Supplementary Information

Success of a suicidal defense strategy against infection in a structured habitat

Masaki Fukuyo^{a, b}, Akira Sasaki^{c, d}, Ichizo Kobayashi^{a, e, f, *}

a Department of Medical Genome Sciences, Graduate School of Frontier Sciences, Tokyo 108-8639, Japan

b Research Fellow of the Japan Society for the Promotion of Science (JSPS)

c Department of Evolutionary Studies of Biosystems (Sokendai-Hayama), The Graduate University for Advanced Studies (Sokendai), Hayama, Kanagawa 240-0193, Japan

d Evolution and Ecology Program, International Institute for Applied Systems Analysis, Laxenburg,

Austria

e Institute of Medical Science, University of Tokyo, Tokyo, Japan;

f Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo,

Tokyo, Japan

* Correspondence and requests for materials should be addressed to I.K. (ikobaya@ims.u-tokyo.ac.jp)

SI Text:

SI Text 1: Legends for Supplementary Figures

 SI Text 2: Detailed description of the model

Supplementary Animations:

Movie S1. Simulation at initial A:S = 10^{-3} **.**

Movie S2. Simulation at initial $A: S = 10³$ **.**

Supplementary Figures:

Figure S1. Changes of the A:S ratio after infection with pathogen Q, which does not induce suicide in either host.

Figure S2. Effect of population size on the A:S ratio change in the absence of spatial structure.

 Figure S3. Detailed time-course analysis in the absence of spatial structure.

Figure S4. Dependency of the mutant pathogen emergence on spatial structure and the initial host ratio in the simulation.

Figure S5. Model for simulation in the presence of spatial structure.

Supplementary Tables:

Table S1. Pathogen mutants Table S2. Bacteria, phages and plasmids 7, 21-28 Table S3. Symbols29, 30

Supplementary References

SI Text 1: Supplementary Figure legends

Figure S1. Changes of the A:S ratio after infection with pathogen Q, which does not induce suicide in either host.

Final A:S ratio as a function of the initial A:S ratio. The averages \pm SEM are shown. n = 4 for experiments and $n = 100$ for simulations. The procedure was as for Fig. 2.

Figure S2. Effect of population size on the A:S ratio change in the absence of spatial structure.

Maximum population size was varied. With P pathogen (a, b) or Q pathogen (c, d)*.* Individual results from simulations are shown for (a) and (c)*.* The procedure was as for Fig. 2.

Figure S3. Detailed time-course analysis.

(a) Time-course of changes in hosts' densities and pathogen's density in an experiment without spatial structure. One out of four similar results. $(b(i))$ Time-course of changes in hosts' densities and pathogen's density in a simulation without spatial structure.

(b(ii)) Mutant frequencies in the two hosts and A:S ratio in a simulation without spatial structure. (c(i)) Time-course of changes in hosts' densities and pathogen's density in a simulation with spatial structure. $(c(ii))$ Mutant frequencies in the two hosts and A:S ratio in a simulation with spatial structure. One out of 100 similar simulation results.

Figure S4. Emergence of the pathogen mutants not inducing host suicide.

The measure of the fraction of the mutants is the ratio of the titer on host A to that on host S. It was measured after the infection period. $N = 4$ for experiments. One out of 100 similar simulation results.

Figure S5. Model for simulation in the presence of spatial structure.

(a) Reproduction of host S (or S^R , A and A^R). (b) Mutation of host S to S^R . Mutation of A to A^R . (c) Infection of host S with pathogen P (or Q). (d) Suicide of host A induced by infection with pathogen P. (e) Mutation of pathogen P to Q. (f) Adsorption of pathogen P (or Q) to S (or I, I^Q and A). (g) Death of host I (or I^Q) accompanied by release of pathogen P (or Q) τ min after infection.

5

SI Text 2: Detailed description of the model

We modeled our virtual populations in a 10000×10000 dual-lattice (Figure S1). One lattice was for the host, while the other was for the pathogen. We assume that each grid of the lattice has a side length $1 \mu m$, and that each grid can harbor only one bacteria cell (whose diameter is about 0.5 μ m). The state of the *i*th site (*i* = 1,2,…) in the host lattice at time t is denoted by s_i^t $\mathcal{L}_i^{\text{h}}(t) \in \Sigma^{\text{h}} \equiv \left\{ \text{S}, \text{S}^{\text{R}}, \text{A}, \text{A}^{\text{R}}, \text{I}, \text{I}^{\text{Q}}, \text{O} \right\}$ (Table S2). The state S indicates the site occupied by a sensitive non-altruistic (non-suicidal) host, S^R does the site occupied by a pathogen-resistant non-altruistic (non-suicidal) host, A does the site occupied by an altruistic (suicidal) host, A^R does the site occupied by a pathogen-resistant altruistic (suicidal) host, I does the site occupied by an infected host, I^Q does the site occupied by a host infected with a mutant pathogen, while O is an empty site. The state of the *i*th site $(i = 1, 2, \dots)$ in the pathogen lattice at time *t* is denoted s *i* $P_t(t) \in \Sigma^p \equiv \{P, Q, O\}$. The state P indicates that the site is occupied by *b* (burst size) individual pathogens, Q indicates that the site is occupied by *b* of individual mutant pathogens, while O is an empty site. The state of the whole lattice population at time *t* is expressed by a vector $W(t) = ((s_1^h(t), s_1^p(t)), (s_2^h(t), s_2^p(t)), \cdots).$

Assuming a continuous-time Markov process, we specify the dynamics of W(*t*) by the following transition rates at the *i*th site $(i = 1, 2, ...)$:

$$
(O,^*p) \to (S,^*p), (A,^*p)
$$
 at rate $r(1-\mu)n_i(S)/z_r$, and $r(1-\mu)n_i(A)/z_r$, (1)

$$
(O,^*p) \to (S^R,^*p), (A^R,^*p) \quad \text{at rate} \quad r\mu n_i(S)/z_r + r n_i(S^R)/z_r,
$$

and
$$
r\mu n_i(A)/z_r + r n_i(A^R)/z_r, \qquad (2)
$$

$$
(S, *p) \to (I, *p) \qquad \text{at rate} \quad \beta(1-\mu)m_i^p(P)/Z_a,
$$
 (3)

$$
(A,^*p) \to (O,^*p) \qquad \text{at rate} \quad \beta(1-\mu)m_i^p(P)/Z_d,\tag{4}
$$

$$
(S,^*p),(A,^*p)\to (I^Q,^*p) \qquad \text{at rate} \quad \beta \mu m_i^p(P)/Z_d + \beta m_i^p(Q)/Z_d, \tag{5}
$$

$$
(I, *p) \to (O, P) \qquad \text{after lysis time } \tau, \tag{6}
$$

$$
(*h,P) \to (*h,O) \qquad \text{at rate} \quad a(m_i^h(S) + m_i^h(I) + m_i^h(A)) / Z_d, \tag{7}
$$

where the variable n_i (s^h) is the number of sites with state s^h in the nearest-neighbors of the *i*th site of the host lattice, $m_i^p(s^p)$ is the number of sites with state s^p in the *d* step neighbors of the *i*th site of the pathogen lattice (that is, the sites that are no further than *d* Manhattan distance, the sum of vertical and horizontal moves, from the *i*th site), $m_i^h(s^h)$ is the number of sites with state s^h in the *i*th site and the *d* step neighbors of the *i*th site of the host lattice. The constant $z_r = 4$ is the number of nearest neighbors of a site for host reproduction, and the constant $Z_d = 1 + 2d(d+1)$ is the number of *d* step neighbor sites for pathogen infection and adsorption. The character *p is a wildcard state that can be replaced by any state from Σ^p , while *h is a wildcard state that can be replaced by any state from Σ^h .

 Process (1) represents the reproduction of a sensitive non-altruistic host and an altruistic host to an empty site from a nearest-neighbor site on the host lattice, where μ is a constant parameter representing mutation rate, and *r* is a constant parameter representing maximum fecundity of a sensitive non-altruistic host and an altruistic host, which is implemented when all nearest-neighbor sites in the host lattice are empty.

 Process (2) represents the mutational-reproduction of a sensitive non-altruistic host and an altruistic host, and the reproduction of a resistant non-altruistic host and a resistant altruistic host to an empty site from a nearest-neighbor site in the host lattice.

Process (3) represents the infection of a sensitive non-altruistic host at the *i*th site by a pathogen in its d step neighbors, where β is a constant parameter representing the maximum productivity of pathogens, which is implemented when all the *d* step neighbor sites are occupied by sensitive non-altruistic hosts.

 Process (4) also represents the infection of an altruistic host at the *i*th site by a pathogen in its *d* step neighbors.

 Process (5) represents the mutational-transmission of a pathogen and transmission of a mutant pathogen to a host at the *i*th site from its *d* step neighbors.

 Process (6) represents the lysis process of an infected non-altruistic host, where τ is a constant parameter representing lysis time.

 Process (7) represents the adsorption of *b* individual pathogens at the *i*th site by a host in its *d* step neighbors, where $a = \beta / b$ is a constant parameter representing the maximum consumption of pathogens, which is implemented when all the *d* step neighbor sites are occupied by non-resistant hosts in the host lattice.

We refer to the variables $n_i(\mathbf{s}^h)/z_r$, $m_i^p(\mathbf{s}^p)/Z_d$, and $m_i^h(\mathbf{s}^h)/Z_d$ as "local density", which is used in the case of local interaction. In the case of global interaction, we refer to "global density" $\rho^h(s^h)$ and $\rho^p(s^p)$ instead.

$$
(O, \n *p) \to (S, \n *p), (A, \n *p) \qquad \text{at rate} \quad r(1-\mu)\rho^h(S), \text{ and} \quad r(1-\mu)\rho^h(A), \quad (1)'
$$
\n
$$
(O, \n *p) \to (S^R, \n *p), (A^R, \n *p) \qquad \text{at rate} \quad r\mu\rho^h(S) + r\rho^h(S^R),
$$

and
$$
r\mu\rho^h(A) + r\rho^h(A^R)
$$
, (2)'

$$
(S,^*p) \to (I,^*p) \qquad \text{at rate } \beta(1-\mu)\rho^p(P), \tag{3'}
$$

$$
(A,^*p) \to (O,^*p) \qquad \text{at rate} \quad \beta(1-\mu)\rho^p(P)\beta(1-\mu)\rho^p(P), \tag{4'}
$$

$$
(S,^*p),(A,^*p)\to (I^Q,^*p) \qquad \text{at rate } \beta\mu\rho^p(P) + \beta\rho^p(Q), \tag{5'}
$$

$$
(*h,P) \to (*h,O) \qquad \text{at rate } a(\rho^h(S) + \rho^h(I) + \rho^h(A)), \tag{7'}
$$

where $\rho^h(s^h)$ is the number of sites with state s^h in the host lattice divided by the lattice size, and $\rho^p(s^p)$ is the number of sites with state s^p in the pathogen lattice divided by the lattice size.

To initialize the simulation, every host lattice site was randomly and independently

assigned one of the state in $\Sigma^h = \{S, S^R, A, A^R, I, I^Q, O\}$, and every pathogen lattice site was assigned as O. In the case of global interaction, each host is on a host lattice site, but it can interact with a pathogen wherever it is on the pathogen lattice. In the case of local interaction, each host can interact only with a pathogen in the nearest-neighbor site and its own site. Simulations were repeated 100 times for each condition.

 The diffusion coefficient for phage, *D*, is described using the Stokes-Einstein relation:

$$
D = \frac{k_{\rm B}T}{6\pi\eta R},\tag{8}
$$

where *R* is approximately the radius of the phage head, and η is the viscosity of the medium, *T* is absolute temperature, and k_B is the Boltzmann constant. The maximum adsorption rate *k* corresponds to the case of total cell absorption, where the surface of the cell is entirely covered by receptors:

$$
k = 4\pi cD, \tag{9}
$$

where *c* is the cell radius. From equation (8) and (9), we calculated $k = 47.5 \mu m^3 s^{-1}$ when $R = 30$ nm, $T = 37$ °C = 310 K, $\eta = 0.01$ P = 0.01 g cm⁻¹ s^{-1 [33]}, $c = 0.5$ µm, and $k_{\rm B}$ = 1.38 × 10⁻²³ m² kg s⁻² K⁻¹. We approximated *k* as the infection rate of the pathogen.

11

After *b* phage particles are released at time $t = 0$ at the origin, the concentration of the phage, *C*, would obey the diffusion equation:

$$
\frac{\partial C(x, y, t)}{\partial t} = D \frac{\partial^2 C(x, y, t)}{\partial x^2} + D \frac{\partial^2 C(x, y, t)}{\partial y^2},
$$
(10)

where x , y is the position coordinate. The solution to (10) with the point initial concentration b/l^3 (with $l = 1 \mu m = 10^{-6} m$) at the point (x, y) , is

$$
C(x, y, t) = \frac{b/l^3}{4\pi Dt} e^{-d^2/4Dt},
$$
\n(11)

where $d = \sqrt{x^2 + y^2}$. The maximum concentration of bacteria when all the grids of the lattice with side length $l = 10^{-6}$ m are filled is $B = l^{-3} = 10^{18}$ m⁻³. Thus the maximum absorption (infection) rate is $\beta = Bk = 47.5$ s⁻¹, yielding the mean time to absorption $t_a = (\log b) / \beta = 0.0715$ *s*. The infection radius *d*^{*} then satisfies the equation

$$
\frac{1}{l^3} = \frac{b}{l^3} \frac{1}{4\pi Dt_a} \exp\left[-\frac{d^{*2}}{4Dt_a}\right],
$$
 (12)

or $d^* = 7.94 \mu$ m. The infection radius on the lattice is given by the integer part of d^* in units of μ m: $d = 7$.

The growth rate of the host, r , satisfies the equation:

$$
1 + r = 2^{1/t_{\rm B}},\tag{13}
$$

Supplementary References

- 24. Gillen, J. R., Willis, D. K. & Clark, A. J. Genetic-Analysis of the Rece Pathway of Genetic-Recombination in Escherichia-Coli K-12. Journal of Bacteriology 145, 521-532 (1981).
- 25. Baba, T. et al. Construction of *Escherichia coli* K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2, 2006 0008 (2006).
- 26. Blattner, F. R. et al. The complete genome sequence of *Escherichia coli* K-12. Science 277, 1453-& (1997). 277
- 27. Handa, N., Nakayama, Y., Sadykov, M. & Kobayashi, I. Experimental genome evolution: large-scale genome rearrangements associated with resistance to replacement of a chromosomal restriction-modification gene complex. Molecular Microbiology 40, 932-940 (2001).
- 28. Handa, N., Ohashi, S., Kusano, K. & Kobayashi, I. chi*, a chi-related 11-mer sequence partially active in an E -coli recC^{*} strain. Genes to Cells 2, 525-536 (1997).
- 29. Lobocka, M. B. et al. Genome of bacteriophage P1. Journal of Bacteriology 186, 7032-7068 (2004).
- 30. Nakayama, Y. & Kobayashi, I. Restriction-modification gene complexes as selfish gene entities: Roles of a regulatory system in their establishment, maintenance, and

apoptotic mutual exclusion. Proceedings of the National Academy of Sciences of the United States of America 95, 6442-6447 (1998).

- 31. Shao, Y. P. & Wang, I. N. Bacteriophage adsorption rate and optimal lysis time. Genetics 180, 471-482 (2008).
- 32. Gadagkar, R. & Gopinathan, K. P. Bacteriophage burst size during multiple infections. *Journal of Biosciences* **2**, 253-259 (1980).
- 33. Nagashima, A. Viscosity of Water Substance New International Formulation and Its Background. Journal of Physical and Chemical Reference Data 6, 1133-1166 (1977).

(b) without spatial structure,

(d) without spatial structure,

 $[S = non-altruistic host]$

Figure S1

initial $\frac{[A =$ altruistichost $]}$ $[S = non-altruistic host]$

Table S1. Pathogen mutants.				
Tube number	Isolate number	Nucleotide position	Codon change	Amino acid change
	3	186	$AAA \rightarrow AAAa$	K62frameshift
	4	371	$GGT \rightarrow GtT$	G124V
	5	186	$AAA \rightarrow AAAa$	K62frameshift
	6	371	$GGT \rightarrow GtT$	G124V
$\overline{2}$		923	$TTA \rightarrow T-A$	L308frameshift
	8	923	$TTA \rightarrow T-A$	L308frameshift
	9	425	$CCT \rightarrow CaT$	P142H
	9	858	$GAA \rightarrow GA-$	E286frameshift
	10	425	$CCT \rightarrow CaT$	P142H
3	11	434	TGG −> TtG	W145L
	12	118	$GAA \rightarrow tAA$	E40stop
	13	823	$GGC \rightarrow tGC$	G275C
	14	118	$GAA \rightarrow tAA$	E40stop
4	15	187	$GAA \rightarrow aGAA$	E63frameshift
	15	923	$TTA \rightarrow TT-$	L308frameshift
	16	923	$TTA \rightarrow T T t A$	L308frameshift
	17	187	$GAA \rightarrow aGAA$	E63frameshift
	18	187	$GAA \rightarrow aGAA$	E63frameshift

Table S1. Pathogen mutants.

Table S2. Bacteria, phages and plasmids

kan , kanamycin-resistance gene; *cml* , chloramphenicol-resistance gene.

Table S3. Symbols.

