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SI Materials and Methods
Sample Collection. Blood samples from 68 healthy donors were
obtained from Research Blood Components. A signed written
consent was obtained from all of the participants. All individuals
recruited in this study were healthy Caucasian males between the
ages of 21 and 55 y old. We decided to focus on only one sex to
avoid the potentially confounding effects of sex-specific differences
in gene expression level on response phenotypes (1, 2). We chose
males because gene expression levels are known to differ more
among females, due to estrus cycling (e.g., refs. 3, 4), an effect
that would reduce the power to identify eQTL. Only individuals
self-reported as currently healthy, not under medication, and with
no history of diseases such as malaria, tuberculosis, cancer, or
hepatitis were included in the study. In addition, each donor’s
blood was tested for standard blood-borne pathogens, and only
samples negative for all of the pathogens tested were used.

Mycobacterium tuberculosis Preparation. We infected dendritic
cells (DCs) with a Mycobacterium tuberculosis (MTB) strain ex-
pressing green-fluorescent protein (H37Rv). This recombinant
strain carries a pEGFP plasmid, which encodes a gene that
confers resistance to hygromycin and harbors the GFP gene
under the control of the mycobacterial Phsp60 constitutive
promoter. Importantly, our work (5), as well as that of others (6)
has shown that the presence of GFP in MTB does not alter
growth or virulence of the bacilli under axenic conditions, rela-
tive to wild-type MTB. M. tuberculosis H37Rv was grown from
a frozen stock to midlog phase in 7H9 medium (BD) supple-
mented with albumin-dextrose-catalase (ADC; Difco). We
tested the virulence of the bacteria in the frozen stock by in-
fecting C57BL/6 mice intranasally with 103 bacilli. After 21 and
42 d, we estimated a load of 107 bacteria in the mice lungs, in-
dicating that the bacteria did not lose its natural virulence (7).

Isolation and Infection of DCs. Blood mononuclear cells from
healthy volunteers were isolated by Ficoll-Paque centrifugation.
Blood monocytes were purified from peripheral blood mono-
nuclear cells by positive selectionwithmagneticCD14MicroBeads
(Miltenyi Biotech).Monocytes were then cultured for 5 d inRPMI
1640 (Invitrogen) supplemented with 10% heat-inactivated FCS
(Dutscher), L-glutamine (Invitrogen), GM-CSF (20 ng/mL; Im-
munotools), and IL-4 (20 ng/mL; Immunotools). Cell cultures
were fed every 2 d with complete medium supplemented with the
cytokines previously mentioned. Before infection, we systemati-
cally checked the differentiation/activation status of the mono-
cyte-derived DCs by flow cytometry, using antibodies against
CD1a, CD14, CD83, and HLA-DR. All antibodies were pur-
chased from Becton Dickinson. Only samples presenting the ex-
pected phenotype for nonactivated DCs—CD1a+, CD14−,
CD83−, and HLA-DRlow

—were used in downstream experi-
ments. The resulting monocyte-derived DCs were then infected
with MTB for 18 h at a multiplicity of infection of 1-to-1. The
choice of 18 h is based on previous work, which revealed that the
largest number of transcriptional changes following MTB in-
fection could be captured at 18 h postinfection (8).

DNA Extraction and Genome-Wide Genotyping. DNA from each of
the blood donors was extracted from the depleted white cell
populations (i.e., T cells, B cells, NK cells, etc.), using the
PureGene DNA extraction kit (Gentra Systems). Genotyping of
68 individuals was then performed using Illumina’s Omni1-Quad
BeadChip array, which interrogates 970,287 SNPs. Genotype

calls were extracted from the raw data using BeadStudio. All
samples had genotype call rates (CR) above 98%, with the ex-
ception of individual TB91 (CR = 80%), who was excluded from
further analysis. After applying standard quality control criteria
(SNPs with no missing data and nominal P value for testing
deviation from Hardy–Weinberg equilibrium >10−4), 873,973
SNPs remained for analysis. Because samples were collected
anonymously, we tested for relatedness in our sample. To do so,
we used PLINK (9) to estimate the pair-wise genome-wide
identity by state (IBS) between all possible pairs of individuals.
We found two pairs of individuals that appeared to be ge-

netically identical (i.e., they shared >99.9% of their genotypes),
suggesting that two individuals donated blood twice during our
recruitment process. We randomly excluded the data of one
individual from each of these pairs. All other samples were un-
related as defined by an estimated proportion of IBS <0.2
(second degree relatives). All samples were confirmed to be
males on the basis of the genotype data from the X chromosome.
Finally, although all our blood donors were self-identified as
European Americans, we used principal component analyses
(PCA) to confirm their ethnic origin on the basis of the genotype
data alone. To do so, we used smart PCA (10) after integrating
our samples with the ethnically well-defined HapMap population
samples. All our samples clustered tightly together with the
European population from HapMap with the exception of four
individuals that presented some evidence of admixture with non-
European groups (Fig. S5). In the analyses presented in the main
text, we kept the data from these “admixed” individuals, but we
confirmed that our conclusions remain unaltered by excluding
these samples.
In summary, we excluded data from one individual with a low

genotype call rate, and data from two pairs of individuals were
practically identical (we retained one from each pair). These steps
resulted in a final dataset of 65 individuals that were used in the
eQTL analysis.

Gene Expression Measurements and Preprocessing of Expression
Data. Total RNA was extracted from the noninfected DCs and
the MTB-infected DCs using the miRNeasy kit (Qiagen). RNA
quantity was evaluated spectrophotometrically, and the quality
was assessed with the Agilent 2100 Bioanalyzer (Agilent Tech-
nologies). Only samples with no evidence for RNA degradation
(RNA integrity number >8) were kept for further experiments.
Genome-wide gene expression profiling of untreated and in-
fected DCs was obtained by hybridizing the RNA to the Illumina
HumanHT-12 v4 Expression BeadChips arrays. The cDNA
synthesis, labeling, and subsequent hybridization to the micro-
arrays were performed by the Southern California Genotyping
Consortium at the University of California at Los Angeles. Two
technical replicates were performed for each sample yielding
data from 260 expression arrays (65 individuals × 2 conditions ×
2 technical replicates). We found that the gene expression esti-
mates obtained from technical replicates were highly correlated
(median Pearson’s r = 0.98) indicating excellent reproducibility.
On the basis of an analysis of the pairwise correlation of tech-
nical replicate data, we found two clear outlier arrays, which
were excluded from subsequent analyses. For six individuals, we
also performed the infection experiments in triplicate (three
treated and three untreated cultures of DCs from each of the six
individuals) to evaluate the degree of variation associated with
our experimental setup. We found very high correlations
(Pearson’s r > 0.96) between biological replicates (i.e., in-
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dependently untreated or treated replicate samples of DCs from
the same individuals), demonstrating that our cell culture and
infection procedures are highly replicable and consistent.
Low-level microarray analyses were performed in R, using the

Bioconductor software package lumi (11). We first applied
a variance stabilizing transformation to all arrays (12) and then
quantile normalized the data. After normalization, we removed
probes with intensities indistinguishable from background noise
(as measured by the negative controls present on each array).
We next annotated the significantly expressed probes by map-
ping them to RefSeq gene sequences using BLAT. Only probes
that mapped to unique gene IDs were kept for downstream
analyses. In addition, to avoid spurious associations between
specific genotypes and gene expression measurements, we ex-
cluded all probes that contained one or more HapMap SNPs.
Finally, we removed probes that mapped to putative and/or
nonwell characterized genes (i.e., genes without an Ensembl
gene ID). After these preprocessing steps, data from 17,017
probes corresponding to 12,958 well-annotated Ensembl genes
were available for association analysis.

Identifying Genes Differentially Expressed After MTB Infection. To
identify genes whose expression levels were altered following
MTB infection of DCs, we used a linear modeling-based ap-
proach. Specifically, we used the Bioconductor limma package
(13) to fit, for each gene, a linear model with individual treat-
ment (i.e., MTB infection) and batch as fixed effects. We in-
cluded a batch effect because the RNA samples were hybridized
in two separate batches (first batch, 180 arrays; second batch, 80
arrays, each with a balanced number of infected and noninfected
samples). For each gene, we subsequently used the empirical
Bayes approach of Smyth (13) to calculate a moderated t statistic
and P value. We corrected for multiple testing using the false
discovery rate (FDR) approach of Benjamini and Hochberg (14).

Gene Ontology (GO) and Pathway Enrichment Analysis. We used
GeneTrail (15) to test for enrichment of functional annotations
among differentially expressed genes after MTB infection, using
all expressed genes (i.e., 12,958 genes) as a background set. The
tests were performed using all GO categories and Kyoto Ency-
clopedia of Genes and Genomes pathways. P values were cal-
culated by comparing the observed data with the quantiles of
a hypergeometric distribution, and we used the approach of
Benjamini and Hochberg (14) to control the false discovery rate.

Quantification of Cytokine and Chemokine Levels in Supernatants.
We used the Bio-Plex Pro Human Cytokine 27-plex (Bio-Rad)
to measure the levels of 27 different cytokines/chemokines in the
supernatants of untreated and infected DCs. We chose this assay
because it includes the most important cytokines currently known
to be involved in protective immunity against tuberculosis (e.g.,
IFN-γ, IL-12, IL-17, or TNF-α). The assay was performed at the
Flow Cytometry Facility at the University of Chicago, according
to the manufacturer’s recommendations. Each sample was as-
sayed in two technical replicates. For each protein, the average
quantity across technical replicates was calculated and used for
all subsequent analyses. To reduce the effects of outliers on the
protein QTL mapping, the secretion values of each protein were
quantile normalized so that they followed a N(0,1) distribution
across individuals using the “qqnorm” function in R (both for
infected and noninfected samples). Ties due to estimated se-
cretion levels of zero were broken randomly.
Because samples were assayed in four different 96-well plates

(with a balanced number of infected and noninfected samples in
each plate) we used linear regression to remove the potential
“plate-effect” confounder from the measurement of each protein
and the corrected data were used in all subsequent analyses. Of
the 27 proteins tested, 4 showed nondetectable (i.e., extremely

small) secretion levels (IL-5, IL-7, Eotaxin, and FGF) and two
presented secretion levels above our maximum detection limits
(MIP-1a and M1P-1b). These 6 proteins were excluded from our
analyses. We also excluded from all analyses GM-CSF and IL-4
because the measured secretion levels could be biased as we
added those two cytokines to the culture media to derive DCs.

Genotype–Phenotype Association Analysis. We limited the eQTL
analysis to data from 11,996 genes, which are a subset (93%) of the
12,958 genes that we classified as expressed in DCs. We excluded
962 genes (of the set of 12,958 genes expressed in DCs) either
because: (i) they were located on a sex chromosome (457 on the X
chromosome and 11 on the Y chromosome), which limits the
power to detect eQTL given that all our samples are males (i.e.,
for these genes we have half the number of genotyped chromo-
somes) or (ii) the genes were poorly annotated and we could not
identify reliable transcription start site (TSS) positions (and
therefore we could not define a putative “cis”-eQTL region).
We examined associations between SNP genotypes and either

transcript or protein by using a linear regression model in which
phenotype was regressed against genotype. In all cases, we as-
sumed that alleles affecting either transcript or protein expression
levels did so in an additive manner. We mapped infected and
noninfected DCs separately. All regressions were performed
using a Python script, whereas downstream analyses were carried
out using the R statistical framework. We only tested associations
with SNPs with a minor allele frequency greater than 10% be-
cause, given our limited sample size, we have low power to detect
eQTL or pQTL for rare variants. When looking for variants
putatively associated with gene expression levels or protein se-
cretion in cis, we tested for an association between expression
levels and genotypes at SNPs located within a 200-kb window
centered on the gene’s TSS. We recorded the minimum P value
(i.e., the strongest association) observed for each gene, which we
used as statistical evidence for the presence of at least one eQTL
for that gene.
To estimate an FDR, we permuted the phenotypes (expression

levels) three times, reperformed the linear regressions, and
recorded the minimum P values for the gene for each permu-
tation. These sets of minimum P values were used as our em-
pirical null distribution. We then compared the observed
distribution of the minimum P values to the null distribution to
estimate the FDR, as previously described (16). Briefly, we
found the P value i such that Pr(Ppermuted < i)/Pr(Preal < i) =
0.01, where 0.01 corresponds to the FDR of 1% used in our
study, Pr(Ppermuted < i) is the proportion of minimum P values
from the permutations that fall below the P value threshold, and
Pr(Preal < i) is the proportion of minimum P values from the real
data that fall below the P value threshold. In our data, an FDR
of 1% corresponded to a value of i equal to 1.4 × 10−5.
Consistent with previous reports (16, 17) we found that we

could increase the power to detect cis-eQTL by accounting for
unmeasured—surrogate—confounders (e.g., related to technical
effects or sample quality biases). To do this, we first determined
the principal components of the correlation matrix for the
noninfected and infected gene expression data. Subsequently, for
each gene we regressed out the first five principal components
(PCs) or eight PCs from the noninfected and MTB-infected data,
respectively, before performing the association analysis. The
numbers of PCs to regress out were chosen because they em-
pirically led to the identification of the largest number of eQTL
in each of the conditions. Importantly, whereas the PC correc-
tions clearly increase power to detect eQTL, they do not affect
the underlying structure of the expression data. Indeed, >87% of
the eQTL observed before any PC correction are also observed
after PC correction at the same FDR cutoff.
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Identifying Response eQTL. In principle, after independently clas-
sifying eQTL in the untreated and infected DCs we could look for
response eQTL by simply comparing the lists of eQTL in each
class of DCs. However, a naive comparison of the lists of eQTL
ignores the fact that evidence for eQTL in one class of DC
provides information about the likelihood of an eQTL in the
other class. Thus, using a single arbitrary statistical cutoff in in-
dependent analyses of the untreated and infected DCs is likely to
result in a high rate of falsely identified response eQTL. Instead,
we classified response eQTL by using a two-step FDR cutoff.
Specifically, wefirst useda stringentFDRcutoff of 1%toclassify

eQTL in either the untreated or the infected DCs. Subsequently,
the threshold for classifying corresponding eQTL in the other class
of DCs was relaxed to an FDR of 50%. This approach results in
a conservative classification of response eQTL. We note that the
choice of statistical cutoffs was arbitrary (as is typically the case,
regardless of the use of one or two cutoffs).
Importantly, our observations are robust to the method used to

identify response eQTL. Indeed, an alternative approach used to

identify response eQTL is to treat the changes in gene expression
levels after a treatment, in our case MTB infection, as the quan-
titative trait to be mapped (18, 19). This approach makes the as-
sumption that interaction effects result in additive changes in gene
regulation and for that reason we chose not to present it as the
main analysis (our approach allows for threshold effects, which are
known to be common in gene regulatory networks). In addition, the
approach based on mapping the gene expression response has low
power to detect a significant interaction when the genotype effect
on expression levels in untreated and infected DCs, independently,
is of different magnitude but has the same direction. On the other
hand, the approach of mapping the regulatory change has the ad-
vantage of not relying on the choice of two arbitrary cutoffs.
Reassuringly, the lists of response eQTL identified using either

approach were highly similar (Fig. S4 and Dataset S3). Moreover,
response eQTL identified using either approach were also sig-
nificantly enriched for genome-wide association study (GWAS)
P values <0.05 (1.8-fold enrichment, P = 0.01; Fig. S4).

1. Ranz JM, Castillo-Davis CI, Meiklejohn CD, Hartl DL (2003) Sex-dependent gene
expression and evolution of the Drosophila transcriptome. Science 300:1742–1745.

2. Rinn JL, Snyder M (2005) Sexual dimorphism in mammalian gene expression. Trends
Genet 21:298–305.

3. Kang J, et al. (2005) Expression of human prostaglandin transporter in the human
endometrium across the menstrual cycle. J Clin Endocrinol Metab 90:2308–2313.

4. Sarkar MA, Vadlamuri V, Ghosh S, Glover DD (2003) Expression and cyclic variability of
CYP3A4 and CYP3A7 isoforms in human endometrium and cervix during the
menstrual cycle. Drug Metab Dispos 31:1–6.

5. Tailleux L, et al. (2003) Constrained intracellular survival of Mycobacterium
tuberculosis in human dendritic cells. J Immunol 170:1939–1948.

6. Kremer L, Baulard A, Estaquier J, Poulain-Godefroy O, Locht C (1995) Green
fluorescent protein as a new expression marker in mycobacteria. Mol Microbiol 17:
913–922.

7. Tanne A, et al. (2009) A murine DC-SIGN homologue contributes to early host defense
against Mycobacterium tuberculosis. J Exp Med 206:2205–2220.

8. Tailleux L, et al. (2008) Probing host pathogen cross-talk by transcriptional profiling of
both Mycobacterium tuberculosis and infected human dendritic cells and
macrophages. PLoS ONE 3:e1403.

9. Purcell S, et al. (2007) PLINK: A tool set for whole-genome association and population-
based linkage analyses. Am J Hum Genet 81:559–575.

10. Patterson N, Price AL, Reich D (2006) Population structure and eigenanalysis. PLoS
Genet 2:e190.

11. Du P, Kibbe WA, Lin SM (2008) lumi: A pipeline for processing Illumina microarray.
Bioinformatics 24:1547–1548.

12. Lin SM, Du P, Huber W, Kibbe WA (2008) Model-based variance-stabilizing
transformation for Illumina microarray data. Nucleic Acids Res 36:e11.

13. Smyth GK (2004) Linear models and empirical Bayes methods for assessing differential
expression in microarray experiments. Stat Appl Genet Mol Biol 3:Article3.

14. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: A practical and
powerful approach to multiple testing. J R Stat Soc Ser A Stat Soc 57:289–300.

15. Backes C, et al. (2007) GeneTrail—advanced gene set enrichment analysis. Nucleic
Acids Res 35:W186–192.

16. Pickrell JK, et al. (2010) Understanding mechanisms underlying human gene
expression variation with RNA sequencing. Nature 464:768–772.

17. Leek JT, Storey JD (2007) Capturing heterogeneity in gene expression studies by
surrogate variable analysis. PLoS Genet 3:1724–1735.

18. Maranville JC, et al. (2011) Interactions between glucocorticoid treatment and cis-
regulatory polymorphisms contribute to cellular response phenotypes. PLoS Genet 7:
e1002162.

19. Smirnov DA, Morley M, Shin E, Spielman RS, Cheung VG (2009) Genetic analysis of
radiation-induced changes in human gene expression. Nature 459:587–591.

Fig. S1. Most SNPs associated with gene expression levels act in cis. (A) Quantile–quantile plot of P values obtained when testing for an association between
gene expression estimates and all SNPs located in a 200-kb window centered on a gene’s transcription starting site (TSS) (y axis) compared with P values
obtained by permuting the gene expression measurement (x axis). (B) Quantile–quantile plot of P values obtained when testing for an association between
gene expression estimates and all SNPs located more than 500 kb away from the TSS of the gene being tested (y axis) compared with P values obtained by
permuting the gene expression measurement (x axis).
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Fig. S2. Protein level measurements from untreated (green) and infected (red) DCs for the 19 cytokines/chemokines tested.
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Fig. S3. Mapping protein QTL. (A) Quantile–quantile plot of P values obtained when testing for an association between protein measurement against all SNPs
(green) and against SNPs identified as being cis-QTL (blue) (y axis) compared with P values obtained by permuting 10 times the protein measurement (x axis).
(B) Manhattan plot (Left) showing the negative log10 transformed P values (y axis) for the association between all SNPs classified as cis-eQTL and the secretion
levels of IL15 measured in the supernatant of infected DCs. (C) Correlation between genotypes at rs854100 and the relative secretion levels of IL15.

Fig. S4. Response eQTL identified when treating the changes in gene expression levels after MTB infection as the quantitative trait to be mapped. (A)
Quantile–quantile plot summarizing the results from tests for genetic variation associated with changes in gene expression levels after MTB infection. We plot
the observed P values (y axis) against the P values obtained by permuting three times the phenotypes (i.e., fold-change in expression levels; x axis). (B) Examples
of response eQTL identified when mapping the changes in expression levels after MTB infection. (C) MTB-response eQTL identified by mapping changes in
gene expression levels after MTB infection are enriched for susceptibility alleles to TB. The median GWAS P value for an expanding window of genes is plotted.
We used the GWAS P values obtained when combining the Ghana and Gambia cohorts. Genes are ordered by the strength of evidence supporting an MTB-
response eQTL based on the lowest P value obtained when testing an association between cis-SNPs (i.e., SNPs located in 200-kb window centered on the TSS of
proximal genes) and changes in gene expression levels after MTB infection. To avoid positional biases we restricted our analyses to the set of cis-SNPs that was
tested in our study. (D) Histogram of the proportion of GWAS SNPs with nominal P values <0.05 among all GWAS SNPs (gray), and among response eQTL
(orange).
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Fig. S5. Principal component analysis integrating data on our samples with data from the ethnically well-defined HapMap populations. The analysis was done
using a set of 634,191 SNPs that were genotyped in our samples as well as in the HapMap samples.
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Table S1. List of genes with response eQTL that are also associated with SNPs with a nominal P value <0.05 in
the combined genome-wide association study (GWAS) data

Ensembl gene ID Hugo gene ID SNP, rs no. P eQTL NS P eQTL MTB P GWAS

ENSG00000161326 DUSP14 rs712039 9.61E-06 0.046899177 3.30E-06
ENSG00000158022 TRIM63 rs868551 3.14E-10 0.394820211 0.001585
ENSG00000160593 AMICA1 rs4537793 0.006919186 4.47E-06 0.002643
ENSG00000168268 NT5DC2 rs3755806 8.21E-08 0.179097087 0.005162
ENSG00000159788 RGS12 rs1406674 0.076363479 5.67E-09 0.006678
ENSG00000138604 GLCE rs10162608 0.355105618 7.01E-07 0.01147
ENSG00000205057 CLLU1OS rs432771 0.014540672 3.52E-06 0.01285
ENSG00000095209 TMEM38B rs10739209 4.84E-08 0.133219781 0.01615
ENSG00000181458 TMEM45A rs7616839 2.35E-08 0.012969461 0.01636
ENSG00000164465 DCBLD1 rs7746536 3.75E-06 0.011329278 0.01661
ENSG00000109099 PMP22 rs1380179 0.076313816 1.77E-10 0.01767
ENSG00000104312 RIPK2 rs40457 0.088217122 1.86E-07 0.02165
ENSG00000171792 C12orf32 rs1860434 0.016617327 4.15E-06 0.02413
ENSG00000117151 CTBS rs12143652 1.15E-08 0.005546015 0.02438
ENSG00000187164 KIAA1598 rs10886017 3.26E-06 0.435779466 0.02507
ENSG00000149499 EML3 rs3809079 0.009468462 9.84E-06 0.02563
ENSG00000168234 TTC39C rs1843839 3.80E-06 0.203439918 0.02649
ENSG00000144182 LIPT1 rs11688004 7.28E-07 0.007389465 0.02656
ENSG00000188056 TREML4 rs9349180 0.030824819 3.58E-10 0.0285
ENSG00000082497 SERTAD4 rs2485903 9.34E-07 0.02513761 0.02868
ENSG00000156475 PPP2R2B rs9325026 2.48E-06 0.092747289 0.02886
ENSG00000091157 WDR7 rs559998 0.077327867 5.22E-06 0.03239
ENSG00000189046 ALKBH2 rs7135947 6.86E-08 0.223122089 0.03252
ENSG00000116791 CRYZ rs12120636 0.016141668 1.81E-06 0.03619
ENSG00000115718 PROC rs2069933 1.44E-10 0.113634564 0.03698
ENSG00000123415 SMUG1 rs6580976 0.284568281 4.84E-06 0.03729
ENSG00000137312 FLOT1 rs9468830 2.79E-06 0.063806996 0.04063
ENSG00000185344 ATP6V0A2 rs10744162 0.347680074 7.46E-07 0.04222
ENSG00000211456 SACM1L rs2673028 0.073164192 4.99E-07 0.044
ENSG00000135124 P2RX4 rs1169727 0.381229529 1.73E-06 0.04481
ENSG00000160712 IL6R rs4379670 1.37E-06 0.202474043 0.04541
ENSG00000166927 MS4A7 rs2233253 0.006554554 2.31E-12 0.0457
ENSG00000176734 TRIL rs505532 0.254563981 4.38E-06 0.04617
ENSG00000131797 MGC3020 rs3751742 0.227688314 3.01E-09 0.0471
ENSG00000119865 CNRIP1 rs2120334 1.60E-06 0.017934224 0.04806
ENSG00000103064 SLC7A6 rs8056893 1.24E-10 0.03452262 0.04879
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