Supporting Information

Structure-Activity Relationships of Truncated C2- or C8-Substituted Adenosine Derivatives as Dual Acting A_{2A} and A₃ Adenosine Receptor Ligands

Xiyan Hou,¹ Mahesh S. Majik,¹ Kyunglim Kim,¹ Yuna Pyee,² Yoonji Lee,¹ Varughese Alexander,¹ Hwa-Jin Chung,² Hyuk Woo Lee,¹ Girish Chandra,¹ Jin Hee Lee,¹ Seul-gi Park,¹ Won Jun Choi,^{1,3} Hea Ok Kim,¹ Khai Phan,⁴ Zhan-Guo Gao,⁴ Kenneth A. Jacobson,⁴ Sun Choi¹ Sang Kook Lee,² and Lak Shin Jeong^{1,*}

¹Laboratory of Medicinal Chemistry, College of Pharmacy and Department of Bioinspired Science, Ewha Womans University, Seoul 120-750, Korea, ²College of Pharmacy, Seoul National University, Seoul 151-742, Korea, ³College of Pharmacy, Dongguk University, Kyungki-do 410-774, Korea, and ⁴Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes, and Digestive and Kidney Disease, National Institutes of Health, Bethesda, Maryland 20892, USA

e-mail: lakjeong@ewha.ac.kr

Contents

Scheme 1S. Mechanism for lithiation mediated stannyl transfer of 6-chloropurine nucleoside

The possible reaction mechanism is depicted in Scheme 1S which can be summarized as follows: The initial lithiation (LiTMP) occurs at the C8-position of purine moiety to give **6a** which was trapped with Bu₃SnCl to give C8-stannylated derivative **6b**. Further, the **6b** undergoes lithiation at the C2-position with **6a** (or with lithiating agent) to give **6c**. The reaction between **6c** and **6b** (C8-stannylated derivative) gave the 2,8-bis stannylated compound **6d** and the regeneration of **6a** simultaneously. Finally, stannyl transfer from **6d** (2,8-bis stannylated derivative) to **6a** furnish **6e** which is stable under the lithiation condition and thus get accumulated in the reaction mixture to give **7** as a sole product in regioselective manner. (Kato, K.; Hayakawa, H.; Tanaka, H.; Kumamoto, H.; Shindoh, S.; Shuto, S.; Miyasaka, T. *J. Org. Chem.* **1997**, *62*, 6833–6841).