, and risk of overweight (n_{max}=34,556) BPPP deCODE EPIC-Norfolk (excluding stage 1 samples) Fenland (excluding stage 1 samples) GenMets METSIM MRC Ely MrOS Sweden ORCADES TwinsUK (excluding stage 1 samples) VIS-CROATIA STAGE 3 Follow-up of near IRS1 and near SPRY2 loci for secondary traits

Gene expression analyses in adipose tissue and whole blood (n_{max}=745)

Analyses of waist and hip circumferences, waist-to-hip ratio, blood lipids (n_{max}=21,850) EPIC-Norfolk (excluding stage 1 samples) Fenland (excluding stage 1 samples) MRC Ely

Analyses of insulin sensitivity traits (n_{max}=13,815) METSIM MRC Elv

RISC ULSAM Whitehall II

Additional samples of body fat percentage for near-IRS1 (n=5,196) RISC Whitehall II

Analyses of visceral fat and subcutaneous fat for near-*IRS1* (n=10,556) GWA meta-analysis on fat distribution

Adiponectin analyses for near-*IRS1* (n=9,769) METSIM MRC Ely

MrOS Sweden RISC

Leptin analyses for near-IRS1(n=4,641) MRC Ely MrOS Sweden RISC

Supplementary Figure 1 Study design and participating cohorts. Stage 1 - Meta-analysis of genome-wide association data was performed in stage 1 across 15 studies of white European ancestry and a total of 14 SNPs representing the best associating ($P < 10^{-6}$) loci were taken forward for replication. Stage 2 – The 14 SNPs were genotyped in 11 studies of adults of European ancestry, and tested for association with body fat percentage, as well as with BMI, height, weight, risk of obesity, and risk of overweight. Stage 3 - Additional follow-up analyses were performed for the newly identified adiposity loci near the *IRS1* and *SPRY2* genes.

Supplementary Figure 2 Manhattan plots showing the significance of association with body fat percentage for all SNPs in the stage 1 meta-analysis in all individuals (n=36,626), individuals of European descent (n=29,069), men (n=19,815), and women (n=16,811). The $-\log_{10}P$ values for the association of each single nucleotide polymorphism with BMI are shown on the y-axis. SNPs are plotted on the x-axis according to their position on each chromosome against association with body fat percentage on the y-axis (shown as $-\log_{10} P$ -value). The loci coloured in red reached a P value <10⁻⁶ in stage 1 meta-analysis and were taken forward for follow-up.

Supplementary Figure 3 Association of the rs2943650 SNP (near-*IRS1*) body fat percentage decreasing (T) allele with body fat percentage and insulin sensitivity (measured with the Matsuda index) among 6,489 men from the METSIM (Metabolic Syndrome in Men) study with and without adjustment of each trait with the other. Beta, change in phenotype per each body fat percentage decreasing (T) allele of rs2943650.

Supplementary Figure 4 Association of SNPs within ± 1 Mb from the rs2943650 SNP and ± 1 Mb from the rs534870 SNP with the expression of *IRS1* and *SPRY2*, respectively, in omental and subcutaneous adipose tissue from patients who underwent bariatric surgery (see Supplementary Note - Methods). The plot was generated using LocusZoom (http://csg.spg.umic.edu/locuszoom)⁴⁴.

Supplementary Figure 5 Expression of the *IRS1* gene in isolated adipocytes from visceral and subcutaneous adipose tissues of male and female mice. VISC, adipocytes from visceral adipose tissue. SUBQ, adipocytes from subcutaneous adipose tissue. *A statistically significant (*P*<0.05) difference in *IRS1* expression between females and males.

Supplementary Figure 6 Expression of the *IRS1* gene in visceral and subcutaneous adipose tissues of men and women. *P* values indicate the difference in *IRS1* expression between men and women. The analyses on visceral fat included 26 men and 75 women whereas the analyses on subcutaneous fat included 19 men and 49 women.

Supplementary Figure 7 Quantile-quantile plots and genomic control parameters (λ) for the association with body fat percentage in all individuals (n=36,626), individuals of European descent (n=29,069), men (n=19,815), and women (n=16,811). The plots shown were corrected for population stratification by applying a genomic control correction.

2. SUPPLEMENTARY NOTE

2.1. SUPPLEMENTARY NOTE - TABLES

Supplementary Note - Table 1	Number of individuals and sample quality control for
	genome-wide association studies of stage 1.
Supplementary Note - Table 2	Information on genotyping methods, quality control
	of SNPs, imputation, and statistical analysis for
	genome-wide association studies of stage 1.

Supplementary Note - Table 3 Study-specific descriptive statistics for genome-wide association studies of stage 1.

- Supplementary Note Table 4 Number of individuals and sample quality control for stage 2 and stage 3 follow-up studies with *de novo* genotyping.
- Supplementary Note Table 5 Information on genotyping methods, quality control of SNPs, and association analysis software for stage 2 and stage 3 follow-up studies with *de novo* genotyping.
- Supplementary Note Table 6 Number of individuals and sample quality control for stage 2 and stage 3 follow-up studies with *in silico* genotyping.
- Supplementary Note Table 7 Information on genotyping methods, quality control of SNPs, imputation, and association analysis software for stage 2 and stage 3 follow-up studies with *in silico* genotyping.
- Supplementary Note Table 8 Study-specific descriptive statistics for stage 2 and stage 3 follow-up studies.
- Supplementary Note Table 9 Samples and assays used for the measurement of circulating levels of glucose, insulin, leptin, and adiponectin in the stage 3 follow-up studies.

Supplementary Note - Table 1 Number of individuals and sample quality control for genome-wide association studies of stage 1

Study		Total sample Sample QC		Sample QC	Samples in Fat %			Beforence		
Short name	Full name	size (N)	Call rate*	other exclusions	anaiyses (N)	method	Instrument	References		
AGES	Age, Gene/Environment Susceptibility- Reykjavik Study	3,219	≥ 97%	 mismatch with previous genotypes remove A/T & G/C SNPs remove SNPs not in HapMap 	2,375	Bioimpedance	A Xitron HYDRA ECF/ICF, Mode 4200	el [PMID: 17351290] Harris T, et al. Age, Gene/Environment Susceptibility- Reykjavik Study: multidisciplinary applied phenomics. American Journal of Epidemiology 165, 1076–1087 (2007).		
Amish	The Old Order Amish	1,186	≥96%	 failed Mendelian check failed duplicate check missing body fat percentage data 	850	DEXA	Hologic QDR-4500W	[PMID: PMC2443415] Mitchell BD, et al. The genetic response to short-term interventions affecting cardiovascular function: Rationale and design of the Heredity and Phenotype Intervention (HAPI) Heart Study. Am Heart J 823, 828 (2008).		
СНЅ	Cardiovascular Health Study	3,980	≥95%	 prevalent clinical CVD African-American sex discordant discordant prior genotyping no DEXA scan done 	921	DEXA	Hologic QDR-2000 Bone densitometer	 [PMID: 11454111] Robbins J, et al. The association of bone mineral density and depression in an older population. J Am Geriatr Soc 49, 732-736 (2001). [PMID: 1669507] Fried LP, et al. The Cardiovascular Health Study: design and rationale. Ann Epidemiol 1, 263-276 (1991). 		
CoLaus	Cohort Lausannoise	6,188	≥ 90%	 ethnic outliers related individuals and duplicates missing body fat percentage data 	5,389	Bioimpedance	Bodystat 1500 Analyzer	[PMID: 18366642] Firmann M, et al. The CoLaus study: a population-based study to investigate the epidemiology and genetic determinants of cardiovascular risk factors and metabolic syndrome. BMC Cardiovasc Dis, 8, 6 (2008).		
EPIC-Obesity	European Prospective Investigation into Cancer and Nutrition - Obesity Study	2,566	≥94%	 Heterozygosity <23% or >30% >5.0% discordance in SNP pairs with r²= 1 in HapMap 3) ethnic outliers 4) related individuals and duplicates 5) missing body fat percentage data 	2,543	Bioimpedance	Tanita BC-531 Body Composition Monitor	 [PMID: 10466767] Day, N.E. et al. EPIC-Norfolk: study design and characteristics of the cohort. European Prospective Investigation of Cancer. British Journal of Cancer 80, 95-103 (1999). [PMID: 18454148] Loos, R.J. et al. Common variants near MC4R are associated with fat mass, weight and risk of obesity. Nat Genet 40, 768-775 (2008). 		
ERF	Erasmus Rucphen Family	2,315	> 95%	1) gender mismatch 2) ethnic outliers 3) missing body fat percentage data	2,087	DEXA	GE Lunar Prodigy	[PMID: 10466767] Aulchenko YS. et al. Linkage disequilibrium in young genetically isolated Dutch population. Eur J Hum Genet 12, 527-534 (2004).		
FamHS	Family Heart Study	974	≥ 98%	 technical errors discrepancies between reported sex and sex-diagnostic markers 	809	Bioimpedance	RJL bioelectric impedance meter	[PMID: 8651220] Higgins, M. et al., NHLBI Family Heart Study: objectives and design, Am J Epidemiol 143, 1219–1228 (1996).		
Fenland	Fenland Study	1,500	≥ 95%	 failed heterozygosity check: upperbound 0.2882, lowerbound 0.2735 failed relatedness check (sample with lower call rate in related samples) failed duplicate check (sample with lower call rate in duplicates) missing body fat percentage data 	1,402	DEXA	GE Lunar Prodigy	 [PMID: 20519560] De Lucia Rolfe, E. et al. Association between birth weight and visceral fat in adults. Am J Clin Nutr (2009) Jun 2 [Epub ahead of print]. [PMID: 19079261] Willer CJ, Speliotes EK, Loos RJ, et al. Siz new loci associated with body mass index highlight a neuronal influence on body weight regulation. Nat Genet 41, 25-34 (2009) 		

Study	y Total sample		ple Sample QC Sa ar		Samples in	Fat %		- /
Short name	Full name	size (N)	Call rate*	other exclusions	analyses (N)	assessment method	Instrument	References
Framingham	Framingham Heart Study	3,780	≥ 97%	 autosomal heterozygosity <0.33 or >0.37 ethnic outliers (using Eigenstrata) missing body fat percentage data 	2,748	DEXA	GE Lunar DPX-L	[PMID: 10466767] Visser, M. et al. Body fat and skeletal muscle mass in relation to physical disability in very old men and women of the Framingham Heart Study. J Gerontol 53A, M214-M221 (1998).
GOOD	Gothenburg Osteoporosis and Obesity Determinants Study	1,056	≥ 97.5%	 heterozygosity >33% ethnic outliers related individuals and duplicates 	940	DEXA	GE Lunar Prodigy	[PMID: 16007330] Lorentzon, M. et al Free testosterone is a positive whereas free estradiol is a negative predictor of cortical bone size in young Swedish men-The GOOD Study. J Bone Miner Res 20, 1334-1341 (2005).
KORA S3	Cooperative Health Research in the Augsburg Region	NA	≥ 93%	1) gender mismatch 2) missing body fat percentage data	1,560	Bioimpedance	DATA-INPUT GmbH BIA 2000-S	[PMID: 20031538] Heid IM, et al. Genome-wide association analysis of high- density lipoprotein cholesterol in the population-based KORA study sheds new light on intergenic regions. Circ Cardiovasc Genet 1, 10-20 (2008).
KORA S4/F4	Cooperative Health Research in the Augsburg Region	NA	≥ 93%	 gender mismatch missing body fat percentage data 	1,794	Bioimpedance	DATA-INPUT GmbH BIA 2000-S	[PMID: 16032514] Wichmann HE, et al. KORA-gen - resource for population genetics, controls and a broad spectrum of disease phenotypes. Gesundheitswesen, 67 Suppl 1, S26-30 (2005).
LOLIPOP	London Life Sciences Population Study	12,248	≥ 95%	 1) ethnic outliers 2) related individuals and duplicates 3) wrong genders 4) missing body fat percentage data 	8,999	Bioimpedance	Tanita TBF-401	 [PMID: 18193046] Kooner, J.S. et al. Genome-wide scan identifies variation in MLXIPL associated with plasma triglycerides. Nat Genet 40, 149-151 (2008). [PMID: 18454146] Chambers, J.C. et al. Common genetic variation near MC4R is associated with waist circumference and insulin resistance. Nat Genet 40, 716-718 (2008). [PMID: 19820698] Chambers, J.C. et al. Genome-wide association study identifies variants in TMPRSS6 associated with hemoglobin. Nat Genet 41, 1170-1172 (2009).
ROTTERDAM	Rotterdam Study	7,983	≥97.5%	 missing DNA gender mismatch with typed X-linked markers excess autosomal heterozygosity >0.336~FDR>0.1% duplicates and/or 1st or 2nd degree relatives using IBS probabilities >97% from PLINK ethnic outliers using IBS distances >3SD from PLINK missing phenotype 	2,438	DEXA	Lunar Prodigy, GE Healthcare	 [PMID: 19700477] Estrada, K. et al. GRIMP: a web- and grid-based tool for high-speed analysis of large-scale genome-wide association using imputed data. Bioinformatics 25, 2750-2752 (2009). [PMID: 19728115] Hofman, A. et al. The Rotterdam Study: 2010 objectives and design update. Eur J Epidemiol 24, 553-572 (2009). [PMID: 1833235] Hofman, A. et al. Determinants of disease and disability in the elderly: the Rotterdam Elderly Study. Eur J Epidemiol 7, 403-422 (1991).
TWINS UK	Twins UK	5,654	≥ 98%	 failed ethnicity check failed relatedness check failed zygosity check failed population stratification check missing body fat percentage data 	1,688	DEXA	Hologic Discovery W'- QDR software version 12.6	[PMID: 19343178] Soranzo, N. et al. Meta-analysis of genome-wide scans for human adult stature identifies novel Loci and associations with measures of skeletal frame size. PLoS Genet 5(4):e1000445 (2009)

* Sample genotyping success rate; i.e. minimum percentage of successfully genotyped SNPs per sample

Supplementary Note -	Table 2 Information	on genotyping methods,	, quality control of SNPs	, imputation, and	d statistical analysis for genome	-wide association studies of stage 1
----------------------	---------------------	------------------------	---------------------------	-------------------	-----------------------------------	--------------------------------------

		Genotyping			Imputation					Association analyses			
Study	Platform	Genotype calling	Inclusio	n criteria	SNPs that met QC	Imputation	Imputation	SNPs in meta-		2	GC	Analysis	
		algorithm	Call rate*	p for HWE	criteria	software	quality*	analysis	All	Men	Women	software	
AGES	Illumina 370K	BeadStudio	≥ 95%	> 10 ⁻⁶	315,410	MACH	r2-hat ≥ 0.30	2,465,997	-	1.020	1.029	ProbABEL	
Amish	Affymetrix 500K	BRLMM	≥ 96%	> 10 ⁻⁶	382,935	MACH	r2-hat ≥ 0.30	2,302,463	1.049	1.018	1.077	ITSNBN	
CHS	Illumina 370-CNV	BeadStudio	> 97%	> 10 ⁻⁵	306,655	BimBam	observed/expected variance ≥ 0.30	2,195,299	-	1.014	1.020	R	
CoLaus	Affymetrix 500K	BRLMM	> 70%	> 10 ⁻⁷	390,631	IMPUTE	proper-info ≥ 0.40	2,439,888	-	1.020	1.022	QUICKTEST	
EPIC-Obesity (obese cases)	Affymetrix 500K	BRLMM	≥ 90%	> 10 ⁻⁶	397,438	IMPUTE	proper-info≥0.40	2,381,011	-	1.170	0.994	SNPtest	
EPIC-Cohort (controls)	Affymetrix 500K	BRLMM	≥ 90%	> 10 ⁻⁶	397,438	IMPUTE	proper-info ≥ 0.40	2,428,445	-	0.992	0.995	SNPtest	
ERF	Illumina 318K and 370K Affymetrix 250K	BeadStudio, BRLMM	≥96%	>10 ⁻⁶	487,573	MACH	r2-hat ≥ 0.30	2,468,052	1.017	1.001	1.017	ProbABEL	
FamHS	Illumina 1 Million	BeadStudio	≥98%	> 10 ⁻⁶	874,830	MACH	r2-hat ≥ 0.30	2,375,698	1.031	1.035	1.043	SAS	
Fenland	Affymetrix 500K	BRLMM	≥ 90%	> 10 ⁻⁶	362,055	IMPUTE	proper-info ≥ 0.40	2,427,084	-	1.014	1.006	SNPtest	
Framingham	Affymetrix 500K Affymetrix 50K supplemental	BRLMM	≥97%	> 10 ⁻⁶	378,163	MACH	r2-hat ≥ 0.30	2,455,944	0.991	1.020	1.012	R	
GOOD	Illumina 610K	BeadStudio	≥ 98%	> 10 ⁻⁶	521,160	MACH	r2-hat ≥ 0.30	2,503,211	-	1.015	-	MACH2QTL	
KORAS3	Affymetrix 500K	BRLMM	≥ 90%	-	490,032	MACH	r2-hat ≥ 0.30	2,416,530	-	1.002	1.010	MACH2QTL	
KORAS4/F4	Affymetrix 6.0	Birdseed2	-	-	909,622	IMPUTE	proper-info≥0.40	2,040,316	-	1.023	0.993	SNPtest	
LOLIPOP	Affymetrix 500K (Caucasians)	BRLMM	> 90%	> 10 ⁻⁶	374,773	MACH	r2-hat ≥ 0.30	2,444,407	-	1.018	0.989	MACH2QTL	
LOLIPOP	Illumina 317K (Indian-Asians)	Beadstudio	> 90%	> 10 ⁻⁶	245,892	MACH	r2-hat ≥ 0.30	1,896,366	-	1.003	-	MACH2QTL	
LOLIPOP	Illumina 610K (Indian-Asians)	Beadstudio	> 90%	> 10 ⁻⁶	544,390	MACH	r2-hat ≥ 0.30	2,147,795	-	1.027	1.014	MACH2QTL	
LOLIPOP	Perlegen (Caucasians)	Custom	> 90%	> 10 ⁻⁶	202,544	MACH	r2-hat ≥ 0.30	2,398,436	-	1.007	-	MACH2QTL	
LOLIPOP	Perlegen (Indian-Asians)	Custom	> 90%	> 10 ⁻⁶	170,055	MACH	r2-hat ≥ 0.30	1,546,962	-	0.979	-	MACH2QTL	
Rotterdam	Illumina Infinium 550	BeadStudio	≥ 97.5%	> 10 ⁻⁶	512,349	MACH	r2-hat ≥ 0.30	2,488,215	-	1.010	1.019	MACH2QTL	
Twins UK	Illumina 317K	BeadStudio	≥ 95%	> 10 ⁻⁶	307,040	IMPUTE	proper-info \geq 0.40	2,278,608	-	-	1.052	Merlin	

* SNP genotyping success rate; i.e. minimum percentage of successfully genotyped samples per SNP

Supplementary Note -	Table 3 Study-specifi	c descriptive statistics for	genome-wide association stud	dies of stage 1
----------------------	-----------------------	------------------------------	------------------------------	-----------------

				Men				Women						
Study						Total fat mass,							Total fat mass,	
	Ν	Age, yrs mean (sd)	BMI, kg/m² mean (sd)	Height, m mean (sd)	Weight, kg mean (sd)	kg mean (sd)	Fat% mean (sd)	Ν	Age, yrs mean (sd)	BMI, kg/m² mean (sd)	Height, m mean (sd)	Weight, kg mean (sd)	kg mean (sd)	Total body fat% mean (sd)
AGES	1,019	49.7 (5.9)	25.6 (3.1)	1.78 (0.06)	81.3 (11.4)	-	22.0 (5.5)	1,356	52.0 (6.5)	24.9 (3.8)	1.64 (0.05)	67.1 (10.5)	-	34.0 (5.0)
Amish	406	50.7 (15.0)	26.5 (3.4)	1.72 (0.06)	78.2 (12.1)	15.9 (7.5)	19.7 (6.5)	444	52.2 (14.4)	28.4 (5.4)	1.60 (0.06)	72.4 (14.4)	25.8 (8.9)	35.4 (6.5)
CHS	349	77.6 (5.0)	26.5 (3.4)	1.73 (0.06)	79.4 (10.9)	23.1 (7.7)	29.4 (6.6)	572	(76.9 (4.3)	26.1 (4.4)	1.59 (0.06)	66.2 (12.1)	28.4 (9.6)	42.6 (7.5)
CoLaus	2,539	52.9 (10.8)	26.6 (4.2)	1.75 (0.07)	81.5 (13.4)	-	23.9 (6.0)	2,850	53.9 (10.7)	25.2 (4.9)	1.62 (0.07)	66.4 (13.0)	-	34.4 (8.2)
EPIC-Obesity	1,121	63.2 (8.9)	28.4 (3.9)	1.74 (0.07)	85.9 (13.0)	19.9 (7.6)	26.4 (7.1)	1,422	62.2 (8.7)	28.5 (5.2)	1.61 (0.06)	74.1 (13.8)	28.4 (11.1)	43.8 (10.5)
ERF	900	48.8 (14.5)	27.2 (3.97)	1.75 (0.07)	82.8 (13.5)	22.0 (8.6)	26.9 (7.1)	1187	47.7 (14.5)	26.4 (4.8)	1.61 (0.07)	69.1 (13.1)	26.4 (9.7)	38.7 (7.6)
FamHS	388	59.9 (12.3)	29.6 (4.8)	1.76 (0.07)	91.8 (15.8)	30.7 (10.5)	27.9 (7.6)	421	64.6 (9.8)	28.7 (6.3)	1.60 (0.06)	74.4 (17.6)	33.6 (12.8)	38.7 (7.7)
Fenland	615	44.5 (7.4)	27.6 (3.9)	1.77 (0.07)	86.8 (13.9)	24.7 (8.6)	28.0 (6.7)	787	45.3 (7.2)	26.7 (5.5)	1.64 (0.06)	71.5 (15.3)	27.4 (10.7)	37.6 (7.7)
Framingham	1,003	64.1 (11.2)	26.7 (2.9)	1.73 (0.07)	80.1 (10.2)	22.8 (6.1)	28.2 (5.5)	1745	64.3 (11.4)	26.3 (4.3)	1.60 (0.07)	67.1 (11.6)	27.9 (8.8)	41.1 (7.3)
GOOD	940	18.9 (0.6)	22.4 (3.2)	1.82 (0.07)	73.9 (11.6)	13.2 (7.9)	17.1 (7.4)	0	-	-	-	-	-	-
KORAF3	773	62.5 (10.0)	28.2 (3.5)	1.73 (0.07)	84.9 (12.1)	24.3 (7.3)	28.1 (5.0)	787	61.6 (9.9)	27.9 (5.0)	1.61 (0.06)	71.9 (13.2)	28.1 (8.5)	38.4 (5.2)
KORAS4/F4	874	54.1 (8.9)	28.4 (4.2)	1.74 (0.07)	86.5 (14.1)	24.3 (7.6)	28.0 (4.9)	920	53.6 (8.8)	27.9 (5.3)	1.61 (0.06)	72.6 (13.7)	27.3 (8.6)	37.5 (5.4)
Lolipop - Europeans	1,238	55.0 (9.7)	28.3 (4.7)	1.75 (0.07)	86.8 (15.7)	24.8 (11.3)	27.5 (7.8)	204	51.3 (10.4)	27.2 (5.7)	1.63 (0.06)	72.5 (15.5)	28.0 (10.9)	37.3 (7.0)
Lolipop - Indian-Asians	6,535	54.0 (10.9)	27.0 (4.1)	1.70 (0.07)	78.4 (13.4)	22.2 (9.3)	27.5 (7.3)	1,022	56.9 (10.0)	28.8 (5.3)	1.56 (0.06)	69.5 (12.7)	27.8 (9.1)	39.1 (6.4)
Rotterdam	1,043	63.9 (5.6)	25.9 (2.8)	1.76 (0.06)	80.5 (10.0)	23.4 (7.6)	28.9 (6.2)	1,395	64.2 (6.0)	26.3 (3.8)	1.63 (0.06)	70.2 (10.7)	28.4 (8.8)	29.0 (6.6)
Twins UK	0	-	-	-	-	-	-	1,688	47.5(12.4)	24.9(4.5)	1.63(0.06)	65.7(12.3)	-	33.4(7.4)

Study		Total sample size	Exclusions	Samples in analyses	Fat %	Instrument	References
Short name	Full name	(N)		(N)	method	mstrument	References
ВРРР	Botnia Prevalence, Prediction and Prevention of Diabetes study	1,889	1) Missing phenotypes 2) Missing DNA	1,870	Bioimpedance	Tanita BF-350	[PMID: 20454776] Isomaa B. et al. A family history of diabetes is associated with reduced physical fitness in the Prevalence, Prediction, and Prevention of Diabetes (PPP)-Botnia study. Diabetologia 53, 1709-1713 (2010).
EPIC-Norfolk	European Prospective Investigation into Cancer and Nutrition - Obesity Study	25,663	 Missing phenotypes Missing DNA 	10,282	Bioimpedance	Tanita BC-531 Body Composition Monitor	 [PMID: 10466767] Day, N.E. et al. EPIC-Norfolk: study design and characteristics of the cohort. European Prospective Investigation of Cancer. British Journal of Cancer 80, 95-103 (1999). [PMID: 18454148] Loos, R.J. et al. Common variants near MC4R are associated with fat mass, weight and risk of obesity. Nat Genet 40, 768-775 (2008).
METSIM	Metabolic Syndrome In Men Study	8,740	1.)Missing phenotypes 2) Missing DNA	7,470	Bioimpedance	Akern Bioimpedance Analyzer Model BIA101	[PMID: 19223598] Stančáková, A. et al. Changes in insulin sensitivity and insulin release in relation to glycemia and glucose tolerance in 6,414 Finnish Men. Diabetes 58, 1212-1221 (2009).
MrOS Sweden - Hologic	Osteoporotic Fracture in Men Study - Sweden	1,010	1) Missing phenotypes 2) Missing DNA	917	DEXA	Hologic QDR, 4500/A-Delphi	[PMID: 16598372] Mellström, D et al. Free testosterone is an independent predictor of BMD and prevalent fractures in elderly men: MrOS Sweden. J Bone Miner Res 21, 529-535 (2006).
MrOS Sweden - Lunar	Osteoporotic Fracture in Men Study - Sweden	2,004	 Missing phenotypes Missing DNA 	1,946	DEXA	GE Lunar Prodigy	[PMID: 16598372] Mellström, D et al. Free testosterone is an independent predictor of BMD and prevalent fractures in elderly men: MrOS Sweden. J Bone Miner Res 21, 529-535 (2006).
RISC	Relationship between Insulin Sensitivity and Cardiovascular Disease	1,308	 Missing DNA Missing phenotypes 	1,247	Bioimpedance	Tanita TBF-300 Body Composition Analyser	[PMID: 14968294] Hills, S.A. et al. The EGIR-RISC STUDY (The European group for the study of insulin resistance: relationship between insulin sensitivity and cardiovascular disease risk): methodology and objectives. Diabetologia 47, 566-570 (2004).
ULSAM	Uppsala Longitudinal Study of Adult Men	1,221	1) Missing DNA 2) Missing phenotypes 3) Prevalent diabetes (FG>=7.0 mmol/L or Rx)	960	BMI	-	[PMID: 16030278] Ingelsson, E. et al. Insulin resistance and risk of congestive heart failure. JAMA 294, 334-341 (2005).

Supplementary Note - Table 4 Number of individuals and sample quality control for stage 2 and stage 3 follow-up studies with de novo genotyping

* Sample genotyping success rate; i.e. minimum percentage of successfully genotyped SNPs of GWAs per sample

Study	Genotyping Platform		Duplicate		Analysis software
		Call rate*	concordance	p for HWE	
EPIC-Norfolk	Custom TaqMan® SNP Genotyping Assays (Applied Biosystems, Warrington, UK) iPLEX™ Sequenom MassARRAY®	≥ 93%	≥ 97%	> 0.05	SAS
ВРРР	iPLEX™ Sequenom MassARRAY®	≥ 99%	NA	>0.0001	PLINK
METSIM	Custom TaqMan [®] SNP Genotyping Assays (Applied Biosystems, Warrington, UK)	≥ 95%	≥ 96%	>0.05	SPSS
MrOS Sweden - Hologic	iPLEX™ Sequenom MassARRAY®	≥ 98%	≥ 97%	> 0.45	SAS
MrOS Sweden - Lunar	iPLEX™ Sequenom MassARRAY®	≥ 98%	≥ 97%	> 0.42	SAS
RISC	Fluorescence-based competitive allele-specific PCR (Kbiosciences, Hoddesdon, UK)	≥ 98%	≥ 98%	> 0.05	SAS
ULSAM	Single-base extension with fluorescence polarization detection	≥ 99%	100%	> 0.05	STATA

Supplementary Note - Table 5. Information on genotyping methods, quality control of SNPs, and association analysis software for stage 2 and stage 3 follow-up studies with de novo genotyping

NA, data not available

* SNP genotyping success rate; i.e. minimum percentage of successfully genotyped samples per SNP

Supplementary Note - Table 6. Number of individuals and sample quality control for stage 2 and stage 3 follow-up studies within silico genotyping

Study		Total sample		Sample QC	Samples in	Fat %	Instrument	Peferences
Short name	Full name	(N)	Call rate*	Other exclusions	(N)	method	matrument	References
deCODE	deCODE genetics sample set	38,446	≥ 98%	 missing phenotype missing genotype 	2,547	DEXA	Hologic QDR4500A	[PMID: 19079260] Thorleifsson, G. et al. Genome-wide association yields new sequence variants at seven loci that associate with measures of obesity. Nat Genet 41, 18-24 (2009).
Fenland	Fenland Study	-	≥ 95%	 gender check duplicates check missing phenotype 	3,132	DEXA	GE Lunar Prodigy	 [PMID: 20519560] De Lucia Rolfe, E. et al. Association between birth weight and visceral fat in adults. Am J Clin Nutr (2009) Jun 2 [Epub ahead of print]. [PMID: 19079261] Willer CJ, Speliotes EK, Loos RJ, et al. Siz new loci associated with body mass index highlight a neuronal influence on body weight regulation. Nat Genet 41, 25-34 (2009)
Genmets	Health2000 GenMets MS Cases and Controls	2,124	>95%	 heterozygosity check gender check cryptic relatedness missing phenotypes 	1,726	Bioimpedance	InBody 3.0	[PMID: 19554302] Perttilä J, et al. OSBL10, a novel candidate gene for high triglyceride trait in dyslipidemic Finnish subjects, regulates cellular lipid metabolism. J Mol Med 87, 825-835 (2009)
MRC Ely	MRC Ely Study	-	≥ 95%	 gender check duplicates check missing phenotype 	1,582	DEXA	GE Lunar Prodigy	[PMID: 17257284] Forouhi, N.G. et al. Incidence of type 2 diabetes in England and its association with baseline impaired fasting glucose: the Ely study 1990-2000. Diabet Med 24, 200-207 (2007)
ORCADES	Orkney Complex Disease Study	~1,000	≥97%	 ethnic outliers missing phenotype missing genotype genotypes not imputed duplicate samples 	719	Bioimpedance	Tanita TBF-300 Body Composition Analyser	 [PMID: 18952825] Johansson, A. et al. Common variants in the JAZF1 gene associated with height identified by linkage and genome-wide association analysis. Hum Mol Genet 18, 373-380 (2009). [PMID: 19798445] Hicks, A.A. et al. Genetic determinants of circulating sphingolipid concentrations in European populations. PLoS Genet 5(10):e1000672 (2009).
Twins UK	Twins UK	5,654	≥ 98%	 ethnic outlier failed relatedness failed zygosity failed population stratification check missing phenotype 	1,691	DEXA	Hologic Discovery W' - QDR software version 12.6	[PMID: 19343178] Soranzo, N. et al. Meta-analysis of genome-wide scans for human adult stature identifies novel Loci and associations with measures of skeletal frame size. PLoS Genet 5(4):e1000445 (2009)
VIS	VIS-CROATIA	1,056	≥97%	 ethnic outliers missing phenotype missing genotype genotypes not imputed duplicate samples 	781	Bioimpedance	Akern Soft-Tissue-Analyzer- STA	[PMID: 18952825] Johansson, A. et al. Common variants in the JAZF1 gene associated with height identified by linkage and genome- wide association analysis. Hum Mol Genet 18, 373-380 (2009). [PMID: 19798445] Hicks, A.A. et al. Genetic determinants of circulating sphingolipid concentrations in European populations. PLoS Genet 5(10):e1000672 (2009).
Whitehall II	Whitehall II	5,592	≥ 98%	1) non-white ethnicity 2) outliers in Plink 3) missing phenotype	3,949	Bioimpedance	Tanita TBF-300 Body Composition Analyser	[PMID: 15576467] Marmot, M. et al. Cohort Profile: The Whitehall II Study. Int J Epidemiol 34, 251-256 (2005).

* Sample genotyping success rate; i.e. minimum percentage of successfully genotyped SNPs of GWAs per sample

Nature Genetics: doi:10.1038/ng.866

Supplementary Note - Table 7. Information on genotyping methods, quality control of SNPs, imputation, and association analysis software for stage 2 and stage 3 follow-up studies with in silico genotyping

Study		Genotyp	ing			Imputati	on	Association analyses			
	Platform	Genotype calling		Inclusion criteri	а	SNPs that met QC	Imputation	In	clusion criteria	SNPs for	Analysis
		algorithm	MAF	Call rate*	p for HWE	criteria	software	MAF	Imputation quality*	analysis	software
deCODE	Illumina HumanHap 300 370CNV	BeadStudio	≥1%	≥96%	> 10-6	290,449	IMPUTE	≥ 1%	proper-info ≥ 0.40	14	SNPtest
Fenland	Illumina MetaboChip	GeneCall	-	≥ 90%	> 10 ⁻⁶	167,085	-	-	-	14	Plink
Genmets	Ilumina 610K	Illuminus	≥1%	≥95%	> 10 ⁻⁶	555,388	MACH 1.0.10	≥1%	r2-hat ≥ 0.83	14	Probabel
MRC Ely	Illumina MetaboChip	GeneCall	-	≥ 90%	> 10 ⁻⁶	149,302	-	-	-	14	Plink
ORCADES	Illumina Hap300v2	BeadStudio	≥ 2%	≥98%	> 10 ⁻⁶	294,123	MACH	≥ 1%	r2-hat ≥ 0.30	14	ProbABEL
Twins UK	Illumina HumanHap 300 Illumina HumanHap 610Q Illumina 1M-Duo Illumina 1.2M Duo	BRLMM	≥1%	≥97% for MAF>5% ≥99% for 1 <maf<5%< td=""><td>> 10⁻⁶</td><td>874,733</td><td>IMPUTE v2</td><td>-</td><td>proper-info ≥ 0.40</td><td>33</td><td>Merlin, PLINK</td></maf<5%<>	> 10 ⁻⁶	874,733	IMPUTE v2	-	proper-info ≥ 0.40	33	Merlin, PLINK
VIS	Illumina Hap300v1	BeadStudio	≥ 2%	≥95%	> 10 ⁻⁶	308,996	MACH	≥ 1%	r2-hat ≥ 0.30	14	ProbABEL
Whitehall II	Illumina HumanCVD BeadChip, 50K	Beadstudio	≥1%	≥98%	> 10 ⁻⁶	48,032	-	-	-	1	SAS

* SNP genotyping success rate; i.e. minimum percentage of successfully genotyped samples per SNP

Supplementary Note	- Table 8. Stud	y-specific descr	iptive statistics fo	or stage 2 a	nd stage 3	follow-up studies.
--------------------	-----------------	------------------	----------------------	--------------	------------	--------------------

				Men				Women						
Study						Total fat mass,							Total fat mass,	
	N	Age, yrs mean (sd)	BMI, kg/m ² mean (sd)	Height, m mean (sd)	Weight, kg mean (sd)	kg mean (sd)	Fat% mean (sd)	Ν	Age, yrs mean (sd)	BMI, kg/m² mean (sd)	Height, m mean (sd)	Weight, kg mean (sd)	kg mean (sd)	Total body fat% mean (sd)
ВРРР	927	48.4 (15.8)	26.8 (3.8)	1.77(0.07)	84.0 (13.1)	20.8 (6.7)	24.3 (6.7)	943	48.3 (15.5)	26.3 (4.7)	1.64 (0.06)	70.7 (12.8)	34.4 (7.5)	25.1 (9.4)
deCODE	533	62.5 (15.2)	27.1 (4.0)	1.76 (0.08)	83.9 (14.8)	23.9 (8.8)	26.6 (6.0)	2,014	56.9 (15.9)	25.8 (4.8)	1.64 (0.07)	69.9 (13.3)	27.2 (9.2)	37.0 (6.8)
EPIC-Norfolk	5,210	59.1 (9.0)	25.8 (2.7)	1.74 (0.06)	78.5 (9.7)	18.2 (6.2)	22.9 (5.7)	5,072	58.1 (8.9)	25.1 (3.3)	1.61 (0.06)	65.4 (9.4)	25.7 (8.4)	38.7 (8.3)
Fenland	1,465	46.9 (7.2)	27.0 (4.1)	1.78 (0.07)	85.4 (14.1)	-	23.7 (5.7)	1,667	46.9 (7.0)	26.5 (5.4)	1.64 (0.06)	71.1 (15.3)	-	35.7 (7.2)
GenMets cases	422	49.2 (10.4)	25.4 (3.1)	1.76 (0.06)	78.0 (10.4)	15.9 (5.7)	19.8 (5.0)	447	52.0 (11.6)	25.1 (4.1)	1.64 (0.06)	65.3 (10.4)	20.5 (7.8)	29.9 (6.7)
GenMets controls	425	49.2 (10.4)	29.4 (3.6)	1.78 (0.07)	91.2 (12.6)	23.9 (7.7)	25.3 (5.4)	432	52.4 (11.7)	29.7 (4.9)	1.64 (0.06)	76.6 (13.4)	28.9 (9.4)	36.1 (6.0)
METSIM	7,470	57.5 (7.0)	27.2 (4.1)	1.76 (0.06)	84.3 (13.9)	20.8 (8.0)	24.1 (6.5)	-	-	-	-	-	-	-
MRC Ely	737	61.5 (9.1)	27.4 (4.0)	1.74 (0.07)	83.1 (13.3)	22.4 (7.0)	26.6 (5.2)	845	60.8 (9.2)	27.3 (5.4)	1.61 (0.06)	71.1 (14.4)	29.0 (10.2)	39.9 (6.5)
MrOS Sweden - Hologic	917	75.2 (3.2)	25.9 (3.2)	1.76 (0.06)	80.2 (11.2)	18.5 (5.7)	22.7 (4.8)	-	-	-	-	-	-	-
MrOS Sweden - Lunar	1,946	75.5 (3.2)	26.5 (3.6)	1.74 (0.07)	80.7 (12.1)	23.7 (7.9)	28.7 (6.5)	-	-	-	-	-	-	-
ORCADES	334	54.0 (15.6)	28.1 (4.1)	1.75 (0.06)	85.8 (13.0)	23.3 (8.6)	26.5 (6.8)	385	52.5 (15.7)	27.3 (5.3)	1.61 (0.06)	70.6 (13.8)	26.5 (10.2)	36.2 (7.3)
RISC	560	43.4 (8.6)	26.4 (3.5)	1.78 (0.07)	83.9 (12.6)	22.1 (6.6)	22.1 (6.6)	687	44.3 (8.1)	24.8 (4.4)	1.65 (0.06)	67.5 (12.4)	22.6 (9.2)	32.3 (7.7)
Twins UK	137	49.1 (12.8)	26.0 (3.1)	1.75 (0.06)	80.0 (10.0)	-	22.0 (6.0)	1,554	49.0 (12.9)	25.4 (4.6)	1.62 (0.06)	66.8 (12.5)	-	34.3 (7.5)
ULSAM	960	71.0 (0.6)	26.0 (3.2)	1.75 (0.06)	79.7 (10.8)	-	-	-	-	-	-	-	-	-
VIS	315	55.7 (14.8)	27.5 (3.7)	1.76 (0.07)	85.5 (13.4)	31.7 (8.1)	37.2 (7.9)	466	56.4 (16.1)	27.2 (4.7)	1.62 (0.07)	71.3 (12.8)	26.1 (7.6)	36.7 (8.4)
Whitehall II	2,958	60.5 (5.8)	26.4 (3.7)	1.76 (0.06)	81.6 (12.4)	20.0 (7.2)	23.9 (5.5)	991	60.4 (5.9)	26.6 (5.2)	1.62 (0.06)	69.7 (14.2)	25.6 (9.8)	35.7 (7.0)

Supplementary Note - Table 9. Samples and assays used for the measurement of circulating levels of glucose, insulin, leptin, and adiponectin in the stage 3 follow-up studie:

Study	Glucose Sample	Glucose Assay	Insulin Sample	Insulin Assay	Leptin Sample	Leptin Assay	Adiponectin Sample	Adiponectin Assay
METSIM	Fasting plasma, OGTT (30,120 mins)	Enzymatic hexokinase photometric assay (Konelab System Reagents, Thermo Fischer Scientific, Vaasa, Finland)	Fasting plasma, OGTT (30,120 mins)	Immunoassay (ADVIA Centaur Insulin RIA, no. 02230141, Siemens Medical Solutions Diagnostics, Tarrytown, NY, USA)	NA	NA	Fasting plasma	Enzyme immunoassay (ELISA) kit (Linco Research, St. Charles, MI, USA)
MRC Ely	Fasting plasma, OGTT (30,60,120 mins)	Hexokinase assay	Fasting plasma, OGTT (30,60,120 mins)	lmmunometric assay	Fasting blood	Two-step time-resolved fluorometric assays of the 1235 AutoDELFIA (PerkinElmer Lifesciences, Boston, MA) automatic immunoassay system	Fasting blood	Two-step time-resolved fluorometric assays of the 1235 AutoDELFIA (PerkinElmer Lifesciences, Boston, MA) automatic immunoassay system
MrOS Sweden	NA	NA	NA	NA	Fasting serum (Uppsala centre, n=956) Non-fasting serum (Malmö and Uppsala centres n=1,926)	Commercially available kit (Diagnostics Systems Laboratories, Webster, TX, USA)	Fasting plasma	Enzyme immunoassay (ELISA) kit (Linco Research, St. Charles, MI, USA)
RISC	Euglycemic- Hyperinsulinemic-clamp; OGTT (0, 30, 60, 90, 120 mins)	Glucose oxidase method (Cobas Integra; Roche Diagnostics, Basel, Switzerland)	Euglycemic- Hyperinsulinemic-clamp; OGTT (0, 30, 60, 90, 120 mins)	Specific time-resolved fluoroimmunoassay (AutoDELFIA Insulin Kit; Wallac Oy, Turku, Finland)	Fasting blood	Two-step time-resolved fluorometric assays of the 1235 AutoDELFIA (PerkinElmer Lifesciences, Boston, MA) automatic immunoassay system	Fasting blood	In-house time-resolved immunofluorometric assay (TR-IFMA) on the basis of two antibodies and reombinant human adiponectin (R&D Systems, Abingdon, UK)
ULSAM	Euglycemic- Hyperinsulinemic-clamp; OGTT (0, 30, 60, 90, 120 mins)	Glucose dehydrogenase method (Gluc-DH, Merck, Darmstadt, Germany)	Euglycemic- Hyperinsulinemic-clamp; OGTT (0, 30, 60, 90, 120 mins)	Enzymatic-immunological assay (Enzymun, Boehringer Mannheim, Germany)	NA	ΝΑ	NA	NA
Whitehall II	Fasting plasma, OGTT (0, 120 mins)	Electrochemical glucose oxidase method	Fasting plasma, OGTT (120 mins)	Double antibody ELISA	NA	NA	NA	NA

NA, not available for analyses

2.2. AUTHOR CONTRIBUTIONS

Overseeing of the project

Tuomas O Kilpeläinen, Ruth JF Loos

Writing group (drafted and edited manuscript)

Francis M Finucane, Caroline S Fox, Tuomas O Kilpeläinen (lead), Ruth JF Loos (chair), Elizabeth K Speliotes, M Carola Zillikens

Contributed to discussion

Francis M Finucane, Caroline S Fox, Tuomas O Kilpeläinen, Claudia Langenberg, Ruth JF Loos, Stephen O'Rahilly, David B Savage, Robert K Semple, Elizabeth K Speliotes, Antonio Vidal-Puig, Nicholas J Wareham, M Carola Zillikens

Meta-analyses of body fat percentage

Tuomas O Kilpeläinen, Ruth JF Loos, Janina S Ried

Look-up of data in GWA meta-analysis of fat distribution

Ingrid B Borecki, L Adrienne Cupples, Gudny Eiriksdottir, Mary F Feitosa, Caroline S Fox (lead), Melissa Garcia, Vilmundur Gudnason, Tamara B Harris, David Karasik, Douglas P Kiel, Lauren J. Kim, Yongmei Liu, Albert Vernon Smith, Yanhua Zhou

Meta-analyses of blood lipids, anthropometric traits, obesity and overweight

Tuomas O Kilpeläinen, Ruth JF Loos

Meta-analyses of insulin sensitivity traits

Tuomas O Kilpeläinen, Claudia Langenberg, Ruth JF Loos

Meta-analyses of leptin and adiponectin

Tuomas O Kilpeläinen, Ruth JF Loos

Gene-Expression analyses

Deborah J Clegg, Kathryn E Davis, José Manuel Fernández-Real, José Maria Moreno, Belén Peral, Eric Schadt, Gudmar Thorleifsson

Project design, management and coordination of contributing cohorts

Stage 1 – genome-wide association cohorts

(AGES) Gudny Eiriksdottir, Vilmundur Gudnason, Tamara B Harris; (AMISH) Mao Fu, Braxton D Mitchell, Jeffery R O'Connell, Alan R Shuldiner; (BPPP) Leif Groop, Joel Hirschhorn, Bo Isomaa; (CHS) Robert C Kaplan, Bruce M Psaty; (COLAUS) Vincent Mooser, Peter Vollenweider, Gérard Waeber; (EPIC-NORFOLK) Inês Barroso, Ruth JF Loos, Nicholas J Wareham; (FAMHS) Ingrid B Borecki; (FENLAND) Ruth JF Loos, Nicholas J Wareham; (FRAMINGHAM) Caroline S Fox, David Karasik, Douglas P Kiel; (GOOD) Mattias Lorentzon, Claes Ohlsson; (KORA) Angela Döring, H-Erich Wichmann; (LOLIPOP) John C Chambers, Jaspal S Kooner; (ROTTERDAM) Albert Hofman, Fernando Rivadeneira, André G Uitterlinden, M. Carola Zillikens; (TWINS UK) Nicole Soranzo

Stage 2 – follow-up cohorts

(deCODE) Kari Stefansson, Unnur Styrkarsdottir, Unnur Thorsteinsdottir; (EPIC-NORFOLK) Kay-Tee Khaw, Ruth JF Loos, Nicholas J Wareham; (FENLAND) Ruth JF Loos, Nicholas J Wareham; (GENMETS) Leena Peltonen, Samuli Ripatti, Veikko Salomaa; (METSIM) Johanna Kuusisto, Markku Laakso; (MRC ELY) Ruth JF Loos, Nicholas J Wareham; (MrOS SWEDEN) Claes Ohlsson; (ORCADES) Harry Campbell, James F Wilson; (TWINS UK) Nicole Soranzo; (VIS-CROATIA) Igor Rudan, Alan F Wright

Stage 3 – follow-up cohorts

(Health ABC) Yongmei Liu; (RISC) Mark Walker; (ULSAM) Erik Ingelsson; (WHITEHALL II) Steve E Humphries, Mika Kivimäki, Meena Kumari, Philippa J Talmud

Phenotyping of contributing cohorts

Stage 1 – genome-wide association cohorts

(AMISH) Alan R Shuldiner; (CHS) Alice M Arnold, Robert C Kaplan, Bruce M Psaty; (ERF) Oostra A Ben, Cornelia M van Duijn, M Carola Zillikens; (FRAMINGHAM) David Karasik, Douglas P Kiel; (GOOD) John-Olov Jansson, Mattias Lorentzon, Claes Ohlsson, Liesbeth Vandenput; (KORA) Angela Döring; (LOLIPOP) John C Chambers, Jaspal S Kooner; (ROTTERDAM) Albert Hofman; (TWINS UK) Massimo Mangino, Timothy D. Spector

Stage 2 – follow-up cohorts

(BPPP) Leif Groop, Bo Isomaa; (deCODE) Gunnar Sigurdsson, Unnur Styrkarsdottir; (EPIC-Norfolk) Robert N Luben; (GENMETS) Antti Jula, Satu Männistö, Markus Perola; (MrOS SWEDEN) Magnus Karlsson, Östen Ljunggren, Dan Mellström, Claes Ohlsson, Liesbeth Vandenput; (ORCADES) Sarah H Wild; (VIS-CROATIA) Igor Rudan; Tatjana Skaric-Juric; (TWINS UK) Massimo Mangino, Timothy D. Spector

Stage 3 – follow-up cohorts

(Health ABC) Yongmei Liu; (RISC) Mark Walker; (WHITEHALL II) Mika Kivimäki, Meena Kumari

Genotyping of contributing cohorts

Stage 1 – genome-wide association cohorts

(AGES) Melissa Garcia, Lauren J. Kim; (AMISH) Mao Fu; (CHS) Talin Haritunians; (ERF) Yurii S Aulchenko, Oostra A Ben, Cornelia M van Duijn; (GOOD) John-Olov Jansson, Mattias Lorentzon, Claes Ohlsson; (KORA) Norman Klopp; (LOLIPOP) John C Chambers, Jaspal S Kooner; (ROTTERDAM) Karol Estrada, Fernando Rivadeneira, André G Uitterlinden; (TWINS UK) Massimo Mangino, So Youn Shin, Nicole Soranzo, Timothy Spector

Stage 2 – follow-up cohorts

(BPPP) Gandace Guiducci; (EPIC-Norfolk) Robert N Luben; (GENMETS) Inês Barroso, Markus Perola; (MrOS SWEDEN) Magnus Karlsson, Östen Ljunggren, Dan Mellström, Claes Ohlsson; (ORCADES) James F Wilson; (TWINS UK) Massimo Mangino, So Youn Shin, Nicole Soranzo, Timothy Spector; (VIS-CROATIA) Caroline Hayward

Stage 3 – follow-up cohorts

(RISC) Laura Pascoe; (ULSAM) Ann-Christine Syvänen; (WHITEHALL II) Steve E Humphries, Philippa J Talmud

Analyses of contributing cohorts

Stage 1 – genome-wide association cohorts

(AGES) Albert Vernon Smith; (AMISH) Braxton D. Mitchell, Jeffery R O'Connell; (CHS) Nicole L Glazer, Barbara McKnight; (COLAUS) Jacques S Beckmann, Kijoung S Song; (EPIC-NORFOLK) Jing-Hua Zhao; (ERF) Najaf Amin; (FENLAND) Jian'an Luan; (FAMHS) Mary Feitosa; (FRAMINGHAM) L Adrienne Cupples, Yanhua Zhou; (GOOD) John-Olov Jansson, Mattias Lorentzon, Claes Ohlsson, Liesbeth Vandenput; (KORA) Christian Gieger, Brigitte Kühnel, Janina S Ried; (LOLIPOP) John C Chambers, Weihua Zhang; (ROTTERDAM) Karol Estrada, Leonie C Jacobs, Fernando Rivadeneira, André G Uitterlinden, M Carola Zillikens; (TWINS UK) So Youn Shin, Nicole Soranzo

Stage 2 – follow-up cohorts

(deCODE) Bjarni Halldorsson, Unnur Styrkarsdottir; (BPPP) Elizabeth K Speliotes, Sailaja Vedantam; (EPIC-NORFOLK) Tuomas O Kilpeläinen; (FENLAND) Tuomas O Kilpeläinen, Jian'an Luan; (GENMETS) Emmi Tikkanen; (METSIM) Alena Stančáková; (MRC ELY) Tuomas O Kilpeläinen, Jian'an Luan; (MrOS SWEDEN) Claes Ohlsson, Liesbeth Vandenput; (ORCADES) Caroline Hayward; (TWINS UK) So Youn Shin, Nicole Soranzo; (VIS-CROATIA) Caroline Hayward

Stage 3 – follow-up cohorts

(Health ABC) Yongmei Liu; (RISC) Laura Pascoe; (ULSAM) Erik Ingelsson, Ci Song; (WHITEHALL II) Meena Kumari

2.3. ACKNOWLEDGEMENTS

The work of Stephen O'Rahilly, Robert K. Semple, and David B. Savage is supported by MRC Centre for Obesity and Related Metabolic Disease and the Cambridge NIHR Biomedical Research Centre. Belén Peral and José M. Fernández-Real were supported by Grants SAF-2009-10461 (BP) and SAF-2008-02073 (JMFR) from the Ministerio de Ciencia e Innovación, Spain.

AGES (Age, Gene/Environment Susceptibility-Reykjavik Study) – The AGES study is funded by National Institutes of Health contract N01-AG-12100, the U.S. National Institute on Aging Intramural Research Program, Hjartavernd (the Icelandic Heart Association), and the Althingi (the Icelandic Parliament). Components of the study were also supported by the U.S. National Eye Institute, the U.S. National Institute on Deafness and Other Communication Disorders, and the U.S. National Heart, Lung, and Blood Institute. This work was supported in part by the Intramural Research Program, National Institutes of Health.

Amish HAPI Heart Study (Amish Heredity and Phenotype Intervention Heart Study) – The work was supported by grant numbers U01 HL84756, U01HL72515, R01 AG18728, R01 AR046838, R01 HL088119, NIH P30 DK072488, AHA 10SDG269004. Funding and support were also provided by the University of Maryland General Clinical Research Center (M01 RR 16500), the Department of Veterans Affairs, and Veterans Affairs Medical Center, Baltimore Geriatric Research, Education and Clinical Center (GRECC).

BPPP (Botnia Prevalence, Prediction and Prevention of Diabetes Study) – The Botnia study has been supported by grants from Folkhälsan Research Foundation, Sigrid Juselius Foundation, Ministry of Education, Nordic Center of Excellence in Disease Genetics, Gyllenberg Foundation, Swedish Cultural Foundation in Finland, Finnish Diabetes Research Foundation, Foundation for Life and Health in Finland, Finnish Medical Society, Paavo Nurmi Foundation, Perklén Foundation, Ollqvist Foundation, Närpes Health Care Foundation, the Municipal Health Care Center and Hospital in Jakobstad, Health Care Centers in Vasa, Närpes and Korsholm. This work was also partially supported by NIH grant R01 DK075787 to JNH and by K23 DK080145 to EKS.

CHS (Cardiovascular Health Study) – The CHS research reported in this article was supported by contract numbers N01-HC-85079 through N01-HC-85086, N01-HC-35129, N01 HC-15103, N01 HC-55222, N01-HC-75150, N01-HC-45133, grant numbers U01 HL080295 and R01 HL087652 from the National Heart, Lung, and Blood Institute, grant number 1R01AG031890-01 from the National Institute of Aging (to RK), and with additional contribution from the National Institute of Neurological Disorders and Stroke. A full list of principal CHS investigators and institutions can be found at http://www.chs-nhlbi.org/pi.htm. DNA handling and genotyping was supported in part by National Center for Research Resources grant M01RR00425 to the Cedars-Sinai General Clinical Research Center Genotyping core, National Institute of Diabetes and Digestive and Kidney Diseases grant DK063491 to the Southern California Diabetes Endocrinology Research Center, and the Cedars-Sinai Board of Governors' Chair in Medical Genetics (JIR).

CoLaus (Cohorte Lausannoise) – The CoLaus study received financial contributions from GlaxoSmithKline, the Faculty of Biology and Medicine of Lausanne, and the Swiss National Science Foundation (33CSCO 122661). The authors thank Dawn Waterworth, Co-PI of the CoLaus study. Special thanks to Murielle Bochud, Yolande Barreau, Mathieu Firmann, Vladimir Mayor, Anne Lise Bastian, Binasa Ramic, Martine Moranville, Martine Baumer, Marcy Sagette, Jeanne Ecoffey and Sylvie Mermoud for data collection. JSB is supported by the Centre Hospitalier Universitaire Vaudois and the University of Lausanne, Switzerland, the Swiss National Science Foundation (grants nb 310000-112552) and the European Union HEALTHF4-2007-201550 HYPERGENES grant. SB is supported by the Giorgi-Cavaglieri Foundation, the Swiss National Science Foundation (grant 3100AO-116323/1), the Leenaards Foundation, the European Union HEALTH-F4-2007-201550 HYPERGENES grant and the Swiss Institute of Bioinformatics.

deCODE (deCODE genetics) – The study was funded in part by the European Community's Seventh Framework Programme (FP7/2007-2013)/grant agreement HEALTH-F2-2008-201865-GEFOS and (FP7/2007-2013) and ENGAGE project grant agreement HEALTH-F4-2007-201413). We wish to thank the study volunteers for their contributions to this project, and the staff at the deCODE core facilities.

EPIC-Norfolk (European Prospective Investigation into Cancer and Nutrition – Norfolk) – The EPIC Norfolk Study is funded by program grants from the Medical Research Council UK and Cancer Research UK; and by additional support from the European Union; Stroke Association; British Heart Foundation; Department of Health; Food Standards Agency; and the Wellcome Trust. IB acknowledges support from EU FP6 funding (contract no LSHM-CT-2003-503041).

ERF (Erasmus Rucphen Family) (EUROSPAN) – The ERF study was supported by EUROSPAN (European Special Populations Research Network) through the European Commission FP6 STRP grant (018947; LSHG-CT-2006-01947). The ERF study was further supported by grants from the Netherlands Organization for Scientific Research (NWO), Erasmus MC, the Centre for Medical Systems Biology (CMSB1 and CMSB2) and the Netherlands Genomics Initiative (NGI).

FamHS (Family Heart Study) – The FamHS is funded by a NHLBI grant 5R01HL08770003, and NIDDK grants 5R01DK06833603 and 5R01DK07568102.

Fenland (Fenland Study) – The Fenland Study is funded by the Wellcome Trust and the Medical Research Council, as well as by the Support for Science Funding programme and CamStrad. We are grateful to all the volunteers for their time and help, and to the General Practitioners and practice staff for help with recruitment. We thank the Fenland Study co-ordination team and the Field Epidemiology team of the MRC Epidemiology Unit for recruitment and clinical testing.

FRAM (Framingham Heart Study) – This research was conducted in part using data and resources from the Framingham Heart Study of the National Heart Lung and Blood Institute of the National Institutes of Health and Boston University School of Medicine. The analyses reflect intellectual input and resource development from the Framingham Heart Study investigators participating in the SNP Health Association Resource (SHARe) project. This work was partially supported by the National Heart, Lung and Blood Institute's Framingham Heart Study (Contract No. N01-HC-25195) and its contract with Affymetrix, Inc for genotyping services (Contract No. N02-HL-6-4278). A portion of this research utilized the Linux Cluster for Genetic Analysis (LinGA-II) funded by the Robert Dawson Evans Endowment of the Department of Medicine at Boston University School of Medicine and Boston Medical Center. Whole body Dual Energy X-ray Absorptiometry data was supported by the National Institute on Aging R01 AR/AG 41398 and by the Men's Associates of Hebrew SeniorLife.

Genmets (Health 2000 / GENMETS substudy) – Wellcome Trust, L.P. is supported by the Center of Excellence for Complex Disease Genetics of the Academy of Finland (grants 213506, 129680), the Biocentrum Helsinki Foundation and The Nordic Center of Excellence in Disease Genetics. VS was supported by the Academy of Finland (grant number 129494), Sigrid Juselius Fundation and the Finnish Foundation for Cardiovascular Research. IB was supported by the Wellcome Trust grant 077016/Z/05/Z and United Kingdom NIHR Cambridge Biomedical Research Centre. MP was supported by the Finnish Foundation for Cardiovascular Research and Finnish Academy SALVE-program PUBGENSENS grant no 10404. SM is supported by the Academy of Finland (grant number 141005).

GOOD (Gothenburg Osteoporosis and Obesity Determinants Study) – The GOOD Study is funded by the Swedish Research Council (K2010-54X-09894-19-3, K2010-52X-20229-05-3, 2006-3832), the Swedish Foundation for Strategic Research, the ALF/LUA research grant in Gothenburg, the Lundberg Foundation, the Emil and Vera Cornell Foundation, the Torsten and Ragnar Söderberg's Foundation, Petrus and Augusta Hedlunds Foundation, the Västra Götaland Foundation, the Göteborg Medical Society, and the Sahlgrenska Center for Cardiovascular and Metabolic Research (CMR, no. A305:188), which is supported by the Swedish Strategic Foundation, and the European Commission grants LSHM-CT-2003-503041 and FP7-KBBE-2010-4-266408. We would like to thank Dr. Tobias A. Knoch, Anis Abuseiris, Luc V. de Zeeuw and Rob de Graaf, as well as their institutions the Erasmus Grid Office, Rotterdam, The Netherlands, and especially the national German MediGRID and Services@MediGRID part of the German D-Grid, both funded by the German Bundesministerium für Forschung und Technology under grants #01 AK 803 A-H and # 01 IG 07015 G for access to their grid resources. In addition, we would like to acknowledge Karol Estrada, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands for advice regarding the grid resources.

Health ABC (Dynamics of Health, Aging and Body Composition) - This research was supported by NIA contracts N01AG62101, N01AG62103, and N01AG62106. The genome-wide

association study was funded by NIA grant 1R01AG032098-01A1 to Wake Forest University Health Sciences and genotyping services were provided by the Center for Inherited Disease Research (CIDR). CIDR is fully funded through a federal contract from the National Institutes of Health to The Johns Hopkins University, contract number HHSN268200782096C.

KORA Studies (Cooperative Health Research in the Region of Augsburg, KOoperative Gesundheitsforschung in der Region Augsburg) – The KORA research platform was initiated and financed by the Helmholtz Center Munich, German Research Center for Environmental Health, which is funded by the German Federal Ministry of Education and Research (BMBF) and by the State of Bavaria. Part of this work was financed by the German National Genome Research Network (NGFN-2 and NGFNPlus: 01GS0823). Our research was supported within the Munich Center of Health Sciences (MC Health) as part of LMUinnovativ.

LOLIPOP (London Life Sciences Population Study) – We thank the participants and research team involved in LOLIPOP. The work was supported by the British Heart Foundation (SP/04/002) and the Wellcome Trust (084723/Z/08/Z). Genotyping for Affymetrx 500K was funded by GlaxoSmithKline. W Zhang was supported by a research grant from GlaxoSmithKline.

METSIM (Metabolic Syndrome in Men) – The METSIM Study is funded by grants from the Academy of Finland (Contract no. 124243), The Finnish Heart Foundation, The Finnish Diabetes Foundation, TEKES (Contract no. 1510/31/06), and Commission of the European Community (LSHM-CT-2004-512013 EUGENE2, and HEALTH-F2-2007-201681).

MRC Ely (MRC Ely Study) – The MRC Ely Study was funded by the Medical Research Council and the Wellcome Trust. We thank Sarah Dawson, Farzana Shah, Sofie Ashford, Larissa Richardson, Steven Knighton, and Chris Gillson for their rapid and accurate large-scale sample preparation and genotyping, and Jian'an Luan and Stephen Sharp for their statistical support.

MrOS Sweden (Osteoporotic Fracture in Men Study – Sweden) – The Osteoporotic Fractures in Men - Sweden (MrOS Sweden) study is supported by the Swedish Research Council, the Swedish Foundation for Strategic Research, the ALF/LUA research grant in Gothenburg, the Lundberg Foundation, the Torsten and Ragnar Söderberg's Foundation, and the Novo Nordisk Foundation.

ORCADES (Orkney Complex Disease Study (EUROSPAN)) – ORCADES was supported by the Scottish Executive Health Department and the Royal Society. and the European Union framework program 6 EUROSPAN project (contract no. LSHG-CT-2006-018947). DNA extractions were performed at the Wellcome Trust Clinical Research Facility in Edinburgh. We would like to acknowledge the invaluable contributions of Lorraine Anderson, the research nurses in Orkney, and the administrative team in Edinburgh.

RISC (Relationship between Insulin Sensitivity and Cardiovascular Disease) – The RISC Study is supported by European Union grant QLG1-CT-2001-01252 and AstraZeneca. Laura Pascoe was the recipient of a joint BBSRC and Unilever UK Ltd case PhD studentship.

RS (The Rotterdam Study) – The generation and management of GWAS genotype data was funded by the Netherlands Organisation of Scientific Research NWO Investments (nr. 175.010.2005.011, 911-03-012), the Research Institute for Diseases in the Elderly (014-93-015; RIDE2), the Netherlands Genomics Initiative (NGI)/Netherlands Consortium for Healthy Aging (NCHA) project nr. 050-060-810. We thank Pascal Arp, Mila Jhamai, Dr Michael Moorhouse, Marijn Verkerk, and Sander Bervoets for their help in creating the GWAS database. The Rotterdam Study is funded by Erasmus Medical Center and Erasmus University, Rotterdam, Netherlands Organization for the Health Research and Development (ZonMw), the Research Institute for Diseases in the Elderly (RIDE), the Ministry of Education, Culture and Science, the Ministry for Health, Welfare and Sports, the European Commission (DG XII), and the Municipality of Rotterdam. The authors are very grateful to the participants and staff from the Rotterdam Study (particularly J.H. van den Boogert), the participating general practitioners and the pharmacists. We would like to thank Dr. Tobias A. Knoch, Luc V. de Zeeuw, Anis Abuseiris, and Rob de Graaf as well as their institutions the Erasmus Computing Grid, Rotterdam, The Netherlands, and especially the national German MediGRID and Services@MediGRID part of the German D-Grid, both funded by the German Bundesministerium fuer Forschung und Technology under grants #01 AK 803 A-H and # 01 IG 07015 G, for access to their grid resources.

TwinsUK – The study was funded by the Wellcome Trust; European Community's Seventh Framework Programme (FP7/2007-2013)/grant agreement HEALTH-F2-2008-201865-GEFOS and (FP7/2007-2013), ENGAGE project grant agreement HEALTH-F4-2007-201413 and the FP-5 GenomEUtwin Project (QLG2-CT-2002-01254). The study also receives support from the Dept of Health via the National Institute for Health Research (NIHR) comprehensive Biomedical Research Centre award to Guy's & St Thomas' NHS Foundation Trust in partnership with King's College TDS is an NIHR senior Investigator. The project also received support from a London. Biotechnology and Biological Sciences Research Council (BBSRC) project grant. (G20234) .The authors acknowledge the funding and support of the National Eye Institute via an NIH/CIDR genotyping project (PI: Terri Young). Genotyping of TwinsUK samples: We thank the staff from the Genotyping Facilities at the Wellcome Trust Sanger Institute for sample preparation, Quality Control and Genotyping led by Leena Peltonen and Panos Deloukas; Le Centre National de Génotypage, France, led by Mark Lathrop, for genotyping; Duke University, North Carolina, USA, led by David Goldstein, for genotyping; and the Finnish Institute of Molecular Medicine, Finnish Genome Center, University of Helsinki, led by Aarno Palotie. Genotyping was also performed by CIDR as part of an NEI/NIH project grant. NS is supported by the Wellcome Trust (Core Grant Number 091746/Z/10/Z).

ULSAM (Uppsala Longitudinal Study of Adult Men) – Genotyping was performed by the SNP Technology Platform in Uppsala (<u>www.genotyping.se</u>), which has been supported by Uppsala University and the Knut and Alice Wallenberg Foundation.

VIS-CROATIA (EUROSPAN) – The work is supported by grants #309-0061194-2023 (to GL), #216-1080315-0302 (to IR) and #196-1962766-2747 (to NSN) from the Croatian Ministry of Science, Education and Sport; by European Union framework program 6 EUROSPAN project (contract no. LSHG-CT-2006-018947).Studies carried out in the Croatian island of Vis were supported by Medical Research Council UK (HC, AFW, NDH and IR). The authors collectively thank a large number of individuals for their help in organizing, planning and carrying out the field work related to the project: Professor Pavao Rudan and staff of the Institute for Anthropological Research in Zagreb, Croatia; Professor Stipan Jankovic and staff at the University of Split Medical School; Professor Ariana Vorko-Jovic and staff and medical students of the Andrija Stampar School of Public Health of the Faculty of Medicine, University of Zagreb, Croatia; Dr Branka Salzer from the biochemistry lab "Salzer", Croatia; Iocal general practitioners and nurses; and the employees of several other Croatian institutions who participated in the field work. including but not limited to the University of Rijeka, Croatia; Croatian Institute of Public Health; Institutes of Public Health in Split and Dubrovnik, Croatia. SNP Genotyping of the Vis samples was carried out by the Genetics Core Laboratory at the Wellcome Trust Clinical Research Facility, WGH, Edinburgh, Scotland.

Whitehall II – Genotyping of IBD cardiochip in WH-II was supported by the British Heart Foundation (BHF) PG/07/133/24260, RG/08/008, SP/07/007/23671. S.E.H. is a BHF Chairholder. M. Kumari's time on this manuscript was partially supported by the National Heart Lung and Blood Institute (NHLBI: HL36310). The WH-II study has been supported by grants from the Medical Research Council; British Heart Foundation; Health and Safety Executive; Department of Health; National Institute on Aging, NIH, US (AG13196); Agency for Health Care Policy Research (HS06516); and the John D. and Catherine T. MacArthur Foundation Research Networks on Successful Midlife Development and Socio-economic Status and Health.

2.4. COMPETING INTERESTS STATEMENT

Inês Barroso and spouse own stock in Incyte Ltd and GlaxoSmithKline.

Kari Stefansson, Gudmar Thorleifsson, Unnur Throsteinsdottir, and Unnur Styrkarsdottir are employed by deCODE Genetics.

Vincent Mooser is a full time employee of GlaxoSmithKline.Gérard Waeber and Peter Vollenweider received funding from GlaxoSmithKline to build the CoLaus Study.