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Supplemental Text 

 
Transcriptome analysis using high-density tiling arrays demonstrated that vast majority 
of transcripts in human cells is represented by non-coding RNAs, biogenesis and 

functional significance of which remain obscure (1-7). Whole-genome transcript 
mapping studies of H. sapiens discovered a genome-scale highly efficient, pervasive 
transcription of introns and intergenic sequences and documented presence of 

promoter-associated short RNAs (PASR) and termini-associated short RNAs (TASR; 
ref. 1-7). Deep sequencing analysis of small RNAs (<200 nucleotides) from human cells 
revealed that post-transcriptional processing generates a remarkably diverse family of 

small non-coding RNAs (8). Fine mapping of transcriptional products originated from 
active promoters of protein-coding genes by RNA polymerase II (RNAPII) identified a 
population of small non-coding RNAs of 20 to 90 nucleotides in length termed 

transcription start site-associated RNAs (TSSa-RNAs; ref. 9). This widespread divergent 
bidirectional transcription at promoters of protein-coding genes may help to maintain a 
“competence” state of promoter regions poised for subsequent regulation (9). 

Consistent with the regulatory role of non-coding RNAs, it has been shown that RNAPII 
transcription of ncRNAs is required for chromatin remodeling at the fission yeast 
Schizosaccharomyces pombe fbp1(+) locus during transcriptional activation, which 

indicates that active transcription through the promoter-associated non-coding regions 
is required to make promoter sequences accessible to RNAPII and transcriptional 
activators (10).  

Recent significant progress in our knowledge of genetic traits which are 
associated with increased risk of developing multiple human disorders is driven by 
combined application of intellectual expertise as well as methodological and conceptual 

principles of genomics and molecular epidemiology to large-scale genome-wide 
association studies (GWAS) of SNP variations (reviewed in 11-16). A dominant 
mechanistic approach is based on considerations of the potential effects of SNP 

variations on protein-coding genes within or near boundaries of which the genetic 
variants are located. This protein-centric strategy was recently extended to consider the 
SNP variants residing within boundaries of genes encoding microRNAs and SNPs 

within microRNA-target sites in mRNAs (reviewed in 11-16). One of notable common 
outcomes of GWAS is that many disease-linked SNPs identified to date are located 
within introns or non-genic regions of human genomes which have no direct relations to 

known protein-coding sequences or microRNA genes. These data suggest that non-
canonical mechanisms of phenotype-altering effects of genetic variations may be 
relevant. A disease phenocode hypothesis has been articulated that is stating that 

intergenic DNA sequence variations associated with multiple common human disorders 
may affect phenotypes in trans via non-protein-coding SNP sequence-bearing RNA 

intermediaries (11-14). 

Using microarray expression profiling of all known PCGs and microRNA genes, 
RNA interference (RNAi) and gene transfer approaches, we are dissecting the 
molecular anatomy and biological consequences of the epigenetic regulatory cross-talk 

between transRNAs and microRNAs. We identified a set of 4 “stemness” microRNAs 
(mir-20b; miR-375; miR-205; miR-486) which are up-regulated in the following 



experimental and clinical samples: normal human cells engineered to constitutively 
express NALP1-locus autoimmunity transRNAs, human embryonic stem cells, blood-

borne human prostate carcinoma (PC) metastasis precursor cells, clinical PC samples, 
human PC cell lines selected for increased malignant potential in vivo. We documented 
altered expression patterns of cancer predisposition (CP) transRNAs in cell lines 

genetically engineered to stably express selected “stemness” m icroRNAs and in 
human cells engineered to constitutively express NALP1-locus autoimmunity 
transRNAs (Supplemental Figure 3). 
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Supplemental Materials and Methods 
 

Disease associated SNP meta-analysis and mapping of genomic coordinates 
Primary data sets of SNPs for meta-analysis of genomic coordinates of SNP variations 
identified in genome-wide association studies (GWAS) of up to 712,253 samples 

comprising 221,158 disease cases, 322,862 controls, and 168,233 case/control 
subjects of obesity GWAS were obtained from previously published studies (References 
in online Supplement). Mapping of the SNP genomic coordinates was performed based 

on the NCBI release of Human Genome Build 36.3 (reference assembly). Genomic 
coordinates of the human K4-K36 domains and human lincRNAs are available in the 
online Supplement data set (7). Genomic coordinates and gene names of the human 

bivalent domain genes were obtained from the recently published study (8).  
Cell Lines 
Human BJ1, RWPE1, HME1, U937, and THP-1 cell lines were obtained from ATCC. 

hTERT-immortalized BJ1 cells were previously described (1).  
Tumor Cell Xenografts.  Sub-confluent monolayers of control LNCaP or LNCaP-P1 
cells were trypsinized and counted, then resuspended in RPMI-1640 medium with 25% 

charcoal-dextran stripped-fetal bovine serum (CDS-FBS) and 50% (vol/vol) 2 X Matrigel 
(Millipore, Inc., Billerica, MA).  Aliquots (250 μls) containing 106 cells were then injected 
subcutaneously in the flanks of 8-week male NCR Nu/Nu mice (Taconic, Inc.) that had 

been surgically castrated 10 days prior through a scrotal incision under anesthesia or 
sham-castrated involving the scrotal incision without removal of the testis.  Tumor size 
was estimated from largest diameter (a), smallest diameter (b) and height (c) 

measurements with calipers with tumor volume calculated using the formula V = π/6 x a 
x b x c (Dethlefsen, LA, Prewitt, JMS, Mendelsohn, ML  Analysis of tumor growth 
curves, J Natl Cancer Inst, 40: 389-405, 1968).  Mice were euthanized at the end of the 

experiments and tumors were surgically recovered.  

Microarray gene expression analysis 

Technical and analytical aspects as well as stringent QC and statistical protocols of 
gene expression analysis experiments was carried-out essentially as described in our 
published work (2-6). Briefly, the array hybridization and processing, data retrieval and 

analysis was carried out using standard sets of the Affymetrix equipment, software, and 
protocols in state-of-the-art Affymetrix microarray core facility. RNA was extracted from 
cell cultures of two independent biological replicates of each experimental condition and 

analyzed for sample purity and integrity using BioAnalyzer (Agilent). Expression 
analysis of 54,675 transcripts was carried out for each sample in duplicates using 
Affymetrix HG-U133A Plus 2.0 arrays. Data retrieval and analysis was performed using 

MAS5.0 software and concordant changes of gene expression for each experimental 
condition were determined at the statistical threshold p value < 0.05 (two-tailed T-test). 
All microarray analysis data are publicly available coincidently with the date of 

publication.  
microRNA isolation and activity analysis.  
microRNA was extracted from adherent cells lysed on culture plates using the mirVana 

miRNA Isolation kit (Ambion). Homogenized cell lysates were frozen at -80 °C for at 
least 24 hours prior to microRNA purification. miRNA concentration was checked using 



a NanoDrop (Thermo Scientific) before checking quality on a Bioanalyzer (Agilent 
Technologies). 

 To assay the activity of microRNAs in transfected cells we used a miRNA 
Luciferase Reporter Vector (Signosis) specific for microRNA of interest. The target site 
sequence of the reporter vector is complementary to the miRNA, therefore a decrease 

in luciferase signal would indicate an increase in microRNA activity. Cells were 
transfected with the reporter vector using FuGENE 6 Transfection Reagent (Roche); the 
transfection was allowed to run 48 hours before the cells were lysed using Luciferase 

Cell Culture Lysis Reagent (Promega). The lysates were read using the FLUOstar 
OPTIMA system (BMG Lab Technologies), with 20 micro liters of Luciferase Assay 
Reagent (Promega) injected into each well immediately prior to reading.  

 
miRNA expression analysis.  
To analyze a spectrum of miRNA activity in the infected cell lines, we performed qPCR 

using the TaqMan Human MicroRNA Array v1.0 (Applied Biosystems) run on the 
7900HT Fast Real-Time PCR System, fitted with the specific block to run 384-well 
TaqMan Low Density Arrays (Applied Biosystems). This TaqMan array is distributed on 

a micro fluidics card, which allows for high reproducibility with minimal error. The array 
contains 365 different human miRNA assays and two small nucleolar RNAs that 
function as endogenous controls for data normalization. All miRNA samples were 

analyzed for quality control and processed at the Functional Genomics Core of the 
University of Rochester in Rochester, New York. We used the SDS 2.2 software, the 
platform for the computer interface with the 7900HT PCR System, to generate 

normalized data, compare samples, and calculate RQ.   
Cell Staining and Flow Cytometry 
Cells were stained at a concentration of 1X 106 cells per 100 ul of HBSS with 2% HICS. 

Antibodies at appropriate dilutions (CD14-Pacific Blue, Biolegend, Inc; and CD11b-
Alexa Fluor® 647, Biolegend, Inc) were added. Staining duration was for 30min with 
rotation at 4oC. Cells were then washed with staining medium three times and re-

suspended in staining medium. The stained specimens were then analyzed using 
FACSVantage (BD Biosciences, San Diego, CA; http://www.bdbiosciences.com) or 
FACSAria with either Diva or CellQuest software (BD Biosciences). The cell counter of 

the flow cytometers was used to determine cell numbers. Cells were collected into 
HBSS with 2% HICS. 
Induced Differentiation of U937 and THP-1 cells 

Approximately 2x106 U937 or THP-1 cells (5x105 cells/ml) in a 25 cm flask were induced 
to differentiate by treatment with 20 uM PMA (Sigma-Aldrich) for 4 days. 
Lentivirus Production and Generation of stably transfected BJ1, U937, RWPE1, 

LNCap, and THP-1 cells  
Allele-specific sense and anti-sense variants of the rs2670660 sequence of 52 nt in 
length (Figure 1A; nucleotide sequence shown in shaded box) were chemically 

synthesized and cloned sequentially into pUC57 plasmid by EcoRV (GeneScript 
Corporation) and pCDH-CMV-MCS-EF1-copGFP plasmid by EcoRI and NotI 
(SystemsBio). The integrity and molecular identity of the synthetic sequences as well as 

designed plasmid vectors were monitored by restriction enzyme mapping analysis and 
direct sequencing. Lentiviruses were generated by co-transfecting pLentiviral vector 



with GFP only plasmids (control cultures) or GFP plasmids with synthetic allele-specific 
52 nt sequences of the SNP rs2670660 as shown in Figure 1 (see Ref. 4 and 

Supplemental Material for additional information) and packaging mix (Invitrogen) into 
293FT cells using Lipofectamine 2000 according to the manufacturer‟s instructions 
(Invitrogen), and then target cells were infected with viral supernatant for 24hr. Flow 

cytometry analysis for GFP expression were performed to confirm the infection and 
assess the transfection efficiency. Experiments were carried out using cultures with 
transfection efficiency > 90%.  

Luciferase reporter assays 
Luciferase reported assays were carried-out to identify allele-specific features of SNP-
bearing RNA and DNA sequences. Enhancer/insulator activities of the 2 kb intergenic 

DNA sequence containing distinct allelic variants of the rs2670660 NLRP1-locus SNP. 
Luciferase reporter assays to assess the enhancer activity of 2 kb NALP1-locus 
intergenic region was carried out in RWPE1 and HEK293 cells transiently expressing 

either control luciferase reporter plasmids or plasmids containing chemically 
synthesized 2 kb sequences flanking distinct allelic variants of the NLRP1-locus 

intergenic SNP rs2670660, which is positioned exactly in the middle of the enhancer‟s 

sequence. Because allelic differences in the luciferase reporter assays tend to be 
modest, measurements were controlled by multiple replications of all experimental 
elements of the enhancer assay. We considered the possibility of multiple levels of 

variations, including plasmid preps, transfection replicates (along with transfection 
efficiency measurements, such as using the Renilla lucferase co-transfection controls 
for normalization). At least three independent experiments were carried out for each 

setting and three replicates of the luciferase assay were performed in each experiment.  
Results were validated using at least two independent plasmid preps to control for this 
potentially significant source of variation.  

Colony Growth Assay 
Cells from sub-confluent cultures (~ 70% confluence) were seeded in triplicates into 6-
well plates (100 cells per well), cultured for 2 weeks, and then stained with 0.1% crystal 

violet for 5 min. Plates were scanned and number of colonies containing > 50 cells was 
counted. 
Protocols for identification of endogenous trans-regulatory small RNAs encoded 

by the SNP rs2670660 

1. Extract small RNA from cells using mirVana isolation kit. (protocol A) 
2. Detect if there is DNA contamination by performing PCR using extracted RNA as 

template and β-actin as primer. (protocol B) 

3. Synthesize cDNA from small RNA extracted. (protocol C) 
4. Perform first PCR using primer set 2 (GC2F and GC2R). (protocol B) 
5. Clean up PCR product and evaluate cleanup PCR product on 1.2% gel. 

(protocol D) 
6. Perform nested PCR using cleanup first PCR product as template and primer set 

1 (GC1F and GC1R) and evaluate nested PCR product on 1.2% gel. (protocol 

B) 
7. Cut the DNA band of interest from the gel, extract and purify the DNA for further 

sequencing analysis. (protocol E) 



APPENDIX  

Protocol A: Extract small RNA from cells using mirVana isolation kit, AB #1560, 
1561 

 
Cell lysis and homogenization 

1. Collect culture medium containing cells and spin cells down. Aspirate the culture 

medium and wash the cells with 4 ml PBS. Spin cells down again.  
2. Add 600 µl Lysis/Binding solution and resuspend cell pellet by pipetting up and 

down.  

3. Add 1/10 volume (60 µl) of miRNA Homogenate Additive to the cell lysate, mix 
well by vortexing and leave it on ice for 10 min. keep at -80⁰C overnight. 

 Starting number of cells: 5×106 cells. 
Organic extraction 

4. Add a volume of Acid-Phenol:Chloroform (equal to the cell lysate before adding 

Additive). 
 Be sure to withdraw from the bottom phase in the bottle of Acid-

Phenol:Chloroform. 

5. Vortex for 30-60 sec to mix and then centrifuge for 5 min at 10,000 ×g at RT to 
separate the aqueous and organic phases.  

6. Carefully remove the aqueous (upper) phase without disturbing the lower phase, 

and transfer it to a new tube. Note the volume removed. 
Final small RNAs isolation 

 Preheat Elute Solution to 95⁰C. 
 Put 100% ethanol at RT. 

7. Add 1/3 volume of 100% ethanol to the aqueous phase collected. Mix thoroughly 
by vortexing. 

8. Pipet the lysate/ethanol mixture onto a filter cartridge placed on a collection tube. 

(up to 700 µl can be applied at a time) Centrifuge at 10,000 ×g (usually 10,000 
rpm) for 15 sec to pass the mixture through the filter. Transfer the flow-through to 
a fresh tube and repeat pipetting and centrifuging for excessive mixture. 

9. Pool the collected filtrate. Note the total volume of flow-through. 
10. Add 2/3 volume RT 100% ethanol to filtrate and mix thoroughly. 
11. Pipet the filtrate /ethanol mixture onto a second filter (up to 700 µl can be applied 

at a time) and centrifuge at 10,000 ×g (usually 10,000 rpm) for 15 sec to pass the 
mixture through the filter. Discard the flow-through and repeat pipetting and 
centrifuging for excessive mixture. 

12. Apply 700 µl miRNA Wash Solution 1 to the Filter Cartridge and centrifuge for 5-
10 sec. Discard the flow-through and replace the Filter Cartridge into the same 
collection tube. 

13. Apply 500 µl Wash Solution 2/3 and centrifuge for 5-10 sec and discard the flow-
through. Repeat once with a second 500 µl Wash Solution 2/3. 

14. After discarding the flow-through, spin the Filter Cartridge on collection tube for 1 

min to remove residual fluid from the filter. 



15. Transfer the Filter Cartridge into a fresh Collection tube. Apply 100 µl of pre-

heated 95⁰C Elution Solution to the center of the filter, close the cap and spin at 

maximum speed for 20-30 sec to elute the RNA. Keep the RNA at -80⁰C. 
 

Protocol B: PCR 
 

1. In a clean tube on ice, combine PCR reagents to a 25 µl final volume. 

 For each 25 µl 
reaction 

Water, RNase-free ___ µl  

PCR Buffer (10X) 2.5 µl 

PCR Nucleotide Mix 

(10mM) 

0.5 µl 

Taq DNA polymerase 

(50X) 

0.5 µl 

template ___ µl 

Forward primer (10 µM) 1 µl (0.4 µM final 

conc.) 

Reverse primer (10 µM) 1 µl (0.4 µM final 

conc.) 

Total  25 µl 

Mix contents of tube by vortexing, collect contents at bottom of tube and store on 
ice. 

2. Thermal cycle 

Initial 
denaturation 

95°C 3 min 

For cycle 40 or 
more 

Denaturation 

Annealing 

Extension  

 

95°C 

55°C 

72°C 

 

30 sec 

30 sec 

1 min (or 1 or 2 
min/kb) 

Final 
extension 

72°C 3 min 

Hold  4°C  

 

3. Evaluating PCR product on 1.2 % agarose gel. 

 
Protocol C: RT to synthesize cDNA (for 25 µl cDNA product) 



1. In the first tube, mix RNA and reverse primer well by votexing at half speed for 

several sec, spin the tubes in a microcentrifuge at 4⁰C and keep on ice. (total 

10µl) 

 RNA (µl) Random 

Primer (50 
µM, µl) 

Water (µl) 

For RNA ___ µl (=1 µg) 1 __µl (= 9– RNA volume) 

2. Heat RNA/primer mixture at 75⁰C for 5 min and cool on ice for 5 min. 

3. Make master mix from the following items: 

 each 
sample 

(µl) 

Total 
(µl) x 

water 6.75  

RT buffer (5X) 5  

PCR nucleotide mix 
(10mM) 

1.25  

RNase inhibitor (4 
units/µl) 

1  

M-MLV RT (25X) 1  

Total  15   

 

Mix contents of tube by votexing, keep on ice 5 min, vortex again, spin the tubes 
and keep on ice. 

4. Add 15 µl mixtures from step 3 into the first tube on ice. 

5. Design a thermal cycler program  

Step 

1 
42⁰C, 30 min 

Step 
2 

95⁰C, 5 min 

Step 
3 

4⁰C for storage until removal from the thermal cycler 

6. Dilute 25 µl RT products (cDNA) 10 times and use 10 µl diluted cDNA as 

template in PCR. Aliquot the leftover and keep in -20⁰C freezer. 

Protocol D: PCR product purification by Montage PCR Centrifugal Filter Devices 

(Millipore, p36461) 

1. Insert the Montage PCR sample reservoir into one of the two vials provided. 

2. Pipette 300 µl distilled water or TE buffer into sample reservoir without touching 

the membrane. Add 100 µl PCR reaction to the reservoir. Seal with attached cap. 

3. Place assembly in a compatible centrifuge and counter-balance with a similar 

device. 

4. Spin the Montage PCR unit at 1000 ×g for 15 min. (no longer than 15 min and no 

greater than 1000 ×g) 



5. Remove assembly from centrifuge. Separate vial from sample reservoir. Save 

filtrate. 

6. Place sample reservoir upright into a clean vial and add 20 µl distilled water or 

TE buffer carefully to the purple end of the reservoir. Avoid touching the 

membrane surface. 

7. Invert the reservoir into a clean vial and spin at 1000 ×g for 2 min. 

Protocol E: Extraction and purification of DNA from gel using QIAquick Gel 

Extraction Kit 

 All centrifugation are carried out at 17,900× (13,000rpm) at RT. 

 Add 100% ethanol to Buffer PE before use. 

 The yellow color of Buffer QG indicates a pH≤7.5. 

Procedure 
1. Excise the DNA fragment from the agarose gel with a clean, sharp scapel. 

2. Weigh the gel slice in a colorless tube. Add 3 volumes of Buffer QG to 1 volume 

of gel (100mg=100 µl). 

3. Incubate at 50⁰C for 10 min (or until the gel slice has completely dissolved). 

Vortex the tube every 2-3 min to mix during the incubation.  

4. After the gel slice has dissolved completely, check that the color of the mixture is 

yellow (similar to Buffer QC without dissolved agarose). 

If the color of the mixture is orange or violet, add 10 µl of 3 M sodium acetate, 
pH5.0. the color of the mixture will turn to yellow.   

5. Add 1 gel volume of isopropanol to the sample and mix.  

Do not centrifuge the sample at this stage. 

6. Place a QIAquick spin column in a provided 2 ml collection tube. 

7. Apply the sample to the QIAquick column and centrifuge for 1 min. 

The maximum volume of the column reservoir is 800 µl. for the sample volumes 
of more than 800 µl, simply load and spin again. 

8. Discard flow-through and place QIAquick column back in the same collection 

tube. 

9. Add 0.5 ml of Buffer QC to QIAquick column and centrifuge for 1 min to 

completely remove agarose traces. Discard the flow-through. 

10. Add 0.75 ml of Buffer PE to QIAquick column, let it stand for 2-5 min, and 

centrifuge for 1 min. 

11. Discard the flow-through and centrifuge the QIAquick column for an additional 1 

min at 17,900 ×g. 

12. Place QIAquick column into a clean 1.5 ml microcentrifuge tube. 

13. Add 50 µl of water to the center of the QIAquick membrane, stand for 1 min, and 

centrifuge the column for 1 min. 

14. Detect concentration by nanodrop and keep purified DNA at -20⁰C. 

 



Statistical and Bioinformatics Analysis  
Detailed protocols for data analysis and documentation of the sensitivity, 

reproducibility, and other aspects of the quantitative statistical microarray analysis using 
Affymetrix technology have been reported previously (2-6). Forty to sixty percent of the 
surveyed genes were called present by Affymetrix Microarray Suite version 5.0 software 

in these experiments. The concordance analysis of differential gene expression across 
the data sets was performed using Affymetrix MicroDB version 3.0 and DMT version 3.0 
software as described previously (2-6). We processed the microarray data using the 

Affymetrix Microarray Suite version 5.0 software and performed statistical analysis of 
the expression data set using the Affymetrix MicroDB and Affymetrix DMT software. The 
Pearson correlation coefficient for individual test samples and the appropriate reference 

standard were determined using GraphPad Prism version 4.00 software (GraphPad 
Software). We calculated the significance of the overlap between the lists of  
differentially-regulated genes by using the hypergeometric distribution test (9).  

We analyzed expression profiling data of 697 clinical samples obtained from 185 
control subjects and 350 patients diagnosed with 9 common human disorders (Table 
16), including Crohn‟s disease (59 patients), ulcerative colitis (26 patients), rheumatoid 

arthritis (20 patients), Huntington‟s disease (17 patients), autism (15 patients), 
Alzheimer‟s disease (36 patients), obesity (14 subjects), prostate cancer (64 patients), 
and breast cancers (99 patients). Microarray data and associated clinical information 

are available in Gene Expression Omnibus (GEO) database 
(http://www.ncbi.nlm.nih.gov/geo/) using the following accession numbers: GDS2601; 
GDS810; GDS2824; GDS1615; GDS711; GDS1480; GDS2545; GDS1331; GDS1407; 

GDS3203; GDS2255.  
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Supplemental Figure legends 
 

Supplemental Figure S1. Identification and characterization of intergenic SNP-RNAs 
containing SNPs associated with increased risk of developing 21 common human 
disorders.  

A, Majority of disease-linked SNPs identified to date in GWAS is located within 
introns (29%) or non-genic (39%) regions of human genomes which have no direct 
relations to known protein-coding sequences, microRNAs, or lincRNA genes.  

B, Genome-wide chromosome position mapping of identified in this study SNP-
RNAs containing SNPs with documented associations with 21 common human 
disorders.  

C, D. Panels C and D show sequence alignments of 14 evolutionary conserved 
human SNP-RNAs and corresponding sequences of the mouse genome. Positions of 
disease-linked SNP nucleotides in human SNP-RNA sequences are underlined.  

 
Supplemental Figure S2. Chromatin state map analysis of genomic sequences 
encoding evolutionary conserved transRNAs reveals a consensus chromatin domain 

signature comprising histone H3K27Me3, CBP/CREB, EZH2, and POL2 proteins. 
Chromatin state maps of corresponding human and mouse genome sequences are 
visualized using the custom tracks of the UCSC Genome Browser. Color-coded 

horizontal lines depict alignments of DNA sequences derived from Chip-Seq 
experiments using antibodies against corresponding proteins. Each color-coded 
horizontal line represents data from independent biological replicates. Note nearly 

ubiquitous alignments of the evolutionary-conserved transRNA-encoding sequences 
within binding sites of the histone H3K27Me3, CBP/CREB, EZH2, and POL2 proteins. 
Positions of disease-linked SNP nucleotides within transRNA-encoding sequences are 

indicated by arrows and vertical lines. Original experiments describing the 
corresponding mouse and human genome-wide chromatin state maps were reported 
elsewhere (5, 6).  

 
Supplemental Figure S3. Chromatin state map analysis of genomic sequences 
encoding non-conserved human transRNAs reveals a consensus chromatin domain 

signature comprising histone H3K27Me3 and EZH2 proteins. Chromatin state maps of 
individual transRNA-encoding genomic sequences in human embryonic stem cells are 
visualized using the custom tracks of the UCSC Genome Browser. Color-coded 

horizontal lines depict alignments of DNA sequences derived from Chip-Seq 
experiments using antibodies against corresponding proteins. Individual zoom-in 
chromatin state maps aligned to corresponding transRNA-encoding sequences are 

shown in groups segregated according to phenotypes associated with the 
corresponding disease-linked SNPs. Chromatin state maps of extended genomic 
segments are shown when multiple disease-linked SNPs were identified within 

continuous genomic regions (size of ~100 kb or less) in addition to individual zoom-in 
chromatin state maps aligned to corresponding transRNA-encoding sequences. Each 
color-coded horizontal line represents data from independent biological replicates. Note 

nearly ubiquitous alignments of the positions of disease-linked SNP nucleotides within 
binding sites of the histone H3K27Me3 and Polycomb proteins (EZH2 and/or RING1B). 



Positions of disease-linked SNP nucleotides within transRNA-encoding sequences are 
indicated by vertical lines. Original experiments describing the corresponding mouse 

and human genome-wide chromatin state maps were reported elsewhere (6).  
 
Supplemental Figure S4. Chromatin State Signatures of 43 IDAGL defined by 

ENCODE data and visualized using UCSC Genome Browser 
(http://genome.ucsc.edu/ENCODE/). 
 

Supplemental Figure S5. Examples of allele-specific secondary structures of identified 
to date disease-associated transRNAs. Arrows indicate the positions of nucleotides 
variations which are associated with increased risk of developing corresponding 

disorders. Note that disease-linked SNPs are often located within the loop structures of 
transRNAs and transRNAs containing SNP variants have distinct secondary structures. 
Note that loop sequences of many identified to date SNP sequence-bearing intergenic 

and intronic transRNAs have 8-11 nt segments (which include SNP nucleotides) 
identical to primary sequences of microRNAs, which suggest that one of the 
mechanisms of transRNA bioactivity may be associated with modulation of the 

biogenesis and functions of selected microRNAs (11-17). Bottom right panel shows 
alignments of the microRNA target sites in human PC-susceptibility transRNA A21. 
Individual human microRNAs (short horizontal bars) aligned along the A21 transRNA 

sequence according to the positions of respective target sites. Single vertical bar marks 
the position of PC-predisposition SNP. Note that a vast majority of microRNA target 
sites segregates to the A21 transRNA segment around PC-predisposition SNP and 

includes SNP nucleotide.  
 
Supplemental Figure S6. Allele-specific effects of NALP1-locus transRNAs on 

expression of distinct classes of non-coding RNAs in human cells. 
A, Microarray analysis of human BJ1 cells engineered to stably express distinct allelic 
variants of the NALP1-locus transRNAs reveals allele-specific alterations of expression 

levels of multiple distinct classes of non-coding RNAs which include snoRNAs and 
snoRNA-host genes (SNORD113; SNHG1; SNHG3; SNHG8), long non-coding RNAs 
(MEG3, tncRNA, and MALAT1), microRNAs, microRNA-precursors, and protein-coding 

microRNA-host genes (ATAD2; KIAA1199). Note that changes of expression of intron-
residing microRNAs miR-548d (intron of the ATAD2 gene) and miR-549 (intron of the 
KIAA1199 gene) are in good correspondence with allele-specific expression levels of 

corresponding microRNA-host genes which suggest a coordinated mechanism of 
regulation.  
B, ABI PCR-based screen identifies a statistically significant set of 36 microRNAs 
expression of which is altered at least 1.5-fold in NALP1-locus transRNA-expressing 

cells compared to control BJ1/EGFP cells and differentially regulated in pathology-
linked G-allele-expressing BJ1 cells compared to the ancestral A-allele-expressing cells. 

Note that 18 of 36 (50%) of these microRNAs are derived from the single microRNA 
cluster on ~ 200 kb continuous region of 14q32 band of chromosome 14, which suggest 
that 14q32 cluster microRNAs may be primary molecular targets of the NALP1-locus 

transRNAs.  
 

http://genome.ucsc.edu/ENCODE/


Supplemental Figure S7. Sequence homology profiling of NALP1-locus transRNAs 

and transRNA-regulated microRNAs and long non-coding RNAs identifies extensive 

sequence homology/complementarity features.  
A, Genomic location (top left figure), secondary structures of 152 nt (bottom left figure) 
and 52 nt (top right figure) transRNA molecules, and position of the microRNA-target 
sites along the 152 nt transRNA sequence (bottom right figure) of NALP1-locus 

transRNAs containing SNP rs2670660.  
B, Visualization of individual microRNA-target sites within the NALP1-locus transRNA 

molecule. Note that all 36 NALP1-locus transRNA-regulated microRNAs (Figure 5, main 
text) have at least one potential target sites within 152 nt sequence of the NLAP1-locus 

transRNA molecule and many microRNA target sites manifest allele-associated 

changes of the minimal free energy (mfe) transRNA/microRNA hybridization.  
C, D, microRNAs which are differentially regulated in BJ1 cells expressing distinct allelic 
variants of the NALP1-locus transRNAs share multiple sequence identity segments of at 

least 11 nucleotides in length with sequences of transRNA-regulated MEG3 (C) and 
MALAT1 (D) long non-coding RNAs.  

 

Supplemental Figure S8. Allele affinity model of transRNA-mediated regulation of 
microRNA expression and activity. A-C, high affinity (low mfe) transRNA alleles facilitate 
increase abundance levels of corresponding microRNAs. Inverse correlation between 

allele-specific changes in minimal free energy (mfe) of transRNA/microRNA 
hybridization and experimentally-defined changes of microRNA expression and activity 
that is lower mfe values correspond to higher levels of microRNA expression and 

activity. These relationships are shown for microRNAs the abundance levels of which in 
human cells are induced (miR-302a; miR-629; miR-548d; miR-200a; miR-627; miR-770-
5p) or repressed (miR-133a; miR-20b; miR-205; let-7b) by forced expression of 

pathology-linked G-allele transRNAs compared to ancestral A-allele-expressing cells. 
Insert bars show the results Q-PCR analysis of expression of corresponding 
microRNAs.  

D, Luciferase reporter assay of miR-205 and let-7b activities in early-passage RWPE1 
cells stably expressing distinct allelic variants of the NALP1-locus transRNAs 
demonstrates increased activity of both microRNAs in high affinity ancestral A-allele-

expressing cells compared to low affinity pathology-linked G-allele-expressing cells.  
E, Application of the allele affinity model of transRNA-mediated regulation of microRNA 
expression and activity to development of the allele equilibrium hypothesis explaining 

the phenotype-altering effects of transRNAs as the consequence of direct actions on 
microRNAs abundance and activity and down-stream effects of transRNA-regulated 
microRNAs on expression of protein-coding genes.  

 
Supplemental Figure S9. Forced expression of transRNA-regulated microRNAs 
recapitulates transRNA-induced epigenetic and phenotypic features in human cells.  
A-E, Epigenetic regulatory “cross-talk” between NALP1-locus transRNAs and poto-

oncogenic cancer-susceptibility transRNAs and altered expression profiles of cancer 
susceptibility transRNAs in human cell lines engineered to express selected transRNA-

regulated “stemness” microRNAs.  



Panels A-D show the results of validation experiments confirming the specificity 
of expression of selected microRNAs in GFP-tagged cell lines genetically engineered to 

stably over-express individual microRNAs or desired combinations of 2 or 3 microRNAs 
of interest using microarray (A) or Q-RT-PCR (B-D) methods. These cell lines are 
utilized in experiments designed to determine whether selected microRNAs are 

essential integral components of transRNA regulatory networks.  
E, Distinct expression profiles of transRNA-regulated microRNAs and 6 breast 

cancer (BC)-susceptibility transRNAs (top-right) and 11 prostate cancer (PC)-

susceptibility transRNAs (bottom-left) in human cells. Top left panels of bars show the 
results of the Q-RT-PCR experiments validating increased expression of miR-375, miR-
20b, and miR-205 microRNAs in human cells stably expressing ancestral A-allele 
NALP1-locus transRNAs compared to the pathology-linked G-allele-expressing cells. 
Forced expression of NALP1-locus transRNAs erases epigenetic transcriptional 

memory of mesenchymal BJ1 cells and induces expression of multiple proto-oncogenic 

transRNAs (red circles). Bottom gels show expression patterns of cancer-susceptibility 
transRNAs in BJ1 cells genetically engineered to over-express selected transRNA-
regulated microRNAs such as the individual “stemness” microRNAs (miR-205; miR-375; 

miR-20b) or desired combinations of “stemness” microRNAs. Note that increased 
expression of 8 cancer susceptibility transRNAs marked in boxes (A7; A8; A11; A18; 
A21; B5; B6; B7) induced by selected transRNA-regulated “stemness” microRNAs 
recapitulates the pattern of increased expression induced by NALP1-locus 

autoimmunity transRNAs. 
Bottom right figure shows hierarchical clustering of transRNA expression profiling 

data. Note that expression of selected transRNA-regulated “stemness” microRNAs 
induces expression patterns of cancer-susceptibility transRNAs in mesenchymal BJ1 
cells which recapitulate transRNA expression profiles in epithelial cells, RWPE1 and 
HME1, and BJ1 cells engineered to stably express NALP1-locus transRNA A-allele 

(BJ1_2 cells).  
F, Forced expression of selected transRNA-regulated microRNAs recapitulate 

transRNA-induced phenotypic changes in human cells. Note that the increased 
clonogenic growth potential which is conferred by stable expression of the ancestral A-
allele compared to the pathology-linked G-allele (ref. 4 and two far left bars in the 

bottom panel) is recapitulated by stable expression of the A-allele-induced microRNAs, 
miR-205 and miR-20b. Average values of triplicate measurements of biological 
replicates normalized to control values obtained for BJ1/EGFP cells are shown. Top 

figures show typical colony staining patterns of one of the experiments.  
 
Supplemental Figure S10. Identification of “stemness” microRNA signatures in blood-

borne human prostate carcinoma (PC) metastasis precursor cells (Xp11; 4q21 clone in 
panels A; C), clinical PC samples (B; H), human PC cell lines selected for increased 
malignant potential in vivo (F; G), and normal human BJ cells engineered to 
constitutively express NALP1-locus autoimmunity transRNAs (Figure 1, main text). 

Genome-wide micro-RNA expression profiles for indicated cell lines, clinical samples, 
and human embryonic cell lines (hESC; panels A; B; H) were obtained using 

microarray, Q-RT-PCR, and high-throughput sequencing technologies and utilized to 
identify “stemness” micro-RNA signatures. Common sets of top-ranked up-regulated 



“stemness” micro-RNAs (arrows) were identified for multiple pair-wise comparisons 
using hESC expression profiles as multidimensional reference vectors (1). Using this 

strategy, miR-20b, miR-375, miR-205, and miR-486 were selected for functional 
validation experiments (1). Panel D shows the results of luciferase reporter assay for 
assessment of miR-205 activity. Note that miR-205 activity is significantly higher in 

triple-transfected cells (miR-205; miR-375; miR-20b) compared to single-transfected 
cells (miR-205) despite having similar levels of miR-205 expression. Consistent with the 
proposed role in promoting malignant features of normal prostate epithelial cells, 
NALP1-locus SNP-RNA-regulated „stemness‟ microRNAs enhance colony formation 

ability in agar of RWPE1 normal prostate epithelial cells (I). 
 

 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure S1. 

 



 



 

 

 

 

 

 

 

 

 

 

 

 

 



Figure S2. 

 



 



 



 



 



 

 

 

 

 

 

 

 

 

 

 

 

 



Figure S3. 

 



 



 



 



 



 



 

 

 

 

 

 

 

 

 

 

 

 

 



Figure S4. 

 



 



 



 



 



 



 



 



 



 



 



 



 



 



 



 



 



 



 



 



 



 



 



 



 



 



 



 



 



 



 



 



 



 



 



 



 



 



 



 



 



 



 



 

 

 

 

 

 

 

 

 

 

 

 

 



Figure S5. 

 

 

 

 

 

 

 

 

 

 

 



Figure S6. 



 

 

 

 

 

 

 

 

 

 

 

 

 



Figure S7. 

 

 

 

 

 

 

 

 

 

 

 

 



Figure S8. 









 

 

 

 

 

 

 

 

 

 

 

 

 



Figure S9. 

 

 

 

 

 

 

 



Figure S10. 







 

 


