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ABSTRACT.

We have sequenced a DNA fragment containing the Escherichia
coli thrA-thrB junction, the complete thrB gene and the thrB-
thrC junction. The intergenic sequence thrA and thrB is only
one base pair. The coding region for homoserine kinase is 927
base pairs long. It is followed by 114 base pair segment in an
open reading frame predicting that thrC begins just after the
non-sense codon of thrB. The presence at the end of thrA and of
thrB of sequences that can pair with the 3' end of the 16 S ri-
bosomal RNA suggests that reinitiation of translation occurs at
the end of the two genes. The deduced aminoacid sequence for
homoserine kinase shows no striking homology with aspartokinase
I homoserine dehydrogenase I.

INTRODUCTION.

Recent developments of rapid methods for DNA sequence deter-
mination have given essential information on the signals for
initiation and termination of transcription. Moreover, one can
precisely locate the genes between their translational start and
stop signals on the corresponding mRNA. On the other hand, DNA
sequence determination is now a rapid and elegant way of determi-
nating protein primary structure. Comparison of both DNA and
protein sequences is now a tool of choice for the study of evo-
lutionary processes.

To learn more about the regulation of transcription and
translation of the threonine operon (thrABC) as well as to compa-
re the three different gene products of this biosynthetic operon,
we have identified the thrA-thrB junction, determined the
complete nucleotide sequence of the thrB gene, and the 114 base
pairs which follow it. Ribosomal binding sites present at the
ends of thrA and thrB, predict that reinitiation of translation
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can occur on the polycistronic mRNA. Comparison by extensive
computer analysis of the two first genes of the threonine operon,
as well as that of their translational products, did not reveal
any extensive homology.

MATERIALS AND METHODS.

The plasmid pIPII, carrying the thrA and the thrB genes

between the Hind III and Eco RI sites of pBR322 was used for
the study described here. Construction of the hybrid plasmid,
its purification as well as the isolation of restriction frag-
ments were as previously described (1).

The procedures of Maxam et Gilbert (2) and Sanger et al.(3)
were used. Labeling of the 5' ends of DNA fragments with
(7-32P)-ATP (3000 Ci/mmole, Amersham) and T4 polynucleotide
kinase was done by the exchange reaction of Berkner et al. (4).
The sequences determined by the chain terminator technique (3)
were obtained after randomly cloning a Sau 3A digest of the
Eco RI site containing Hind II fragment of pIPII, in the single
stranded phage vector Ml13mp2/Bam (5). The primer used was a 96
base pairs Eco RI fragment from phage M13mp2962 (6).

Sequencing acrylamide urea gels, at the beginning of this
work, were made and run as originally described (2) and then
were the thin gels of Sanger et al. (7).

c) Computer_analysis.

Analysis of the nucleotide sequence was done with the pro-
grams of R. Staden (8,9,10), and F. Schaeffer (manuscript in
preparation). A two dimensional dot matrix comparison program
was developed by P. Herbomel (personal communication) in which
the two genes or the two proteins are compared one to another,
base by base or aminoacid by aminoacid. Prediction of the pro-
tein secondary structure was done according to Garnier et al.
(11) . The computer facilities of the Pasteur Institute (Unité
Calcul) were used for most of these studies.
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RESULTS.

In a previous study, we showed that a Hind III - Eco RI
fragment from a Adthr transducing phage cloned in pBR322 contai-
ned the thrA and thrB genes of E.coli (1). The complete nucleo-
tide sequence of thrA was determined (12). To locate precisely
the thrB gene, we sequenced towards thrB, starting from the
Hinf I site located at the very end of thrA. The sequence stra-
tegy is represented on figure 1. The sequence of the thrB gene
and its two adjacent regions towards thrA and thrC is shown on
figure 2.

The gene was sequenced for over 80% of both strands. It is
927 base pairs and codes for a protein which is 309 aminoacids
long. The predicted N terminal sequence agrees with that deter-
mined by protein sequencing (13) except for the N terminal me-
thionine which has been removed in the mature protein, as it is
often the case in E.coli.

The codon usage, as shown in Table 1, is not random. One

feature of this repartition is the net preference for a codon cor-
responding to the major tRNA species: CUG for Leu (14), GGY (Y= py-
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Figure 1. The pBR322 thr (pIPII) hybrid plasmid and the sequen-
cing strategy of the thrB gene.

A/ A restriction map with the Hind III and Eco RI sites used
for the cloning of the 4 kbp thr fragment containing the thra,
thrB, and part of the thrC (thrC') genes.

B/ The sequencing strategy of the thrB gene. The arrows in-
dicating the sites used for 5' labeling as well as the direction
and extent of the sequences are determined (E = Eco RI ;

H = Hinf I, P = Hpa II, S = Sau 3A, A = Hae III, T = Tag I).

The thick arrows (==-) are the sequences determined with
the dideoxynucleotide-terminator technique.
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rimidine) for Gly (15), GAA for Glu (16), CCG for Pro (17), GCG
for Ala (18,19). A net preference is observed for CAG over CAA

although the concentration of tRNAgig exceeds only slightly that
Glu
of tRNACAA (20).

b) The thrAB and thrBC junctions.
As shown in figure 2, there is only one base pair between

the opale nonsense codon at the end of thrA, and the initiation
AUG codon of thrB. The DNA sequence reveals that a second non-
sense codon UAA in phase with the UGA is found 6 base pairs fur-
ther in the sequence. The determination of a unique carboxyl
terminal sequence (21) for aspartokinase homoserine dehydrogenase
I indicates that the UGA codon is very effective in the termina-
tion of translation. Despite the fact that UGA is usually consi-
dred as the most common termination signal (32), the presence of
the ochre codon may be a security in the case of an opale sup-
pressor in the cell.

The thrB gene is ending by UAA, the ochre nonsense codon and
is immediately followed by an initiation codon and a 114 base
pair sequence, in an open reading frame. No other open reading

Table 1. Codon usage in thrB.
U C A G
UUU Phe 5 UCU Ser 1 UAU Tyr 5 UGU Cys 4
U UuC Phe 4 UCC Ser 6 UAC Tyr 3 UGC Cys 7
UUA Leu 4 UCA Ser 1 UAA Ochre 1 UGA Opal C
UUG Leu 7 UCG Ser 2 UAG Ambre 0 UGG Trp 3
CUU Leu 2 CCU Pro 2 CAU His 3 CGU Arg 6
c CUC Leu 5 CCC Pro 1 CAC His 3 CGC Arg 4
CUA Leu O CCA Pro 3 CAA Gln 3 CGA Arg 3
CUG Leu 13 CCG Pro 8 CAG Gln 14 CGG Arg 7
AUU Ile 5 ACU Thr 1 AAU Asn 6 AGU Ser 4
A AUC Ile 10 ACC Thr 3 AAC Asn 6 AGC Ser 4
AUA Ile O ACA Thr 2 AAA Lys 2 AGA Arg O
AUG Met 11 ACG Thr 2 AAG Lys 9 AGG Arg O
GUU Val 8 | GCU Ala 4 | GAU Asp 7 | GGU Gly 9
G GUC val 4 GCC Ala 8 GAC Asp 5 GGC Gly 14
GUA val 3 GCA Ala S GAA Glu 14 GGA Gly 3
GUG val 6 GCG Ala 16 GAG Glu 5 GGG Gly 4
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frame after an ATG is present before the Eco RI site. There are
no protein data available to determine if the deduced protein
sequence is the sequence of the mature threonine synthase.
However, the long open reading frame after an initiation codon
preceded by a Shine and Dalgarno sequence (see Discussion) is a
good indication that the ATG which follows the nonsense codon is
the initiation codon for thrC. If the beginning of thrC does not
lie in that region, the thrBC junction will be among the longest

one found so far in E.coli operons.

DISCUSSION.

The threonine operon is composed of three structural genes
thrA, thrB, thrC which are transcribed in that order (22) . If we
assume that the beginning of thrC is located just after the non-

sense codon of thrB, we are in presence of an operon with very
short intergenic sequences, just one base pair for the thrAB
junction and none for the thrBC junction. The intercistronic
sequences described so far in operons of E.coli are all very
different in length ranging from 413 base pairs between rplA and
rplJ (23), 65 base pairs (between lacY and lacA) and 54 base
pairs (between lacZ and lacY) (24) to the extreme situation over-
lapping nonsense and initiation codons ﬁﬁzgg in the tryptophan
operon at the trpBA junction. These regions apparently do not
share much similarity in their nucleotide sequence except for
partial homology observed between the GalE-GalT junction of
E.coli and the trpC-trpB junction of Salmonella typhimurium (26).

However, in all the sequences known complementary sequences to
the 16 S ribosomal rRNA are present before the beginning of the
second gene. In the case of the threonine operon, such sequences
are also found : AGGAG at the end of thrA, and GGA at the end of
thrB. These sequences raise at least two questions : (i) are
these ribosomal binding sites functional in vivo ? (ii) what is
the fate of the ribosomes translating the first gene : do they
continue to translate thrB or do they dissociate before initia-
tion on thrB ? The partial polar effects of nonsense mutations
in thrA on the expression of thrB and thrC are a good indication
that the internal ribosomal binding site could function in vivo,
at least when such mutations are present. Further experiments
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A : Arg Val Ala Asp Ile Leu Glu Ser Asn Ala Arg

B : Arg Val Ala Asp Trp Leu Gly Lys Asn Tyr Leu

Gln Gly Gln
Gln Asn Gln

Figure 3. Sequence of the two peptides which have similar
sequences in aspartokinase I homoserine dehydrogenase I (A)
and homoserine kinase (B).

are necessary to answer the second question.

We were interested in comparing the thrB nucleotide sequence
to that of thrA and see if those genes which belong to the same
biosynthetic operon have derived from a common ancestor according
to the hypothesis of Horowitz (27,28). Extensive computer analy-
sis did not show any significant homology. The same analysis
was performed on the gene products, the aspartokinase I-homose-
rine dehydrogenase I and the homoserine kinase, which have a
common effector, the L-threonine. The only significant similari-
ty found was between the aminoacids 19 to 33 in aspartokinase I
homoserine dehydrogenase I and the aminoacids 276-289 in homo-
serine kinase, as shown in figure 3 where 8 aminoacids out of 14
are identical. The secondary structure of homoserine kinase
predicted according to Garnier (2$) shown in Figure 4 did not
show any similarity with that of AKI-HDHI (12).

Different immunological approaches carried out on aspartoki-
nase I homoserine dehydrogenase I and homoserine kinase led to
divergent results on a common origin between the two proteins

HSK
b pd 20
A0—CI0 -0+ O -1+ - —
308
O CF OO0 O3
Figure 4. Predicted secondary structure of the homoserine

kinase.

The boxes correspond to the possible a-helix structures,
the lines to the possible extended regions of the protein. The
coordinates above are the aminoacids from 1 to 820.
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(30,31).

The homology presented here is so small that it leaves
unsolved the question : have the two first genes a common
origin ? The DNA sequence of the third gene of the operon,
thrC coding for threonine synthase may help to clarify the
origin of the three cistrons.
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