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Supplementary Figure 1. Relationship between modeled associability (α) and 

subjects’ normalized skin conductance responses (SCRs) using the best fitting 

parameters for the hybrid model (see Supplementary Methods for details). Each data 

represents average SCRs for each trial averaged across all 17 subjects. The black 

curve is the best fitting line using least squares. This scatter-plot is provided to 

illustrate the fit of the optimized model; however, because the free parameters of the 

hybrid model were fit to optimize this correlation, it does not provide an independent 

measure of effect size10. 

 

 

 

 

 

 



 
Supplementary Figure 2. Regression analysis between associability (α) and 

prediction error (δ) generated using the best fitting parameters in the hybrid model (R2 

= 0.009, p = 0.44).  

 

 

 

 

 

 

 

 

 

 

 

 

 



 
Supplementary Figure 3. Dynamics of associability (α) (upper panel) and prediction 

error (δ) (lower panel) generated from the best fitting parameters of the hybrid model. 

Trials labeled as original CS+ were CS+ trials in the acquisition phase but CS– (safe) 

trials in the reversal phase (blue); trials labeled as original CS– were CS– (safe) trials 

in the acquisition phase but CS+ trials in the reversal phase (red; see Supplementary 

Methods for detail). 

 

 

 

 

 

 

 

 

 

 



 

 
Supplementary Table 1. Summary of the quality of individual behavioral fits from 

17 subjects (56 trials per subjects), for all the 4 models we tested using likelihood 

ratio test (see Supplementary Methods for details). –LL: negative log-likelihood. 

For each model, -LL score is shown for fits to the SCRs of the associability time 

series, α, or the predicted value time series, V or a combination of both. 

 

 

 

 Supplementary Table 2. Quality of behavioral fits to 952 trials from 17 subjects, for 

all the 4 models we tested using likelihood ratio test (see Supplementary Methods 

for details). –LL: negative log-likelihood. For each model, -LL score is shown for fits 

to the SCRs of the associability time series, α, or the predicted value time series, V or 

a combination of both. 

 

 

 
 

Supplementary Table 3. Best fitting parameters for the Hybrid (α) model, used to 

generate prediction error and associability regressors for the BOLD analysis. 



 

 
Supplementary Table 4. Brain regions showing significantly positive correlations 

with associability (α). We report those areas surviving whole brain analysis with 

threshold p < 0.001(uncorrected). 

 
Supplementary Table 5. Brain regions showing significantly positive correlations 

with prediction error (δ). We report those areas surviving whole brain analysis with 

threshold p < 0.001(uncorrected). 



Supplementary Methods 

 

Subjects. Seventeen healthy right-handed subjects (9 males) whose ages were between 

18 and 31 years old were recruited for the reversal-learning task. All participants 

provided informed consent and were paid a flat fee ($40) for their participation. The 

experiment was approved by the NYU University Committee on Activities Involving 

Human Subjects (UCAIS).  

 

Experiment Design. We re-analyzed the data from a previously published1 fear 

reversal-learning task with partial reinforcement (Fig. 1a).  Subjects were instructed 

that they would view visual images (faces) on a computer screen while possibly 

receiving electric shocks. During the task, participants were instructed to focus on the 

computer screen and try to figure out the relationship between the visual stimuli and 

the shocks. Participants were not briefed about the fact that there were two stages 

(acquisition and reversal) of the experiment or when the reversal would occur1. 

 

Conditioned stimuli (CSs) were two mildly angry male faces from the Ekman series. 

Previous studies have shown that these stimuli effectively elicit fear conditioning2. 

The unconditioned stimulus (US) was a mild electric shock to the wrist (200ms 

duration, 50 pulses/s). The CSs were presented for 4s, and they co-terminated with the 

shocks. A 12s inter-trial interval (ITI) was inserted between trials with a fixation point 

at the center of the screen (Fig. 1a). In the acquisition phase, one face (face A) was 

paired with the US on one-third of the trials (CS+), and the other (face B) was never 

paired with the US (CS–). In the reversal phase, these reinforcement contingencies 

were reversed such that face B now was paired with the US on approximately one-

third of the trials (new CS+) and face A became the safe stimulus (new CS–). The 

order of the trial types was fixed across subjects (this experiment design allowed us to 

average per-trial SCRs across subjects in Fig. 1b and supplemental Figure 1), and was 

generated pseudorandomly with two constraints: no consecutive reinforced trials and 

no more than two consecutive trials of the same kind. The designation of different 

faces (faces A & B) as CS+ and CS– was counterbalanced across subjects. The 

acquisition phase contained 18 CS+ trials, 6 of which ended with the delivery of US, 

and 12 CS– trials. The unsignaled reversal phase immediately followed the 

acquisition phase with 16 CS– trials and 23 CS+ trials (7 of which ended with the US 



delivery). We designate the first trial in which the original CS– co-terminated with the 

electric shock as the beginning of the reversal phase (Fig. 1a). 

 

Physiological stimuli and assessment. Mild shocks were delivered through a 

stimulating bar electrode attached with a Velcro® strap to the participants’ right 

wrists. A Grass Medical Instruments stimulator charged by a stabilized current was 

used to deliver shocks, with cable leads that were magnetically shielded and grounded 

through a filter. Prior to scanning, participants were instructed to set the magnitude of 

the shock themselves using a work-up procedure in which subjects were first given a 

very mild shock (10V, 200ms, 50 pulses/s) that was gradually increased until the 

subject indicated the level of shock was “uncomfortable, but not painful.”  Skin 

conductance responses (SCR) were assessed with shielded Ag-AgCl electrodes, filled 

with standard NaCl electrolyte gel, that were attached to the middle phalanges of the 

second and third fingers of the left hand.  Signals were amplified and recorded with a 

BIOPAC Systems skin conductance module connected to an Apple Macintosh 

computer. Data were continuously recorded at a rate of 200 samples per second. An 

off-line analysis of the analog skin conductance waveforms was conducted with 

AcqKnowledge software (BIOPAC Systems). The magnitude of SCRs was assessed 

for each trial as the peak-to-peak amplitude difference in skin conductance of the 

largest deflection (in micro-Siemens) in the 0.5-4.5s latency window after stimulus 

onset. The minimal response criterion was 0.02 µS. Responses below this criterion 

were interpreted as zero. The raw SCR scores were square root transformed to 

normalize the distributions, and scaled according to each subject’s mean square-root-

transformed US response1. 

 

Model fitting and selection. To test whether the behavior was consistent with the 

hypothesized learning mechanisms, and to validate and fit a model for subsequent 

fMRI analysis, we compared the fit of several reinforcement learning models to the 

trial-by-trial skin conductance responses. These included the Rescorla-Wagner model 

of learning by prediction errors and augmented hybrid models that gate prediction 

error driven learning by associability (as suggested by the Pearce-Hall model). 

Models 



We define xn as the conditioned stimulus on trial n (CS+ or CS–) and rn as the US 

delivered (1 for US, 0 for no US). All the models define value (i.e., shock) predictions 

Vn(x) for each stimulus and trial.  The punishment prediction error δn = rn – Vn(xn) 

measures the difference between the expected and predicted shock on trial n. 

 

Rescorla-Wagner model 

The Rescorla-Wagner model is a standard account of error-driven predictive learning. 

In our implementation, the values are initialized to V0, a free parameter, then on each 

trial n the value of the observed CS xn is updated according to the prediction error: 

 

 

 

Here, the learning rate α for the value update is a constant free parameter. The value 

for the CS not observed on trial n remains unchanged. 

 

 

Hybrid model 

Note that our implementation of the Rescorla-Wagner model treats the learning rate 

for the value update as constant. It is natural to replace this assumption with the 

empirically well supported Pearce-Hall mechanism for associability-gated learning3, 4, 

by substituting the Pearce-Hall associability for the constant learning rate. 

Equivalently, such a model incorporates Rescorla-Wagner’s empirically well 

supported notion of error-driven value update into the Pearce-Hall associability 

model. The resulting hybrid model is: 

 

 

 

 

Note that trial n’s associability αn depends on (absolute) prediction errors from past 

trials, but not the current one. This makes δn and αn(xn) relatively uncorrelated to one 

another (important for seeking separate neural correlates), and also means that δn is 

not “double counted” in the value update. 



 

Model fitting and comparison 

Given any particular setting of the free parameters, when applied to the sequence of 

stimuli and outcomes actually experienced by the subjects, each model defines a trial-

by-trial time series of CS values Vn, and, in the case of the hybrid model, also a 

second time series of associabilities or dynamic learning rates, αn(xn). In principal, 

either or both of these quantities might be reflected in the trial-by-trial skin 

conductance responses. Previous work, including on this dataset, suggested that SCRs 

might be encoding CS values Vn
1. We thus focus our model fitting and comparison on 

the hypothesis that the inclusion of associabilities αn(xn) explains additional variance 

in SCRs, either indirectly through their effects on the values, Vn, learned by the hybrid 

model, or directly, with associability as an additional correlate explaining variance in 

SCRs, beyond that explained by value alone. 

 

We examined both of these questions by comparing the fit of different models to the 

SCR data. We optimized the free parameters of each model to maximize the 

likelihood of the sequence of SCRs measured following the CS. We modeled the 

likelihood of each trial’s SCR Sn as independent and identically distributed (i.i.d.) 

Gaussian distribution around a mean determined by the scaled value (or associability, 

or the combination of both value and associability) predicted by the model on that 

trial plus a constant term: 

 

[1] Sn ~ N(β0 + β1 Vn(xn), σ) or 

[2] Sn ~ N(β0 + β1 αn(xn), σ) or 

[3] Sn ~ N(β0 + β1 Vn(xn) + β2 αn(xn), σ) 

 

These are equivalent to linear regressions from the values or associabilities, or the 

combination of both, to the SCRs.  For the Rescorla-Wagner model (RW(V)),we used 

Vn as the independent variable (since α is constant); for the Hybrid model, we tested 

all three possible combinations (Equations 1-3; Hybrid(V); Hybrid(α); Hybrid(α+V)), 

all in separate fits of all free parameters. 

 

 



Likelihoods were pooled over all trials, but omitting trials in which a shock was 

delivered in order to avoid possible contamination of the predictive response by 

shock-related responses. (Although shock trials were omitted from the regression onto 

the SCRs, they were included in the computation of Vn and αn.)  

 

The key questions concerning whether associability impacts SCR can each be posed 

statistically in terms of the comparison of fit between a more complicated model, and 

a more restricted one that is nested within it via a parametric restriction. Thus, we 

used classical likelihood ratio tests of the null hypothesis that the improvement in fit 

of the more complicated model relative to the simpler one was better than that 

expected by chance (i.e., overfitting, given the additional parameters included in the 

more complicated model). For example, RW(V) is nested in the Hybrid(V) model by 

setting η = 0 and κ = 1 (the comparison tests the hypothesis that values learned with 

associability explain the SCRs better than values learned with a constant learning 

rate); additionally, Hybrid(V) and Hybrid(α) are nested in Hybrid(α+V) with β1 or β2 = 

0 (these comparisons test whether the addition of either variable as an additional 

covariate improves fit relative to a model explaining SCRs as well as possible on the 

basis of the other variable only) respectively. 

 

We fit these models separately to each individual subject’s SCRs (i.e., using a 

separate set of free parameters for each subject), and performed likelihood ratio tests 

on the data likelihoods aggregated across subjects (Supplementary Table 1). 

Although the small number of trials limits power on the individual level, we verified 

that the aggregate results were supported in a reasonable proportion of individuals 

considered individually (In particular Hybrid(α+V) fit better than Hybrid(V) for 6/17 

subjects at p<.05 and trended so at p<.1 for an additional 1/17; compared to RW(V), 

the full Hybrid(α+V) showed a significant improvement for 6/17 subjects and a trend 

for 3 more).  

 

It’s been shown previously that when free parameters are fit separately to each 

individual subject in this way, the resulting parametric regressors (prediction errors, 

etc.) are too noisy to achieve reliable fMRI effects5-8. Accordingly, we repeated all 

behavioral model fits taking the models’ free parameters as fixed across subjects, 

which is a simple and effective way of regularizing the free parameters. The major 



results (Supplementary Table 2 & Fig. 1) held up in this case; in particular, the 

comparisons between Hybrid(α+V) and Hybrid(V), and between Hybrid(V) and 

RW(V), confirmed the importance of including associability to explain SCRs. Indeed, 

in this case, the Hybrid(α+V) model was not a significantly better fit than than the 

simpler Hybrid(α) model. We thus adopted the parameters fit with the Hybrid(α) 

model for subsequent imaging analyses (Supplementary Table 3). 

 

Imaging acquisition and analysis. A 3T Siemens Allegra head-only scanner and 

Siemens standard coil (Siemens) were used for MRI data acquisition. Functional 

images were collected using a single-shot gradient echo EPI sequence (TR = 2000ms, 

TE = 25ms, FOV = 192cm, flip angle = 750, bandwidth = 4340 Hz/px, echo spacing = 

0.29 ms) after T1-weighted (256 × 256 matrix, 176 1-mm sagittal slices) anatomical 

images were acquired. Thirty-nine contiguous oblique-axial slices (3 × 3 × 3 mm 

voxels) parallel to the AC-PC line were obtained. 

 

Analysis of the imaging data was conducted using SPM8 (Wellcome Trust Center for 

Neuroimaging; http://www.fil.ion.ucl.ac.uk/spm/) and xjView 

(http://www.alivelearn.net/xjview8/). Motion effects were corrected by aligning 

images in each run to the first volume using a 6-parameter rigid body transformation. 

Mean functional images were then coregistered to the structural image, and 

normalized into MNI template space using a 12-parameter affine transformation 

(SPM8 “segment and normalize” estimated from the structural). Normalized 

functional images were re-sampled into 2 × 2 × 2 voxel resolution. A Gaussian kernel 

with a full width at half maximum (FWHM) of 6mm was applied for spatial 

smoothing. 

 

For statistical analysis, we constructed two impulse events for each trial, at the times 

of CS onsets and CS offsets (potential US onsets). The first event was included to 

control the overall BOLD variance. To study parametric effects related to learning, 

we included three parametric regressors modulating the CS offset impulse event: (1) 

Associability αn(xn), (2) outcome identity rn (1 = shock; 0 = no shock) and (3) 

prediction error δ n(xn) as parametric regressors modulating the outcome impulse 

event. The associability and prediction error time series were generated using the 



hybrid model (Hybrid(α)) at the best fitting setting of the free parameters, and were 

the focus of our analysis (Supplementary Fig. 3). The associability and prediction 

error time series were not mutually correlated  (R2 = .009; Supplementary Fig. 2), 

allowing their effects to be examined separately. The outcome identity was included 

as a dummy variable. Note that we modeled both of these effects at the onset of 

outcome revelation rather than at the onset of CS since the prediction error is 

computed when the outcome information is available, it’s also at the outcome period 

when prediction error is combined with the associability to influence the value update. 

 

We then convolved all these regressors with SPM8’s canonical hemodynamic 

response function, computed parameter estimates for each subject, and took these 

estimates to the group random effects level for statistical testing9 (Supplementary 

Tables 4 & 5).  

 

To examine activity patterns in the amygdala and striatum more closely, we defined 

ROIs using an independent contrast.  Since previous work showed that both striatum 

and amygdala are highly active during the early acquisition trials (10 CS+ & 7 CS– 

trials)1, we created a separate general linear model (GLM) which included box-car 

predictors that started with the onsets of CSs and lasted the length of each trial (4s) 

and additional predictors for trials terminating with a shock. Both regressors were 

convolved with a standard hemodynamic response function. We used a relatively 

loose threshold (p < 0.005, unc) to generate striatum and bilateral amygdala masks 

(CS vs. baseline).  We extracted the average beta values for associability (α) and PE 

(δ) within these masks and conducted a repeated-measure ANOVA with factors of 

model component and ROI. Note that the test of an interaction by region cannot be 

biased by the selecting contrast, since the same contrast was used to define the masks 

in both regions. 
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