Supporting information

The Functional Promiscuity of the COG0720 Family

Gabriela Phillips¹, Laura L. Grochowski², Shilah Bonnett³, Huimin Xu², Marc Bailly^{1&}, Crysten Haas-Blaby^{1\$}, Basma El Yacoubi¹, Dirk Iwata-Reuyl³, Robert H. White² and Valérie de Crécy-Lagard¹*

This Supporting Information Contains

1. Supplemental data 1.

2. Supplemental Tables

3. Supplemental Material and Methods

4. Supplemental Results

5. Supplemental References

6. Supplemental Figures

Supplemental data 1.

PTPS-VI sequences identified

gi|229578027|ref|YP_002836425.1| hypothetical protein YG5714_0210 [Sulfolobus islandicus Y.G.57.14] MKVRVGIEGITMDSAHYTLSSYADSQIHGHTYIINVEVEGEVNEKSGFVVDFNLLKKMV REVIQEWDHKL IIPKVDLDKSRFEGPFRVDYKVIDAPFPTAEYIGIEIAKDIYLKLNKKYRILLKIYEGKDSY AIIEYP >gi|227826615|ref|YP_002828394.1| hypothetical protein M1425_0206 [Sulfolobus islandicus M.14.25] MKVRVGIEGITMDSAHYTLSSYADSQIHGHTYIINVEVEGEVNEKSGFVVDFNLLKKMV REVIQEWDHKL IIPKVDLDKSRFEGPFRVDYKVIDAPFPTAEYIGIEVAKDIYLKLNKKYRILLKIYEGKDSY AIIEYP

>gi|227829256|ref|YP_002831035.1| hypothetical protein LS215_0237 [Sulfolobus islandicus L.S.2.15] MKVKVGIEGITMDSAHYTLSSYADSOIHGHTYIINVEVEGEVNEKSGFVVDFNLLKKMV

REVIQEWDHKL

IIPKVDLDKSRFEGPFRVDYKVIDAPFPTAEYIGIEIAKDIYLKLNKKYRILLKIYEGKDSY AIIEYP

>gi|15899165|ref|NP_343770.1| hypothetical protein SSO2412 [Sulfolobus solfataricus P2] MKVRVGIEGITMDSAHYTLSSYADSQIHGHTYIVNVEVEGEVNEKSGFVVDFNLLKKIIK ETIQEWDHKL

IIPKVDLDKSRFEGPFRVDYKVIDAPFPTAEYIGIEIAKDIYLKLNKKYRILLKIYEGKDSY AIIEYP

>gi|330835333|ref|YP_004410061.1| putative 6-pyruvoyl tetrahydropterin synthase [Metallosphaera cuprina Ar-4]

MKIKVGIEGFTIDSAHYTLSSPKDDQLHGHTYTVSVEVEGDINEDNGFVVDFNKLRNLV NQTISLWDHKF

IVPKKDFEKINIASPFRVDVKLIEAPYPTVEYIGIEIAKHIYNSLGNNFKISVKIYEGRDSYA VVEYP

>gi|332797876|ref|YP_004459376.1| putative 6-pyruvoyl tetrahydropterin synthase [Acidianus hospitalis W1]

MKVKIGIEGFTIDSAHYTLSSPGDSQLHGHTYIINVEVEGNINPANGFVIDFNKLKDEIGKI IKEWDHKL

IVPKKDLEKISISGPFRNEIKIIEEDYPTAEYIGFELAKEIYNRINMPIKIKIYEGKDSYAIIEY P

>gi|15920762|ref|NP_376431.1| hypothetical protein ST0543 [Sulfolobus tokodaii str. 7] MKVKVGLEGLSFDSAHYTLSSEGNQQIHGHTYKLSIEIEGNSIDENTGFVIDFEILKKIIND IVKDWDHK

LIIPSEDLNQIYFKGPFKLDIKVIPYKYPTAEYIGLEIAKSIYEKLQKKYKITVKIYEGENNY AIIEYP

>gi|70606719|ref|YP_255589.1| hypothetical protein Saci_0934 [Sulfolobus acidocaldarius DSM 639] MKVVIGVEGFSFDSAHYTLSSKGNDQIHGHTYKLSVEIEGQDVDKNSGFVIDFMILTKIIH EVIREWDHK LIIPSRDARKIELKGPFKVEYKIIEEDFPTVEYIGSEIAKDIYEKLEKKFKVRVKIYEGENSY ALIEYP

>gi|146303412|ref|YP_001190728.1| putative 6-pyruvoyl tetrahydropterin synthase [Metallosphaera sedula DSM 5348] MKVRVGIEGFSIDSAHYTLSSPKDNQLHGHTYRVTVEVEGEVHEENGFVVDFNKLRELI KEAISSWDHKF IVPRRDMDKISITSPFKLEVKIIEAPYPTVEYIGMEIAKYVFTRLGSNFKVFVKIYEGSDSY ALIEYP

PTPS-V sequences identified

>gi|126459676|ref|YP_001055954.1| hypothetical protein Pcal_1063 [Pyrobaculum calidifontis JCM 11548] MRTCVELRGSISVAHKPSFSPGWARVHGHDYFITVGICVEGYRDLVVDADEASKKFREA LARMDGKYLAS PQEKVALDAGEIYVVPCNLPGVSGECLAKHIADLVGAAWVRVCESSLGGPCFYFSKS

>gi|18313125|ref|NP_559792.1| hypothetical protein PAE2137 [Pyrobaculum aerophilum str. IM2] MRTCVELRGSISVAHKPAFSPTWSRVHGHDYYITVGICKEGYHEVVVDASAAGDRFKE

LLAKLDGKYLAS SSEQTPLSADEVYIVPCEAKGVSGECLAKHIADLMGATWVRVCESAYASPCFYFER

>gi|171185792|ref|YP_001794711.1| hypothetical protein Tneu_1339 [Thermoproteus neutrophilus V24Sta] MRTCVELKGSVSVAHNPSFSPKWARIHGHDYVITVGICREGYTDVVVDAAEAGDKFRA LLASIDGKYLAS PLENPPLEPSGVYTVPCGQPGVSGECLAKYIAELMGASWVRVCESGLGSPCFYFER

>gi|119872458|ref|YP_930465.1| hypothetical protein Pisl_0946 [Pyrobaculum islandicum DSM 4184] MRTCVELRGSISVAHNPSFSPKWARIHGHDYVITVGICRDGYTDVVVDAAEVSEKFRKV LTSMDGRYLAS PFEKLPPDIKDVYIVPCSLSGVSGECLARHIAELMRASWVRICESGFGSPCFYYES

>gi|145591060|ref|YP_001153062.1| hypothetical protein Pars_0824 [Pyrobaculum arsenaticum DSM 13514] MRTCVELRGSISVAHKPSFSTAWGRVHGHDYIITASICRDGFHDVVVDAGEAGERLREL LSKMDGKYLAS SAEQVDLPQEEVYVVPCNAAGLSGECLAKHIADLLGASWVRVCESGYGAPCFLYER

>gi|325969372|ref|YP_004245564.1| hypothetical protein VMUT_1861 [Vulcanisaeta moutnovskia 768-28] MCIIASTVVETTCLSMRFMFSGAHRVRFSGVYGNIHGHNYDITIRLCVNGRRTLIMDIDK VRHEIQGIIS AFDGKYIKSMNEETRELTPNEYVEIPCIPEGATGECLAWYLMDKVLDVLRNMGISEITET QVVVCDSPIN CFESSSLLST

>gi|307595147|ref|YP_003901464.1| hypothetical protein Vdis_1024 [Vulcanisaeta distributa DSM 14429] MKFMFSGAHRVRFSDIYGNVHGHNYDVTIRLCVRGRRMLVTDIDKIRREVQGIVNTFD GKYIKSSMESAQ GLMPGELVEIPCIPEGATGECVAWYFIDSVMGILSRLGINDVVEVQVIVCDSPMNCFEAR SS Supplemental Table 1. Organisms predicted to contain COG0720 enzymes with dual PTPSI/III activities.

Organism	Accession numbers	Motif
Desulfuromonas acetoxidans	ZP 01312295.1	GDCENLHGH NWK
Geobacter sulfurreducens	NP 952770.1	GDCENLHGHNWR
Pirellula sp.	NP 868552.1	DI <mark>CERIHGH</mark> NYGV
Thermotoga maritima	NP 227854.1	GK <mark>CERLHGH</mark> TYR
Geobacter metallireducens	YP_384613.1	GD <mark>CENLHGH</mark> NWK
Thermoanaerobacter tengcongensis	NP_623903.1	GK <mark>CEELHG</mark> HTYRL
Desulfovibrio desulfuricans	YP_388689.1	GK <mark>CEALHGH</mark> NFG
Dehalococcoides_ethenogenes	YP_182300.1	GK <mark>CENLHGH</mark> RYE
Blastopirellula marina	ZP_01091150.1	GT <mark>CERVHGH</mark> NYR
Solibacter usitatus	YP_822324.1	GK <mark>CENVHGH</mark> NYR
Syntrophobacter_fumaroxidans	YP_844142.1	GK <mark>CENLHGH</mark> NWK
Syntrophus aciditrophicus	YP_462286.1	GNCEHLHGH NWA
Clostridium botulinum	YP_001383205.1	GK <mark>CERLHGH</mark> TYG
Desulfovibrio_vulgaris	YP_010571.1	GK <mark>CENLHGH</mark> NFA
Bacteroides_vulgatus	YP_001299367.1	SK <mark>CENLHGH</mark> NWI
Anaeromyxobacter sp	YP_001378545.1	GK <mark>CERLHGH</mark> NW
Anaeromyxobacter_dehalogenans	YP_465721.1	GK <mark>CERLHGH</mark> NWRV
Thermotoga petrophila	YP_001244479.1	GK <mark>CEKLHGH</mark> TYR
Herpetosiphon aurantiacus	YP_001545606.1	GK <mark>CERLHGH</mark> NYR
Fervidobacterium nodosum	YP_001411270.1	GK <mark>CEKLHGH</mark> TYK
Pelobacter propionicus	YP_901456.1	GD <mark>CENLHGH</mark> NWK
Caldicellulosiruptor saccharolyticus	YP_001179049.1	GK <mark>CERLHGH</mark> TYK
Thermoanaerobacter pseudethanolicus	YP_001664327.1	GK <mark>CEELHGH</mark> TYK
Desulfococcus oleovorans	YP_001529374.1	HK <mark>CENLHGH</mark> NWK
Dethiosulfovibrio peptidovorans	ZP_06392544.1	GKCEALHGH TYR
Planctomyces_limnophilus	YP_003630433.1	NICERLHGHNWR
Denitrovibrio_acetiphilus	YP_003504095.1	GKCENLHGHNWK

Supplemental Table 2. Distribution of QueD2 in sequenced organisms. * gene predicted to be regulated by Zur

Organism	QueD	Motif	QueD2 (Accession)	Motif
	(Accession)			
Acinetobacter baylii sp. ADP1			YP_046954.1	CKRSIHGH
Acinetobacter baumannii ATCC 17978			YP_001707113.1	CKRSIHGH
Psychrobacter sp. PRwf-1			YP_001279719.1	CKRSIHGH
Psychrobacter cryohalolentis K5			YP_580760.1	CKHSIHGH
Sulfurovum sp. NBC37-1			YP_001357532.1	CSENIHGH
Cupriavidus metallidurans CH34	YP_583724.1	CRNIHGH	YP_583256.1*	CSHSIHGH
Burkholderia cenocepacia AU 1054	YP_622375.1	CRNLHGH	YP_622905.1*	CSHSIHGH
Azotobacter vinelandii	ZP_00091843.1	CGRLHGH	YP_002800062.1*	CSRSLHGH
Thiomicrospira denitrificans ATCC 33889			fig 326298.3.peg.328	CRSSIHGH
Campylobacter concisus 13826			YP_001466043.1	CRTSIHGH
Campylobacter jejuni subsp. jejuni CF93-6			ZP_01067834.1	CKSSIHGH
Campylobacter coli RM2228			ZP_00367800.1	CKSSIHGH
Campylobacter upsaliensis RM3195			ZP_00371720.1	CKTSIHGH
Campylobacter lari RM2100			YP_002575991.1	CKTSIHGH
Campylobacter hominis ATCC BAA-381			YP_001405930.1	CRESIHGH
Helicobacter mustelae 43772			YP_003516807.1	CSRSLHGH
Helicobacter acinonychis str. Sheeba			YP_664840.1,	CAQNIHGH
			YP_664846.1	CAQNIHGH
Helicobacter pylori J99			NP_223585.1	CAQNIHGH

Supplemental Table 3. Strains and Plasmids

Strains	Genotype/Comments	Reference/Source
E.coli		
JW2735	rrnB3 $\Delta lacZ4787$ hsdR514 $\Delta (araBAD)$ 567 $\Delta (rhaBAD)$ 568 rph- 1 $\Delta ygcM$	(1 single-gene knockout mutants: the Keio collection)
GM2163	F ⁻ ara-14 leuB6 fhuA31 lacY1 tsx78 glnV44 galK2 galT22 mcrA dcm-6 hisG4 rfbD1 rpsL 136 dam13::Tn9 xylA5 mtl-1 thi-1 mcrB1 hsdR2	New England Biolab
INV110	F' { $tra\Delta 36 \ proAB \ lacIq \ lacZ\Delta M15$ } $rpsL$ (StrR) $thr \ leu \ endA \ thi-1 \ lacY \ galK \ galT \ ara \ tonA \ tsx \ dam \ dcm \ supE44 \ \Delta(lac-proAB) \ \Delta(mcrC-mrr)102::Tn10 \ (TetR)$	Invitrogen
Торо 10	(F-mcrA Δ(mrr-hsdRMSmcrBC) Φ80lacZΔM15 ΔlacX74 recA1 araD139 Δ(araleu)7697 galU galK rpsL (StrR) endA1 nupG)	Invitrogen
DH5a	F recAI endAI hsdR17($r_k m_k$) supE44 thi-I gyrA relAI	Life Technologies
MG1655	$F \lambda^2 i l v G$ - rfb-50 rph-1	(2)
VDC2043	$MG1655 \Delta PTPSI_{Ec}$	This study
VDC3267	MG1655 ΔfolB::Kan'	This study
VDC3321	VDC2043 pBAD24	This study
VDC3325	VDC2043 pBAD24:: <i>PTPS-I</i>	This study
VDC3331	VDC2043 pUC19:: <i>PTPS-II_{rat}</i>	This study
VDC3335	VDC2043 pBAD24:: <i>PTPS-I/III_{Sa}</i>	This study
VDC3337	VDC2043 pBAD24:: <i>PTPS-I/III_{sa}</i> E27A	This study
VDC3339	MG1655 pBAD24	This study
VDC3365	VDC2043 pBAD24:: $PTPS-I/III_{Sa}$ Cys26Ala	This study
VDC3441	VDC2043 pBAD24:: $PTPS$ - I/III_{Sa} Glu2/Cys	This study
VDC3447	VDC2043 pUC19:: $PTPS$ - II_{Rn} Cys42Ala and Asn44Cys	This study
VDC3452	VDC2043 pBAD24:: <i>PTPS-I_{Ec}</i> Lys23Cys and Cys24Ser	This study
VDC4660	VDC2043 pBAD24:: <i>PTPS-I_{Ab ADP1}</i>	This study
VDC3524	VDC2043 pBAD24 :: SSO2412	This study
VDC3516	VDC2043 pBAD24 :: Pcal_1063	This study
VDC34/3		This study
VDC3475	VDC32/6 pBAD24::PTPS-I/III _{Sa} Cys26Ala	This study
VDC34//	$VDC32/6 pBAD24::PTPS-I/III_{Sa} Glu2/Cys$	This study
VDC3465	$VDC2043 \text{ pBAD}24::PTPS-I_{Li}$	This study
VDC346/	VDC2043 pBAD24:: $PIPS-III_{Li}$	This study
VDC3469	VDC2043 pBAD24:: $PTPS-T_{Cb}$	This study
VDC34/1	VDC2043 pBAD24: $PTPS I/III_{Cb}$	This study
VDC34/9	VDC320/ $pBAD24$: $PTPS$ - I/III_{Sa}	This study
VDC3481	VDC320/ $pBAD24$: $PTPS-1/III_{Sa}$ Glu2/Ala	This study
VDC3484	VDC3207 pUC19: $PTPS \cdot II_{Rn}$	This study
VDC3483	VDC3267 pDC19 PTP3- II_{Rn} Cys42Aia and Asii44Cys	This study
VDC3407	$VDC3267 \text{ pDAD}24.J0lD_{Ec}$	This study
VDC3493	VDC3267 pDAD24PTPS I/III	This study
VDC3493	$VDC520/pBAD24PTPS-I/III_{Cb}$	
	DS70 4mmE2	(2)
NDC3200	H26 AHVO 1718	(3) This study
VDC3241	$H_{20} \Delta h_{10} O_{-1/10}$	(<i>A</i>)
VDC3453	$\frac{1120 \text{ Gyb}}{120 \text{ Gyb}}$	This study
VDC3455	$H_{26} \Delta H_{17} O_{-1718} \text{ pJAM202} H0000000000000000000000000000000000$	This study
VDC3342	$H_{26} \Lambda H_{VO} = 1782$	This study
VDC3405	H26 Δ <i>HVO</i> 1282 pJAM202c	This study

VDC3401	H26 Δ <i>HVO_1282</i> pJAM202:: <i>HVO_1282</i>	This study
VDC3442	H26 Δ <i>HVO_1284</i>	This study
VDC3226	H26 pJAM202c	(5)

Plasmids	Description	Reference or source
pBAD24	Amp ^r ; colE1	(6)
pTA131	Amp ^r ; pMB1; pyrE2 under ferredoxin promoter	(7)
pBY158	pTA131 derivative containing the attCm ^R Ccd ^R cassette	(4)
pGP058	pBY158 derivative containing 1000bp Upstream and downstream of <i>HVO_1718</i>	This study
pGP044	pCR8/GW containing 1000bp Upstream and downstream of <i>HVO 1718</i>	This study
pGP325	$pBAD24::PTPSI_{Ec}$	This study
pSTV28MPS	pSTV28 containing <i>mtrA</i> , <i>PTPS-II</i> _{Rn} and <i>spr</i>	(8, 9)
pBY148	pUC19:: <i>PTPS-II_{Rn}</i> cloned between <i>Eco</i> RI and <i>Bam</i> HI from pSTV28MPS	This study
pGP447	pUC19:: <i>PTPS-II_{Rn}</i> Cys42Ala and Asn44Cys	This study
pGP452	pBAD24:: <i>PTPS-I_{Ec}</i> Lys23Cys and Cys24Ser	This study
pGP365	pBAD24::PTPS-I/III _{Sa} Cys26Ala	This study
pGP441	pBAD24:: <i>PTPS-I/III sa</i> Cys26Ala and Glu27Cys	This study
pJAM202	Amp ^r Nov ^r ; pBAP5010 containing P2 _{<i>rrn</i>} - <i>psmB</i> - <i>his</i> ₆ ; β-His ₆ expressed in <i>H. volcanii</i>	[46]
pJAM202c	Amp ^r ; Nov ^r ; pJAM202-derived control plasmid	(10)
pGP401	pJAM202:: HVO 1282	This study
pGP425	pJAM202::VNG6306	This study
pCH129	pBAD24::PTPS-I2A _b	This study
pIKB272	pTA131:: <i>HVO_1282</i>	This study
pIKB306	pTA131:: <i>HVO_1284</i>	This study
Sa PTPS-III E27A – pBAD24	pBAD24:: <i>PTPS-I/III_{Sa}</i> Glu27Ala	(11)
Sa PTPS-III– pBAD24	pBAD24:: <i>PTPS-I/III_{Sa}</i>	(11)
Li PTPS-I– pBAD24	pBAD24:: <i>PTPS-I</i> _{Li}	(11)
Li PTPS-III– pBAD24	pBAD24:: <i>PTPS-III_{Li}</i>	(11)
Cb PTPS-I – pBAD24	pBAD24:: <i>PTPS-I_{Cb}</i>	(11)
Cb PTPS-III– pBAD24	pBAD24:: <i>PTPS-I/III_{Cb}</i>	(11)
pGPP522	pBAD24:: <i>PTPS-VI_{Ss}</i>	This study
pGP505	pBAD24::PTPS-V _{Pc}	This study

Genome abbreviation. Ab: Acinetobacter baylyi ADP1, Cb: Clostridium botulinum, Ec: Escherichia coli, Li: Leptospira interrogans L1-130, Pf: Plasmodium falciparum, Sa: Synthrophus aciditrophicus, Rn: Rattus norvegicus, Ss: Sulfolobus solfataricus P2, Pc: Pyrobaculum calidifontis.

Supplemental Table 4. List of	primers used in this s	study
-------------------------------	------------------------	-------

Primer name	<u>Sequence</u>	Use
Site directed mutagenesis		
mutSyacCtoA_Fw	AACTATCCGGGCAACGCCGAACAT	Construction
mutSyacCtoA_Rev	GCCATGCAGATGTTC GGC GTTGCC	of plasmid pGP365
SyacmutAEtoAC_Fw	GGCAACGCC TGC CATCTGCAT	Construction
SyacmutAEtoAC_Rev	CATGCAGATGGCAGGCGTTGC	of plasmid pGP441
YgcMmutCX3toCX4_Fw	CCGGAAGGGCAT TGTA GTGGTCGCCTG	Construction
YgcMmutCX3toCX4_Rev	GTGCAGGCGACCACTACAATGCCCTTCC	of plasmid pGP452
PTPSIImutCX5toCX3_Fw	GGGAAAGCCAACTGTCCGAATGGC	Construction
PTPSIImutCX5toCX3_Rev	ATGGCCATTCGGACAGTTGGCTTTCCC	of plasmid pGP447
Cloning		
HsQueD_NdeI_Fw	GAGCG <u>CATATG</u> CGTTCAGCACAGTCCAA	Construction
HsQueD_BlpI_Rev	GAGCG <u>GCTCAGCT</u> CAGTTCGGGCCAGCAGT	of plasmid pGP425
QueDADP1_EcoRI_Fw	TTGATCG <u>GAATTC</u> ACCATGTTAATTCGTAAGTTATTTA AGTTTG	Construction of plasmid
QueDADP1_XbaI_Rev	TTGATC <u>TCTAGA</u> TTAAATATGAACTTGCAATTCCAC	pCH129
ygcM_EcoRI_Fw	ATAT <u>GAATTC</u> TGTAGAGAAATTATGATGTCCAC	Construction
ygcM_KpnI_Rev	ATAT <u>GGTACC</u> TCATTCGCCGCGATAGATACA	of plasmid pGP325
HvPTPSIV_NdeI_Fw	<u>CATATG</u> TACCGCGTCTCGGTTCG	Construction
HvPTPSIV_BlpI_Rev	<u>GCTCAGC</u> TCAGAGCGGAGTCTCGTAGGT	of plasmid pGP401
PcQueD2WHGH_Fw	AGGAG <u>CCATGG</u> GGACGTGTGTAGAATT	Construction
PcQueD2WHGH_Rev	AGGAG <u>GGATCC</u> TTAACTCTTGCTGAAGTAGAAGCA	of plasmid pGP505
SsQueD2QHGH_Fw	AGGAGGAATTCACCATGAAAGTTAGAGTTGGTATCG AAG	Construction of plasmid
SsQueD2QHGH_Rev	TTATGGATACTCTATAATTGCATATGA	pGP522
ECygcmS	GGTATTGAGGGTCGCATGATGTCCACCACG	Construction
ECygcmAS	AGAGGAGAGTTAGAGCCTCATTCGCCGCG	of plasmid pBL-I41
MJ1272-Fwd	GGT <u>CATATG</u> ATGTTGGAGTTAAAT	Construction
MJ1272-Rev	GCT <u>GGATCC</u> TTATTTCACCTCTAAG	of plasmid pMJ1272
H. volcanii deletions		
EntUPDNHvqueD_Fw	CGGATTCGTAGATGAGCGTGAT	Construction
EntUPDNHvqueD_Rev	CGGTCGTCGCGCTGTCCATG	of plasmid pGP044
UDqueDD_Fw	GAGCTCTGCGCCGGCTTCT	Construction
UDqueDD_Rev	CGTTCGCCTGCTCGGGACA	of plasmid pGP058
GTPCHIII_N_Fw	CGGGCCCCCCTCGAGCTTTCGTCGGGTTGTTCG	Construction
GTPCHIII_N_Rev	GACGCGTTCATATGCTGCGTATTCGTCACGGTAGA	of plasmid
GTPCHIII_C_Fw	GCATATGAACGCGTCAGACGACTGAGCGATGGAG	pIKB306
GTPCHIII_C_Rev	CGGGCTGCAGGAATTCAAGCGACTCGGGATGGAC	

PTPS4_N_Fw	CGGGCCCCCCTCGAGCGCTCAACTTCGTGATGGAC	Construction
PTPS4_N_Rev	GACGCGTTCATATGCGTTCGGAACCGTCAGGTG	of plasmid
PTPS4_C_Fw	GCATATGAACGCGTCACCTACGAGACTCCGCTCTG	pIKB272
PTPS4_C_Rev	CGGGCTGCAGGAATTCCGGTTAGCTTCCAGTCGTC	
H. volcanii verifications of		
deletions		
intckqueD_Fw	CTCCACCACGACGGCAAGTGT	Internal check
intckqueD_Rev	CGCTGACCGAGACCGAGACC	for deletion of
		HVO_1718
Chk_HvqueD_Fw	ACCCGAAGATATCAGTATTATAAC	External check
Chk_HvqueD_Rev	GTTCGTAGCCGCGTCGCGTT	for deletion of
		HVO_1718
HvGTPCHIIIntck_Fw	AACATGGTCGCGGTCACCAA	Internal check
HvGTPCHIIIintck_Rev	ACAGTCTTCGAGCGCGTGTT	for deletion of
		HVO_1284
HvGTPCHIIIck_Fw	GGAGGTCGTCGTAGTGGAAC	External check
HvGTPCHIIIck_Fw	CGTCTTCGAGGAGTCGGTAG	for deletion of
		HVO_1284
HvPTPS4intck_Fw	TCTCGGTTCGCAGGGACCTC	Internal check
HvPTPS4intck Rev	CGCTCGCCACGTCGTCCTC	for deletion of
_		HVO_1282
HvPTPS4ck_Fw	AGCCGCGTCTTCGCGTTCAA	External check
HvPTPS4ck_Rev	GATAGCGAGCGACTGCAACC	for deletion of
		HVO 1282

c Restriction sites are underlined; point mutations are in bold.

Supplemental Material and Methods

Preparation of *M. jannaschii* Cell Extracts.

M. jannaschii cells were grown as previously described (*12*). Cell extracts of *M. jannaschii* were prepared by sonicating 5 g of a frozen cell pellet suspended in 10 ml of TES extraction buffer (50 mM TES/K⁺, 10 mM MgCl₂, 10 mM DTT, pH 7.5) under Ar for 5 min at 3°C. A W-385 Sonicator with a microtip from Heat Systems-Ultrasonics, Inc was used. The resulting mixture was centrifuged under Ar (27000 × g, 10 min) and was stored frozen under Ar at -20°C until used. The protein concentration of the *M. jannaschii* extract was ~30 mg/ml. Protein concentrations were measured using the BCA total protein assay (Pierce) with bovine serum albumin as a standard.

Assay of pterin, biopterin and hydroxymethylpterin in *M. jannaschii*

To 0.5 g of frozen cell pellet is added 0.5 mL of water and the sample shaken and heated at 100°C for 5 min. To the suspension is added 200 µL of 50% TCA and the mixture heated an addition 100°C for 10 min and then centrifuged (14000g, 10 min). The pellet was washed with 100 µL of 5% TCA centrifuged (14000g, 10 min) and the combined supernates mixed with iodine in MeOH (50 mg/mL) to give an intensity purple solution. After 1 hr at room temperature the color was dispelled by the addition of a saturated solution of sodium bisulfite in water. An equal volume of methanol was then added, and the samples were centrifuged (14,000g, 10 min) to remove the precipitate. After removal of the evaporation methanol the sample was applied to a Dowex 50W-8X-H⁺ column (3 x 10 mm) that, after washing with water, the bound pterins were eluted with 6 M NH₄OH. The pterins purified by preparative LC using the acetonitrilewater-formic acid (88%), 40:10:5 v/v/v as the developing solvent. The pterin, biopterin and hydroxymethylpterin containing spot was then removed (they all have the same TLC R_f) and eluted with 50% methanol. After removal of the methanol by evaporation the samples were assayed by HPLC using the Varian PursuitXRs C18 and Varian Pursuit-PFP HPLC columns as described in the methods section of the text. These two columns were required for the separation of the pterin from the 6-hydroxymethypterin. Of the three-targeted pterins only the 6hydroxymethylpterin, an intermediate in methanopterin biosynthesis, was detected. The absence of biopterin indicated that this pterin was not produced by *M. jannaschii* and that these cells would not contain PTPS-II.

Supplemental Results

Measuring the incorporation Deuterium into CPH₄ produced by the MJ1272 derived enzyme.

When a incubation with sepiapterin and H_2 neoterin-P was done in the presence of 50% D_2O the amount of deuterium incorporated into the recovered pterin product was 48% of the molecules with one deuterium. This would have been incorporated in the last (retroaldol) reaction leading to 6-carboxytetrahydropterin product (see Figure 6 of main manuscript). Subsequent oxidative decarboxylation would lead the C-6 labeled pterin that was isolated and measured.

Testing proton exchange of pterin and dihydropterin

To establish the extent of chemical proton exchange of pterin and dihydropterin each were dissolved in D₂O and heated for different periods under different conditions and then analyzed for deuterium incorporation by mass spectrometry. After this treatment the dihydropterin were oxidized to pterin prior to analysis as described above and the pterins purified by retention on a Dowex 50W-8X-H⁺ column followed by elution with aqueous ammonia. The resulting pterins were analyzed for deuterium exchange either by direct insertion (DI) mass spectral of the pterin, M^+ = 163 m/z or by DI or GC-MS analysis of the pterin (TMS)₂ derivative having intense ions at $M^+ = 307 m/z$ and $M^+ - 15 = 292 m/z$. 7-8-Dihydropterin was prepared either by reduction of pterin with Adams catalysis (13) or by reduction with zinc metal in 1 N NaOH (14). The dihydropterin in dilute phosphate buffer was evaporated to dryness with a stream of nitrogen gas and place in D₂O under argon and heated at 100°C. After 17 hr the sample was cooled and oxidized with I₂ in methanol followed by bisulfite reduction. The pterin was then isolate on a Dowex 50W-8X-H⁺ column and converted into the (TMS)₂ derivative as described above. Mass spectral analysis showed that the pterin had incorporated in 15% of the molecules a single deuterium that we consider to be incorporated at C-7. Pterin heated under the same conditions

did not incorporate any deuterium. These results show that the label from the incubations with substrates and D_2O would not result from the chemical incorporation into pterin or dihydropterin.

Involvement of cysteine in the catalytic mechanism of the MJ1272 derived enzyme.

Incubation of the enzyme (10 μ g) with 2 mM iodoacetamide for 1 hr resulted in the alkylation of the one conserved cysteine producing an enzyme that exhibited 38% of the activity compared to the untreated control. These results indicated that the cysteine in the PTPS-I signature motif {C-X(3)-H-G-H} was either involved in the enzymatic mechanism and/or substrate binding of to this enzyme.

Metal binding analysis of MJ1272

Metal analysis

Metal analysis of the MonoQ purified MJ1272 gene product was performed at the Virginia Tech Soil Testing Laboratory using inductively coupled plasma emission spectrophotometry. Instrumentation included a Spectro CirOS VISION made by Spectro Analytical Instruments equipped with a Crossflow nebulizer with a Modified Scott spray chamber, nebulizer rate was 0.75 L/min. A 50 mg/L yttrium internal standard was introduced by peristaltic pump. Samples were analyzed for iron, manganese and zinc.

Purified MJ1272 was also analyzed for iron, manganese, nickel, and zinc by ICP spectroscopy. Manganese, and nickel were not detected, however a 0.6 molar ratio of zinc and a 0.1 molar ratio of iron per MJ1272 monomer was measured. To test the effect of different metals on activity MJ1272 was incubated with different metals and assayed by HPLC for the different products obtained from sepiapterin. The MJ1272 gene product had the following order of activity with the divalent metal indicated: Fe>>>Co>>Zn, Cu, Ni, Mn, Mg. The ratio of 6-carboxypterin and pterin varied between metals. Additional minor peaks were observed in some of the reactions but were not identified. Incubations were conducted in the typical assay conditions with 2 mM metal added.

References

- Baba, T., Ara, T., Hasegawa, M., Takai, Y., Okumura, Y., Baba, M., Datsenko, K. A., Tomita, M., Wanner, B. L., and Mori, H. (2006) Construction of *Escherichia coli* K-12 in-frame, single-gene knockout mutants: the Keio collection, *Mol. Syst. Biol. 2*, 2006.0008.
- Blattner, F. R., Plunkett, G., 3rd, Bloch, C. A., Perna, N. T., Burland, V., Riley, M., Collado-Vides, J., Glasner, J. D., Rode, C. K., Mayhew, G. F., Gregor, J., Davis, N. W., Kirkpatrick, H. A., Goeden, M. A., Rose, D. J., Mau, B., and Shao, Y. (1997) The complete genome sequence of *Escherichia coli* K-12, *Science 277*, 1453-1474.
- 3. Allers, T., and Ngo, H. P. (2003) Genetic analysis of homologous recombination in Archaea: *Haloferax volcanii* as a model organism, *Biochem. Soc. Trans. 31*, 706-710.
- El Yacoubi, B., Phillips, G., Blaby, I. K., Haas, C. E., Cruz, Y., Greenberg, J., and de Crécy-Lagard, V. (2009) A Gateway platform for functional genomics in *Haloferax volcanii*: deletion of three tRNA modification genes, *Archaea 2*, 211-219.
- Blaby, I. K., Phillips, G., Blaby-Haas, C. E., Gulig, K. S., El Yacoubi, B., and de Crécy-Lagard, V. (2010) Towards a systems approach in the genetic analysis of archaea: accelerating mutant construction and phenotypic analysis in *Haloferax volcanii, Archaea* 2010, 426239.

- Guzman, L. M., Belin, D., Carson, M. J., and Beckwith, J. (1995) Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter, *J. Bacteriol.* 177, 4121-4130.
- Allers, T., Ngo, H. P., Mevarech, M., and Lloyd, R. G. (2004) Development of additional selectable markers for the halophilic archaeon *Haloferax volcanii* based on the leuB and trpA genes, *Appl. Environ. Microbiol.* 70, 943-953.
- Yamamoto, K., Kataoka, E., Miyamoto, N., Furukawa, K., Ohsuye, K., and Yabuta, M. (2003) Genetic engineering of *Escherichia coli* for production of tetrahydrobiopterin, *Metabol. Engin 5*, 246-254.
- 9. Kaczowka, S. J., and Maupin-Furlow, J. A. (2003) Subunit topology of two 20S proteasomes from *Haloferax volcanii*, *J. Bacteriol.* 185, 165-174.
- Zhou, G., Kowalczyk, D., Humbard, M. A., Rohatgi, S., and Maupin-Furlow, J. A. (2008) Proteasomal components required for cell growth and stress responses in the haloarchaeon *Haloferax volcanii*, *J. Bacteriol.* 190, 8096-8105.
- Pribat, A., Jeanguenin, L., Lara-Nunez, A., Ziemak, M. J., Hyde, J. E., de Crécy-Lagard,
 V., and Hanson, A. D. (2009) 6-pyruvoyltetrahydropterin synthase paralogs replace the
 folate synthesis enzyme dihydroneopterin aldolase in diverse bacteria, *J. Bacteriol. 191*,
 4158-4165.
- Mukhopadhyay, B., Johnson, E. F., and Wolfe, R. S. (1999) Reactor-ccale cultivation of the hyperthermophilic Methanarchaeon *Methanococcus jannaschii* to high cell densities, *Appl. Environ. Microbiol.* 65, 5059-5065.

- Goto, M., Sugiura, K., and (1971) Biosynthesis of pteridines in *Drosophila melanogaster* and *Rana catesbeiana*, In *Methods Enzymol.* (McCormick, D., B., and Wright, L. D., Eds.), pp 746-761, Academic Press.
- 14. White, R. H. (1998) Methanopterin biosynthesis: methylation of the biosynthetic intermediates, *Biochim. Biophys. Acta* 1380, 257-267.

Supplemental Figure 1. Sequence Logos and signatures. Signature motifs obtained using Prosite and logos for the PTPS-I to IV family members. The {C-X(3).H-G-H} motif is found in PTPS-I member involved in Q biosynthesis encoded by the *queD* gene. The {C-X(5)-H-G-H-X-[FY]-X-[LV]-X-[IV]} motif is found in PTPS-II involved in BH₄ biosynthesis, The {E-X-[IL]-H-G-H-X(3,5)-V-X-[AILV]-X-[GIL]} motif is found in PTPS-III involved in folate biosynthesis, the {C-E-X-[ILPV]-H-G-H-X-[FWY]-X(3)-[AILV]} motif is found in PTPS-I/III involved in PTPS-I/III involved in Dtps-I/III involved in Bth queuosine and folate biosynthesis. The {F-X(0,1)-G-X-[ANTV]-[NPQST]} motif was found in PTPS-IV sequences.

Supplemental Figure 2. Complementation of G⁺ deficient phenotype by *H. salinarum* QueD homolog. The G⁺ deficient phenotype was complemented by the in trans expression of *H. salinarum* Vng6306, *HVO_1718* homolog, in the mutant strain. To control for the amount of tRNA, the m²₂G content in the complemented strains was compared with the m²₂G content in the WT control (blue bars). The ratios of G⁺/m²₂G of tRNA extracted from the *H. volcanii* ΔHVO 1718 derivatives strains are shown by the red bars.

Supplemental Figure 2. PCR verifications of *H. volcanii* gene deletions of (A) *HVO_1718*, (B) *HVO_1284* and (C) *HVO_1282*. The gene deletions were verified by locus-specific PCR using primer pairs designed to anneal upstream and downstream the deletion cassette and primers pairs designed to anneal within the deleted gene (as indicated in Supplementary Table 2). Predicted amplicon sizes are indicated above each PCR band.