1	Supporting Information		
2	Isoprene Epoxydiols as Precursors to Secondary Organic Aerosol Formation: Acid-		
3	Catalyzed Reactive Uptake Studies with Authentic Compounds		
4			
5	Ying-Hsuan Lin ¹ , Zhenfa Zhang ¹ , Kenneth S. Docherty ² , Haofei Zhang ¹ , Sri Hapsari		
6	Budisulistiorini ¹ , Caitlin L. Rubitschun ¹ , Stephanie L. Shaw ³ , Eladio M. Knipping ⁴ , Eric S.		
7	Edgerton ⁵ , Tadeusz E. Kleindienst ⁶ , Avram Gold ¹ , Jason D. Surratt ^{1,*}		
8			
9	¹ Department of Environmental Sciences and Engineering, Gillings School of Global Public		
10	Health, The University of North Carolina at Chapel Hill, NC, USA		
11	² Alion Science and Technology, Research Triangle Park, NC, USA		
12	³ Electric Power Research Institute, Palo Alto, CA, USA		
13	⁴ Electric Power Research Institute, Washington, D. C., USA		
14	⁵ Atmospheric Research & Analysis, Inc., Cary, NC, USA		
15	⁶ National Exposure Research Laboratory, U.S. Environmental Protection Agency, Research		
16	Triangle Park, NC, USA		
17	* To whom correspondence should be addressed. Email: surratt@unc.edu		
18			
19	This supporting information contains 12 pages: 1 table, and 8 figures.		

IEPOX-derived SOA tracers	Analytical Techniques ^a	Tracer Ion (m/z)	Retention Time (min)
3-methyltetrahydrofuran-3, 4-	GC/EI-MS	262	22.20
diols (3-MeTHF-3,4-diols)	GC/EI-MS	262	22.81
	GC/EI-MS	231	27.30
C ₅ -alkene triols	GC/EI-MS	231	28.35
	GC/EI-MS	231	28.71
2 methyltetrols	GC/EI-MS	219	34.73
2-methyltetrois	GC/EI-MS	219	35.58
dimers	GC/EI-MS	335	54.56
organosulfate derivatives of the 2-methyltetrols	UPLC/ESI-HR-Q-ToFMS	215	1.115
organosulfate derivatives of the dimers	UPLC/ESI-HR-Q-ToFMS	333	1.191

20 Table S1. Summary of IEPOX-derived SOA Tracers Characterized in This Study.

21 ^a Reaction products analyzed by GC/EI-MS are derivatized by trimethylsilylation.

Figure S1A. ¹H NMR (400 MHz, chloroform-*d*) of (2-methyloxirane-2,3-diyl)dimethanol (*cis*-β IEPOX).

Figure S1B. ¹³C NMR (100 MHz, chloroform-*d*), (2-methyloxirane-2,3-diyl)dimethanol(*cis*-β IEPOX).

29 **Figure S1C.** ¹H NMR (400 MHz, chloroform-*d*) racemic mixture of δ-IEPOX diastereomers

30 [(2'R)-1S]/[(2'S)-1R]-1-(2-methyloxiranyl)-1,2-ethanediol(2a) and [(2'S)-1S]/[(2'R)-1R]-1-(2-methyloxiranyl)-1,2-ethanediol(2a) and [(2'S)-1S]/[(2'R)-1R]-1-(2-methyloxiran)-1,2-ethanediol(2a) and [(2'R)-1R]-1-(2-methyloxiran)-1,2-(2-methyloxiran)-1,2-(2-methyloxiran)-1,2-(2-methyloxiran)-1,2-(2-methyloxiran)-1,

31 methyloxiranyl)-1,2-ethanediol (**2b**). Signal assignments are based on Adam et al.¹

Figure S1D. ¹³C NMR (100 MHz, chloroform-*d*), racemic mixture of δ -IEPOX diastereomers 2a and 2b ([(2'R)-1S]/[(2'S)-1R]- and [(2'S)-1S]/[(2'R)-1R]-1-(2-methyloxiranyl)-1,2-ethanediol, respectively).

37 **Figure S2A.** ¹H NMR (400 MHz), chloroform-*d*) of *cis*-3-methyltetrahydrofuran-3,4-diol.

Figure S2B. ¹³C NMR (100 MHz, chloroform-*d*) of *cis*-3-methyltetrahydrofuran-3,4-diol. Partial signal assignments are based on the presence of splittings consistent with ${}^{2}J_{C-H}$ or ${}^{3}J_{C-H}$ coupling,² possible only for signals of C3 and C4. The 1:1:1 triplet at 77.2 ppm is due to natural abundance ¹³C-chloroform-*d*.

44 **Figure S2C.** ¹H NMR (400 MHz), chloroform-*d*) of *trans*-3-methyltetrahydrofuran-3,4-diol.

45

Figure S2D. ¹³C NMR (100 MHz), chloroform-*d*) of *trans*-3-methyltetrahydrofuran-3,4-diol.
One ring carbon signal is obscured by the ¹³C-chloroform-*d* signals.

50 **Figure S3.** Evidence of SOA growth by acid-catalyzed reactive uptake from wall-loss 51 uncorrected SMPS data. (A) β -IEPOX and (B) δ -IEPOX were introduced into the chamber with 52 heated N_{2 (g)} from time zero.

Figure S4. GC/MS EI mass spectra corresponding to reaction products formed in acidic seed aerosol from reactive uptake of *cis*-β-IEPOX. (A) EIC of *m/z* 262: 3-MeTHF-3,4-diol (B) EIC of *m/z* 231: C₅-alkene triols (C) EIC of *m/z* 219: 2-methyltetrols (D) EIC of *m/z* 335: dimers.

Figure S5. GC/MS EI mass spectra corresponding to aerosol-phase reaction products formed in acidic seed aerosol from reactive uptake of δ -IEPOX. (A) EIC of *m*/*z* 262: 3-MeTHF-3,4-diols (B) EIC of *m*/*z* 231: C₅-alkene triols (C) EIC of *m*/*z* 219: 2-methyltetrols (D) EIC of *m*/*z* 335: dimers.

Figure S6. . GC/MS EI mass spectra corresponding to IEPOX-derived reaction products found in a representative field sample collected from the southeastern United States during the summer of 2010. (A) EIC of m/z 262: 3-MeTHF-3,4-diols (B) EIC of m/z 231: C₅-alkene triols (C) EIC of m/z 219: 2-methyltetrols (D) EIC of m/z 335: dimers.

91

92 **Figure S7.** HR-AMS unit mass resolution (UMR) mass spectra of synthesized standards (A) *cis*-93 3-MeTHF-3,4-diol, (B) *trans*-3-MeTHF-3,4-diol, (C) β-IEPOX, and (D) δ-IEPOX. UMR spectra 94 of atomizer background, the synthesized standard, and that of the standard with the atomizer 95 background subtracted are shown.

Figure S8. Background corrected HR-AMS unit mass resolution (UMR) mass spectra of synthesized standards (A) *cis*-3-MeTHF-3,4-diol, (B) *trans*-3-MeTHF-3,4-diol, (C) β-IEPOX, and (D) δ-IEPOX that have been normalized by the total organic signal (i.e., $m/z_i/org$). As such, these spectra show the relative contribution of each fragment to total organic signal. The intensities of m/z > 90 have been adjusted to clearly show the contribution and patterns of fragments in that mass range.

96

103 **Reference:**

- 104 (1) Adam, W.; Peters, K.; Renz, M., Titanium-Catalyzed Diastereoselective Epoxidations of
- 105 Ene Diols and Allylic Alcohols with -Hydroperoxy Alcohols as Novel Oxygen Donors. J. Org.
- 106 *Chem.* **1997**, *62* (10), 3183-3189.
- 107 (2) Wu, A.; Cremer, D., Extension of the Karplus Relationship for NMR Spin-Spin Coupling
- 108 Constants to Nonplanar Ring Systems: Pseudorotation of Tetrahydrofuran. *Int. J. Mol. Sci.* 2003,
 109 4 (4), 158-192.
- 110