
(red) and somatic samples (blue) in the training dataset as assessed with the Pluripotency 

Score and in (c) with both PluriTest scores. In (d-g), we plot Pluripotency Scores against

Novelty Scores for test data set samples. The classifiers were tested against datasets 

generated on four different microarray platforms: Illumina WG6v1 (c, 177 samples)5, HT12v3

(d, 498 samples), HT12v4 (e, 38 samples) and Affymetrix U133A (f, 5372 samples)10). 

Samples for these datasets were independently generated (c and d) or curated from 

published studies (c, d, f). In d, the lines in the plot indicate empirically determined 

thresholds for defining normal pluripotent lines (see also Supplementary Fig. 2).

Figure 2: Application of PluriTest

The graphs show the actual output of PluriTest. Pluripotency score is plotted against novelty 

score for the indicated samples. The background encodes an empirical density map

indicating pluripotency (red) and novelty (blue). (a-c) PluriTest results for known pluripotent 

cells and somatic cells and tissues (a), for fully and partially reprogrammed iPSC lines (b),

and for an hESC line (WA09) being differentiated into neural precursors, at the indicated time 

points. In (d) PluriTest was run on mixed samples of hESC and hESC-derived neural 

precursor RNA (day 0 and day 14 from c) at the indicated ratios. hESC, human embryonic 

stem cell, hiPSC, human induced pluripotent stem cell.

Online Methods
Microarray analysis

Analysis of samples run in-house was essential the same as reported5, except that Illumina 

HT12 arrays were used.  We first filtered the probes that are present on both Illumina 

HT12v3 and HT12v4 arrays to ensure identical results when either of the two array versions 

are used with the PluriTest application. We filtered for probes that were detected with a p-

detection value of at least < 0.01 in at least 10 samples of the Stem Cell Matrix 2. After 

filtering, 22,135 probes were retained and raw probe expression values were transformed 

and normalized with the variance stabilization transformation (VST) and robust spline 

normalization (RSN) functions as implemented in the lumi R/Bioconductor package.13 We

normalized sample data toward an in-house well-characterized pluripotent target sample 

(WA09). 

Sample collection, Test and Training datasets

We collected 468 human samples for generating the PluriTest model. 204 were derived from 

somatic cells and tissues, 264 were pluripotent samples (223 hESC  and 41 hiPSC, Fig. 1b
and c). With these samples we trained both the multi-class and one-class classifiers. For our 

tests datasets we analyzed samples in house on Illumina HT12v3 (398 samples total, Fig. 

1e) and v4 arrays (39 samples total, Fig. 1f) but also combined these samples with 



published datasets. Justin Jeyakani (Genome Institute of Singapore, Singapore), Adi Tarca 

(Wayne State University, Detroit, MI USA), Toshima Parris (University of 

Gothenburg,Gothenburg, Sweden), Mayte Suarez-Farinas (Rockefeller University, New York, 

NY, USA), Sergei Doulatov (Ontario Cancer Institute, Toronto, Canada), Kaushal Gandhi and 

David Booth (Westmead Millenium Institute, Sydney, Australia) shared the raw .idat files from 

their published studies (NCBI GEO accession numbers: GSE2197314, GSE20462815, 

GSE17048916, GSE2113510 17, GSE186861118). 

For the Illumina Stem Cell Matrix 1 dataset (GSE115081)3 we focused on those samples in 

our previous study that were analyzed on the WG6v1 platform (177 samples total, Fig 1d)

For the Affymetrix U133A dataset (EM-Tab-6212, 5372 samples total)10 we translated the 

gene identifiers from the HT12v3 PLATFORM to the respective gene array annotation with a 

mapping table provided by Illumina Inc (http://www.switchtoi.com/probemapping.ilmn, 

accessed 06/10/2010). 

In the other cases (WG6v1 [GSE115081], Illumina WG6v3, HT12v4), most probes targeting 

specific transcripts were identical and matched based on their specific NuID probe 

identifiers.13

A Supplementary Table (.xls) provides details on all samples used for training and testing 

PluriTest.

Partially reprogrammed cell preparations:

Human dermal fibroblasts (HDFs; Sciencell) were cultured in DMEM, 2mM GlutaMax, 10% 

fetal bovine serum and 0.1 mM non-essential amino acids (Life Technologies). HDFiPS cells 

were generated and maintained in standard hESC medium containing DMEM/F12 

supplemented with 20% Knockout Serum Replacement (Life Technologies), 2mM GlutaMAX, 

0.1 mM nonessential amino acids, 0.1mM 2-Mercaptoethanol, and 12 ng/ml of bFGF 

(Stemgent). HDFiPS cells were cultured on irradiated mouse embryonic fibroblasts (MEFs) in 

hESC medium and mechanically passaged once a week. The hESC medium was changed 

daily.

PLAT-A packaging cells were plated onto six well plates coated with Poly-D-Lysine at a 

density of 1.5x106 cells per well without antibiotics and incubated overnight. Cells were 

transfected with 4 ug pMXs retroviral plasmids, which carry human OCT4/POU5F1, SOX2, 

KLF4 or MYC (Addgene catalog number 17217, 17218, 17219, and 17220 respectively) by 

Lipofectamine 2000 (Life Technologies) according to the manufacturer’s instructions. Viral 

supernatants were collected at 48 and 72 hours post- transfection, and filtered through a 

0.45 μm pore-size filter.

HDF cells were seeded onto a well of a six well plate at a density of 1.50 x 106 cells per well 

one day before transduction. Cells were transduced with equal volumes of fresh 48 hr and 72 



hr viral supernatants containing each of four retroviruses on day two and day three, 

supplemented with 6 μg/ml of Polybrene (Sigma). On day four, the transduced cells were 

split onto MEFs at a density of 104 cells per well of a six well plate in hESC medium 

supplemented with 0.5mM valproic acid (VPA. Stemgent). Cells were fed every other day 

with VPA-supplemented hESC medium for 14 days before VPA was withdrawn. The iPSC 

colonies were manually picked three weeks post transduction and transferred onto MEF 

plates.

20-30 days post-transduction the partially and fully reprogrammed cells were identified based 

on morphology and live staining with TRA1-81 (1:200, R&D system MAB 1435) and SSEA4 

(1:100, Stemgent 09-0011) as described previously (see also Supplementary Fig. 6).19

Colonies that were TRA1-81 and SSEA4-positive and had hESC-like morphology (fully 

reprogrammed cells) were expanded on MEF feeders. Cells were harvested for microarray 

analysis at passage 4 and passage 57. Colonies that showed no SSEA4 staining and very 

faint TRA1-81 staining (partially reprogrammed cells) were harvested at passage 4. Before 

the cells were harvested for whole genome transcription microarrays they were again stained 

to confirm that the cells still carried the correct surface cell marker expression.

Neural differentiation

We used a standard protocol for generating neural precursors from hESCs. hESCs were 

grown on Matrigel in StemPro medium (Life Technologies) until they were 30% confluent. We 

changed the medium then to DMEM/F12, 20% Knockout Serum Replacement (Life 

Technologies), with 5mM dorsomorphin and 5mM SB431542. Over the next six days, cells 

differentiated along a neuroectodermal lineage; on the 6th day (day 6 in Figure 2-1), the 

population was approximately 95% PAX6-, OTX2- and NES-positive, and OCT4/POU5F1-

and Tra1-81-negative (parallel cultures were analyzed by flow cytometry to estimate 

percentages). The cells were then passaged with AccutaseTM onto a MatrigelTM - coated plate 

and cultured in DMEM/F12 supplemented with N2B27 and bFGF for eight days, during which 

the primordial neural progenitor cells expanded and differentiated into more mature neural 

cells that were PAX6- and OTX2- negative (day 14 in Fig. 2).

We profiled samples from this time course experiment in two ways: biological replicates 

(n=3) were collected from day 0 (undifferentiated hESC, day 3 (differentiating hESC), and 

prior to splitting the cells on day 6 (differentiating hESC). Finally, three more biological 

replicates were collected after additional 8 days in culture after the passage (day 14; neurally 

differentiated hESC).

In a second experiment we used the RNA obtained from the day 0 and day 14 cultures and 

mixed pooled RNA from those time points at seven ratios:



100% undifferentiated hESC RNA; 

75% undifferentiated hESC RNA plus 25% neurally differentiated RNA;

66% undifferentiated hESC RNA plus 33% neurally differentiated RNA;

50% undifferentiated hESC RNA plus 50% neurally differentiated RNA;

33% undifferentiated hESC RNA plus 66% neurally differentiated RNA;

25% undifferentiated hESC RNA plus 75% neurally differentiated RNA;

100% neurally differentiated RNA 

For each of the experiments shown in Fig. 2 (different PSC lines, partially and fully 

reprogrammed iPSC samples, neural differentiation and RNA mixing experiments), we run 

12 samples on a single HT12v3 chip, which analyzes 12 samples in parallel to minimize 

batch effects.

Model construction

We used a dimension reduction algorithm first described by Lee and Seung to compute non-

negative matrix factorizations (NMF).6

Briefly, V is a data matrix from our microarray data, the columns contain the gene expression 

values of each experiment.

The NMF algorithm approximates a non-negative matrix V by the product of a   n x r    matrix 

W and an   r x m   matrix H with non-negative values. The column-vectors of W can be seen 

as a basis that allows the approximation of V by linear combinations of the basis vectors. The 

H-matrix contains the coordinates of the sample in the W-basis.6

The columns in W are standardized to sum to 1. We used the procedure proposed by Lee 

and Seung6 to minimize the euclidian distance between V and  as implemented in the NMF 

R/Bioconductor package.20 To compute the coordinates of a new sample in the basis W we 

implemented a multiplicative update algorithm6 with a fixed matrix W. 

The update process is iterated until either convergence or a maximum of 2000 cycles. 

We constructed two classifiers based on two different data subsets: a multi-class classifier 

based on all samples in the SCM2 (tissues, somatic cells, PSC and cells differentiated from 

PSC, and a one-class classifier based on all PSC samples.



We used two different criteria to estimate the optimal number of factors determined by NMF 

for each of two classifiers. For the two-class classifier we used NMF to find a low 

dimensional representation of all of our array data. Given a factorization of rank (k) we 

decided the optimal number of features (l < k) to select for our classifier (i.e. rows in the H 

matrix).  We calculated the Area Under the Receiver Operating Characteristic (AUC) for each 

row of the H matrix using the sample information (pluripotency experimentally demonstrated 

or not) provided in the annotation file. The features were ordered by the AUC and used to 

train a logistic regression model in R.

Next, this information was used to compare the quality of different choices of k and l. We 

defined a quality measure r based on the margin between the pluripotent and non-pluripotent 

samples. Since we are interested in a model that generalizes well to new samples, logistic 

regression coefficients <0 were prohibited. This prevents the classifier from using the 

absence of specific non-pluripotent signatures, such as genes expressed specifically in 

fibroblasts, which may lead to inferior generaliziability of our classifier and over-fitting to our 

training dataset. PSC is the set of samples defined as pluripotent: 

To allow comparison between different NMF factorizations we scale r by the range of s:

In a more general setting a more robust quality measure may be required. We suggest to use 

the other suitable quantiles instead the maximum – minimum quantiles used in this case.

Selection of rank k and maximum number of features l.

To select the optimal k and l we randomly split the training data set (468 samples, see also 

‘Sample collection, Test and Training datasets’ paragraph above for details) in sub-test and 

sub-training sets. NMF factorizations in the range from k=2 to 25 were generated from the 

training set, with 8 random initializations for each k. Classifiers with l in the range 1:4 were 

trained. Supplementary Fig. 2 shows a plot of the mean r scaled by the range of s on the 

training-set for the training (468 samples) and test data (398 samples, see also ‘Sample 

collection, Test and Training datasets’ paragraph above for details). Classifiers with k-ranks 



lower than 10 achieved a good separation on the training set, but did not generalize well to 

the test data set. Ranks k in the range of 13 to 17 resulted in classifiers that performed well 

on the training data. We therefore choose k= 15 and l=3 and recalculated the classifier using 

the best out of 100 randomly initialized NMF approximations on the whole training data set

(468 samples). We tested the classifier on several independently generated data sets (see 

Fig. 1, Supplementary Figs. 3 and 4 and ‘Sample collection, Test and Training datasets’ 

paragraph above).

We also derived a one-class novelty detection classifier on the samples in the training 

dataset based on a factorization of only the pluripotent samples in the SCM2, by using a 

previously described consistency approach8 to limit the risk of over-fitting. We chose a 

rejection rate of 5% in a five-fold cross-validation setting. Well-characterized pluripotent 

samples in the SCM2 were randomly assigned to one of 5 groups. Four of the randomly 

selected groups were used to train a NMF factorization and the cutoff on the reconstruction 

error was set to reject the top 5% of samples with the biggest Root Mean Squared Error 

(RMSE).

The rejection of a sample can therefore be modeled as a binomial experiment. Given the 

number of test samples n we can compute the expectation and variance of the rejected 

samples based on the n repeated binomial experiments.8 The samples in the test group were 

fitted to the Wmodel -matrix and the number of rejected samples was counted. This procedure 

was repeated for all 5 groups. A classifier was considered to show consistency if the mean 

rejection rate is not exceeding the 2σ bounds around the expected rejection rate. Rank k=12 

was the highest NMF decomposition that lead to a consistent classifier.

For the novelty classifier we gauge the ability of the one-class NMF model to reconstruct a 

given query gene expression profile by the Wmodel-basis. We first considered the root mean 

square error (RMSE) as suitable measure for estimating model fit.  We noticed that the 

RMSE detected not only novel biological features but also flagged some arrays analyzed in 

other core facilities as diverging from the on class classifier model; these particular samples 

were from the same PSC lines that we had analyzed in-house that did not diverge 

significantly from our PSC model.  On the basis of such observations, we concluded that the 

RMSE as a novelty detection mechanism was more sensitive to technical variation than the 

Pluripotency Score. We observed in these cases that laboratory-specific variation changed 

most features on these arrays by a small distance, while biological variation (such as that 

observed in germ cell tumor cell lines) changes a restricted number of features in a sample 

by a large distance. 

We therefore generalized the RMSE score to the p-weighted mean deviation to empirically 

accommodate for technical variations across microarray core facilities. In the case p=2 the p-



WMD equals the RMSE and setting N =1 the p-weighted mean deviation is reduced to a one-

dimensional p-norm.

For p>2, values <1 are reduced and values larger >1 are amplified.

We determined that a p in the range from 6 to 10 was optimal to increase the weight of 

biological variation over the technically induced deviations. Choosing p=8 allowed us to 

reliably compare samples from several different core facilities without calibration.

To enable a probability-based assessment of the output score by PluriTest, we trained a 

logistical regression model for the Novelty Score as implemented in R/Bioconductor. 11

All model matrices and operations which are necessary to use PluriTest on novel query 

samples are contained in an R/Bioconductor workspace, which can be downloaded as 

Supplementary Data and used on a local R/Bioconductor instance.

All offline computations were performed on a Cray CX1 16-core cluster with SUSE11 

Enterprise and a custom compiled 64bit, R/Bioconductor implementation.
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