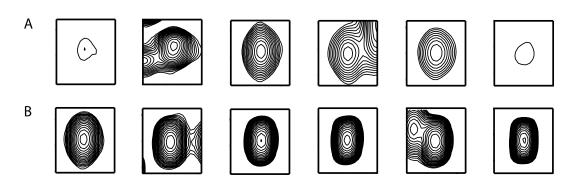
Supporting Information

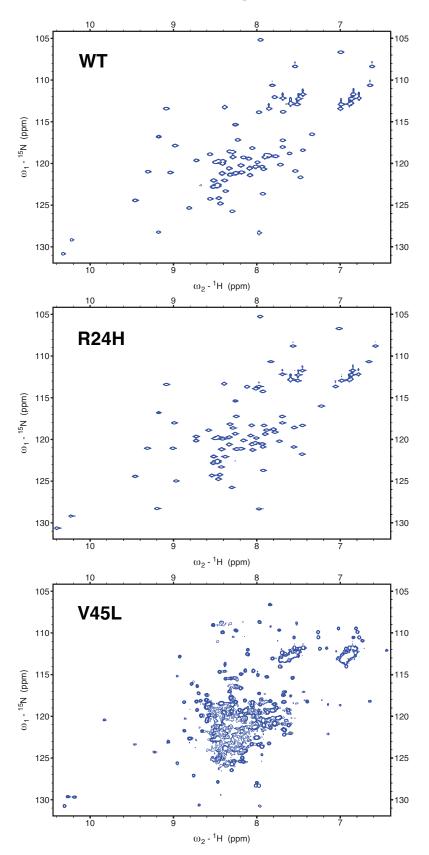
Structural and Biophysical Insights into the Ligand-Free Pitx2 Homeodomain and

a Ring Dermoid of the Cornea Inducing Homeodomain Mutant

Thomas Doerdelmann[†], Douglas J. Kojetin^{†,‡}, Jamie M. Baird-Titus[§], Laura A. Solt[‡], Thomas P. Burris[‡] and Mark Rance[†]*


Supplementary Figure 1

¹⁵N-relaxation rates for the Pitx2 wild-type homeodomain (red) and R24H mutant (black). The concentration series for the mutant protein establishes the concentration dependence of the R_1 and R_2 measurements, but clearly demonstrates the increased flexibility of the N-terminal arm and the L1 and L2 loop regions independent of protein concentration. Cylinders indicate the positions of the α -helices.



Supplementary Figure 2

Amide backbone chemical shift resonances in a standard ${}^{1}\text{H}{}^{15}\text{N}$ HSQC experiment. **A.** N-terminal resonances 1-7 (left to right) with the second box to the left including overlapped residues 2 and 3. **B.** C-terminal tail of the expression system resonances 61-66 (left to right)

Supplementary Figure 3 2D ¹H-¹⁵N HSQC spectra of the wild-type (top), R24H mutant (middle) and V45L (bottom) Pitx2 homeodomains. Data was recorded at 600 MHz and a temperature of 295K.

