Supporting Information

Wang et al. 10.1073/pnas.1115983109 Supporting Information Corrected August 01, 2016

Fig. S1. Phylogenetic analysis. (A) Analysis of *M. robertsii* (loci tagged as MAA) and *M. acridum* (loci tagged as MAC) NRPSs based on their adenlylation domain sequences. The domains highlighted in bold indicate that the corresponding NRPS gene is present in one species but absent in the other. (*B*) Phylogenetic and signature analysis of DtxS1 A domains. (C) Analysis of DtxS1 C domains.

Fig. S2. Mass spectrometric and high-performance ion chromatography analysis. (*A*) Mass spectrum of dtx E-diol in the cultures of *M. robertsii* strain ARSEF 23 after incubation in CD medium for 7 d. (*B*) Mass spectrum of dtx E. (C) Mass spectra of dtx C and dtx D. (*D*) Mass spectrum of dtx A. (*E*) Mass spectrum of dtx B. (*F*) Mass spectrum of dtx B. (*H*) High-performance ion chromatography analysis of dtxs produced *in insecta* by the WT and $\Delta dtxS1$ on mycosed silkworm larvae.

Fig. S3. HPLC profiling of the WT and dtxS1 upstream gene deletion mutants of *M. robertsii*. The profiles of the WT and mutants are similar, indicating that these genes are not involved in dtx biosynthesis. Gene locus numbers are labeled in each panel and the peaks for dtxs are framed.

DN A S

Fig. S4. Insect bioassays. (A) The WT and mutant strains of *M. robertsii* were grown in the CD medium for 7 d. The culture filtrates were used for injection of the fifth instar larvae of silkworms (50 μ L each insect). The insects injected with the WT sample demonstrated an instant paralysis symptom and died within a few minutes. In contrast, no apparent symptoms were observed for those injected with the mutant culture filtrates or CD medium (control). (B) Survival curves of locusts after injection of a spore suspension (1 \times 10⁶ spores/mL; 10 μ L per insect) of the WT, $\Delta dtxS1$, and $\Delta dtxS2$ mutants. (C) Survival curves of silkworm larvae after injection of a spore suspension (5 \times 10⁵ spores/mL; 10 μ L each) of the WT, $\Delta dtxS1$, and $\Delta dtxS2$ mutants. Insects injected with water were included as controls.

Species and locus	No. of amino acids	No. of A domains	No. of C domains	Modulation analysis*
M. robertsii				
MAA_00969	1,983	2	2	ATC-ATC
MAA_01639	5,433	4	4	ATEC-ATC-ATC-ATEC
MAA_01890	4,845	3	4	AC-ATC-CACC
MAA_05334	1,800	1	2	ATC-TC
MAA_06559	1,975	2	1	ATC-A
MAA_06742	1,301	1	1	ATC
MAA_06744	1,854	1	1	ATC
MAA_07852	1,647	1	2	C-ATC
MAA_09689	9,413	7	7	ATEC-ATC-ATC-ATEC-ATEC-ATEC-ATC
MAA_09772	10,277	8	8	ATC-ATC-ATEC-ATC-ATEC-ATEC-ATC-T
MAA_09844	3,552	2	3	ATC-ATEC-TC
MAA_09953	10,188	8	8	ATC-ATC-ATEC-ATC-AEC-ATC-ATEC-ATC
MAA_10036	2,139	2	2	ATC-ATC
MAA_10043	7,898	6	6	ATC-ATEC-ATC-ATC-A(NM)TC-A(NM)TC
MAA_10410	3,183	2	2	TC-ATEC-AT
M. acridum				
MAC_01861	1,644	1	2	ATC-TC
MAC_02762	10,186	8	8	ATC-ATC-ATEC-ATC-AEC-ATC-ATEC-ATC
MAC_02881	5,435	4	4	ATEC-ATC-ATC-ATEC
MAC_04406	10,285	8	8	ATC-ATC-ATEC-ATC-ATEC-ATEC-ATC-T
MAC_04974	5,358	4	4	ATEC-ATC-ATC-ATEC
MAC_05398	3,530	2	3	ATC-ATEC-TC
MAC_06980	1,793	1	1	ATC
MAC_06982	889	1	1	ATC
MAC_07604	2,607	2	2	ATC-ATEC
MAC_07977	4,838	3	4	AC-ACC-ACC
MAC_08214	1,693	1	1	T-ATTC
MAC_08899	9,390	7	6	ATEC-ATC-ATC-ATEC-ATEC-ATEC-AT
MAC_09498	1,616	1	2	C-ATC

Table S1. Modulation analysis of NRPS proteins encoded in the M. robertsii and M. acridum genomes

For modulation analysis: A, adenylation domain; C, condensation domain; E, epimerization domain; and NM, N-methylation domain; T, thiolation (or peptidyl carrier protein, PCP) domain.

*The locus MAA_10043 highlighted in bold is verified for the biosynthesis of dtxs.

	Dtx B*		Dtx B ₂ [†]		Desmethyl-Dtx B ⁺	
No.	δ (Η)	δ (C)	δ (Η)	δ (C)	δ (Η)	δ (C)
1α	4.91 m	71.96 d	4.96 m	71.9 d	4.89 dd, 10.0, 2.8	71.53 d
1β	1.38 m	38.96 t	1.39 m	39.0 d	1.28 m	38.97 t
	1.96 m		1.87 m		1.97 m	
1γ	1.87 m	24.42 d	1.88 m	24.4 d	1.43 m	24.47 d
1δ ₁	1.00 d, 6.6	23.37 q	1.02 d, 6.4	24.0 q	1.01 d, 6.8	21.44 q
1δ ₂	0.87 d, 8.5	15.40 q	0.90 d, 6.0	21.5 g	0.96 d, 6.8	23.32 g
1C=0	_	173.58 s	_	173.2 s	_	171.85 s
2α	4.68 d, 7.0	60.74 d	4.69 d, 6.8	60.7 d	4.23 dd, 9.6, 6.0	60.81 d
2 β	1.93 m	28.89 t	1.93 m	28.9 t	1.96 m	30.47 t
	2.51 m		2.55 m		2.16 m	
2γ	1.32 m	24.48 t	1.95 m	24.1 t	2.06 m	24.18 t
•	1.45 m		2.09 m			
2δ	3.44 m	46.48 t	3.45 m	46.5 t	3.46 m	46.61 t
	3.92 t. 17.3. 9.0		3.92 m		3.93 m	
20=0	_	170.97 s	_	171.1 s	_	171.67 s
3NH	7.20 d. 9.1	_	7.25 d. 9.2	_	7.08 d. 8.8	_
3α	4.89 d. 7.7	53.69 d	4.91 m	54.1 d	4.55 dd. 9.2. 6.4	55.65 d
3ß	1.94 m	37.52 d	2.17 m	30.3 d	1.93 m	38.43 d
-r 3v₁	1.93 m	24.13 t	0.95 d. 7.2	17.3 α	1.43 m	25.09 t
-11	2.08 m					
3 γ ₂	0.96 d. 6.9	21.49 a	0.98 d. 6.4	19.4 a	0.92 d. 6.4	15.33 α
38	0.85 d. 7.2	11.37 g	_	_	0.86 t. 6.4	11.36 g
3C=0		169.72 s	_	169.9 s	_	169.69 s
4NCH₂	3.23 s	30.86 a	3.25 s	30.8 a	6.49(4NH), 6.4	_
4α	4.94 d. 11.0	58.14 d	4.93 m	58.2 d	4.61 d. 6.4	56.31 d
4 β	2.34 m	27.27 d	2.33 m	27.4 d	2.43 m	28.45 d
.թ 4γ₁	0.90 d. 6.3	19.66 a	0.90 d. 6.0	19.8 α	0.85 d. 7.2	19.67 a
4γ ₂	0.95 d. 7.5	20.04 g	0.97 d. 6.4	20.0 g	0.83 d. 7.2	19.67 g
4C=0		171.12 s		171.4 s		170.83 s
5NCH ₂	2.74 s	28.10 g	2.75 s	28.1 α	2.73 s	29.15 α
5α	5.20 g. 14.6. 6.8	55.49 d	5.21 a. 14.8. 6.8	55.5 d	5.06 dd. 10.0. 6.8	55.66 d
56	1.32 d. 6.6	15.26 a	1.32 d. 6.8	15.1 α	1.32 d. 6.8	14.84 a
5C=0	_	169.73 s		169.7 s		169.87 s
6NH	8.22 d. 9.8		8.14 d. 8.0	_	8.29 d. 6.8	_
6α	2.59 m	34.44 t	2.56 m	34.4 t	2.54 m	34.26 t
- 04	2.71 m	5	2.69 m	2	2.69 m	5
6 β	3.11 t. 24.6. 12 7	33,25 t	3.10 m	33.3 t	3.16 m	33,58 t
- ۲	4.08 m	55.25 (4.06 m	55.5 1	3.98 m	55.55 (
6C=O	_	173.78 s	_	174.0 s	_	173.31 s

Table S2. H and C NMR data for structural verifications of dtx B, B₂ and desmethyl-B produced by *M. robertsii*

The compounds were dissolved in $\text{CDCl}_3.~\delta$ in ppm, J in Hz. *600/150 MHz.

[†]400/100 MHz.

Strains	Dtx E (mg/L)	Dtx A (mg/L)	Dtx B (mg/L)	Dtx B2 (mg/L)
ARSEF 23	63.1 ± 4.5Cd	80.6 ± 4.6Bb	43.1 ± 7.1Bb	7.8 ± 1.1Bb
ΔDtxS1	0	0	0	0
<i>∆DtxS1</i> +Dtx B	15.1 ± 2.3Df	5.6 ± 0.6Dd	43.7 ± 11.2Bb	0
ΔDtxS2	0	0	232.2 ± 31.1Aa	32.9 ± 4.4Aa
<i>∆DtxS1∆DtxS2</i> +Dtx B	0	0	56.8 ± 13.1Bb	0
ΔDtxS3	0	0	0	0
∆ <i>DtxS3</i> +HIC	19.2 ± 5.1Df	2.8 ± 0.3Dd	1.6 ± 0.8Dd	$0.1 \pm 0Cd$
ΔDtxS4	0	0	0	0
Δ <i>DtxS4</i> +β-Ala	92.6 ± 12.7Bb	105.1 ± 18.6Bb	58.1 ± 10.3Bb	10.9 ± 2.7Bb
ARSEF 2575	41.6 ± 3.5Ce	68.4 ± 8.0BCb	36.3 ± 1.9ABb	5.5 ± 0.4BCc
CQMa 102	0	0	0	0
ARSEF 324	0	0	0	0
ARSEF 549	63.1 ± 6.2Cd	37.2 ± 1.95Cc	7.6 ± 2.1Cc	$0.3 \pm 0Cd$
V275	25.1 ± 1.3De	42.4 ± 5.8Cbc	14.5 ± 2.5Cc	0.7 ± 0.25Cd
ARSEF 576	93.6 ± 8.8Bb	42.2 ± 1.1Cbc	12.5 ± 0.4Cc	$0.3 \pm 0Cd$
ARSEF 1009	38.6 ± 4.9Ce	47.9 ± 14.5BCbc	11.5 ± 2.4Cc	2.5 ± 0.1Cc
ARSEF 297	0	0	0	0
ARSEF 3297	190.1 ± 10.8Aa	180.4 ± 22.4Aa	57.3 ± 5.4Bb	8.5 ± 0.5Bb
ARSEF 1941	0	0	0	0
ARSEF 4124	0	0	0	0

Table S3.	Quantification of dtxs E, A, B, and B ₂ produced by the WT, mutants, and different species of Metarhizium
in Czapek	Dox broth for 7 d

The data are presented as averages \pm SD (SD). Capital and lower letters in the same column show the difference levels at $\alpha \alpha = 0.01$ and $\alpha \alpha = 0.05$, respectively, between species/strains by ANOVA Duncan's tests. The values tagged with the same letter mean no significant differences between each other.

Strains	Species	Original insect hosts	Geographic origin
ARSEF 23	M. roberstii	Coleoptera: Elateridae	USA: North Carolina
ARSEF 2575	M. roberstii	Curculio caryae [Coleoptera: Curculionidae]	USA: North Carolina
CQMa 102	M. acridum	Ceracris kiangsu [Orthoptera: Acrididae]	China: Chongqing
ARSEF 324	M. acridum	Austracris guttulosa [Orthoptera: Acrididae]	Australia
ARSEF 549	M. anisopliae	Not available	Brazil
ARSEF 977	M. guizhouense	Melolontha melolontha [Coleoptera: Scarabaeidae]	France
ARSEF 576	M. pingshaense	Nilaparvata lugens [Homoptera: Delphacidae]	Indonesia
ARSEF 1009	M. pingshaense	Ornebius kanetataki [Orthoptera: Gryllidae]	Japan: Tokyo
ARSEF 297	M. majus	Xyloryctes jamaicensis [Coleoptera: Scarabaeidae]	Western Samoa
ARSEF 3297	M. brunneum	Boophilus sp. [Acari: Ixodidae]	Mexico
ARSEF 1941	M. album	Nephotettix virescens [Hemiptera: Cicadellidae]	Philippines: Roxas
ARSEF 4124	M. frigidum	Adoryphorus sp. [Coleoptera: Scarabaeidae]	Australia: Ballarat

Table S4.	Insect hosts and	geographic	origins of	the Metarhizium	species	included	in this stu	ıdy
-----------	------------------	------------	------------	-----------------	---------	----------	-------------	-----

Table S5. Summary of the original insect host orders for different *Metarhizium* species cataloged in the USDA-ARS culture collection

Species	Total strain no.*	Original host order (no. of strains isolated from which)
M. robertsii	35	Coleoptera (25), Hemiptera (1), Homoptera (1), Hymenoptera (2), Isoptera (2), Lepidoptera (3), Orthoptera (1)
M. anisopliae [†]	38	Coleoptera (5), Diptera (6), Hemiptera (1), Homoptera (18), Isoptera (2), Lepidoptera (4), Orthoptera (2)
M. pingshaense	38	Coleoptera (11), Diptera (5), Hemiptera (2), Homoptera (6), Isoptera (2), Lepidoptera (2), Orthoptera (10)
M. brunneum	33	Acari: Ixodiae (1), Coleoptera (18), Diptera (2), Homoptera (1), Hymenoptera (1), Isoptera (1), Lepidoptera (9), Orthoptera (1)
M. guizhouense	10	Coleoptera (5), Diptera (1), Lepidoptera (3), Orthoptera (1)
M. majus [‡]	14	Coleoptera (12), Lepidoptera (2)
M. acridum	13	Orthoptera (13)
M. frigidum	15	Isoptera (14), Coleoptera (1)
M. album	9	Homoptera (9)

US Department of Agriculture Agricultural Research Service collection of entomopathogenic fungal cultures (http://www.ars.usda. gov/is/np/systematics/fungibact.htm).

*Only those with clear records to show isolation and purification from insects were summarized.

[†]The total number only includes the strains have been determined as *M. anisopliae* sensu stricto.

⁺The number includes the records of the species of *M. majus* and *M. anisopliae* var. *majus*.

Table S6. Primers used for gene deletions and mutant verifications

Genes		Primers*	Restriction enzymes	Length (bp)
MAA_10034	U1	CGC <u>GGATCC</u> CATTCGCTCTTTACGCTGTG	BamHI	937
	U2	CGC <u>GGATCC</u> GGCCTGATATCCTGCGTATT	BamHI	
	L1	TGC <u>TCTAGA</u> GCAGGCACCAGAATTGACTT	Xbal	866
	L2	TGC <u>TCTAGA</u> CTTGTGGCCGGTTACATGAT	Xbal	
	F	CAGGAGGACTTCGTGGTGAG		790 (WT)
	R	AATGAATGTTGCCGTCTCG		1,336 (KO)
MAA_10035	U1	CGC <u>GGATCC</u> TAATGCTGCGTCTCCATTTGC	BamHI	844
	U2	CGC <u>GGATCC</u> GTGAAGTTTGCACTCCACGA	BamHI	
	L1	TGC <u>TCTAGA</u> ATTGGGCGACGAGATAGATG	Xbal	1,226
	L2	TGC <u>TCTAGA</u> AGCCCCTTTAGGGATTGTTG	Xbal	
	F	GCAACGTATATCGCGTTTGG		1,486 (WT)
	R	GTGGAAGTGTGGAAGGTTGG		1,658 (KO)
MAA_10037	U1	CCG <u>GAATTC</u> CGGGCATTACTTCCATGACT	EcoRI	1,211
	U2	CCG <u>GAATTC</u> AATATCCGCAAAGTCGACCA	EcoRI	
	L1	TGC <u>TCTAGA</u> ACCGCTGTGGTAGTATGCAG	Xbal	821
	L2	TGC <u>TCTAGA</u> GCTTCGGTGATCCTAATCCA	Xbal	
	F	CGTACACCTTGGGCTGAAAA		1,507 (WT)
	R	AGCTCGACAGTCCTTTGCAT		1,856 (KO)
MAA_10039	U1	CGC <u>GGATCC</u> CTATCCGATGCACGTGTGAC	BamHI	1,196
	U2	CGC <u>GGATCC</u> GCAAGTGTATCGGGAAAAGG	BamHI	
	L1	TGCTCTAGACATGTGCCTTGTTGTTGGTC	Xbal	530
	L2	TGCTCTAGAGGCCGAGAATTAGGATGGTT	Xbal	
	F	CGTACAGTCCAGCACCAATC		1,057 (WT)
	R	CGTCGAGGTGCACTATTCAA		1,445 (KO)
MAA_10041	U1	CCGGAATTCGTGAAATGCGTGTTGCGATA	EcoRI	1,514
	U2	CGCGGATCCCACAGCAACGTCCATGATTT	BamHI	
	L1	TGCTCTAGATCACAACTCCCTACCGGAAT	Xbal	1,802
	L2	TGCTCTAGAGACAAGTTTTGCGTTGTGTTG	Xbal	
	F	TGGTCTCCATTACTGCTACCC		1,675 (WT)
	R	TCAACGCATCTCGTCACCTA		1,082 (KO)
MAA_10042	U1	CCG <u>GAATTC</u> GTGAAATGCGTGTTGCGATA	EcoRI	1,949
	U2	CGCGGATCCCACAGCAACGTCCATGATTT	BamHI	
	L1	TGCTCTAGATCACAACTCCCTACCGGAAT	Xbal	617
	L2	TGCTCTAGA GACAAGTTTTGCGTTGTGTTG	Xbal	
	F	TGGTCTCCATTACTGCTACCC		1,020 (WT)
	R	TCAACGCATCTCGTCACCTA		1,584 (KO)
MAA_10043 <i>DtxS1</i>	U1	CCG <u>GAATTC</u> CATGACTCCGTTTGAGCAGA	EcoRI	2,280
	U2	CGC <u>GGATCC</u> CGCCATGTCTTGTATCAACG	EcoRI	
	L1	CGGACTAGTTTTGCATCGTACAGCTTTGG	Spel	2,058
	L2	TGCTCTAGATGAAGATGCGACTGAACGAG	Xbal	
	F	GGCGTACGACAAATGGATCT		2,030 (WT)
	R	CCGCAAAGGCATTATTGAGT		1,111 (KO)
	dtxF	AGATTTGCCGCAGCTACCTA		424
	dtxR	CACCAGATGCGAGTTCTCAA		
MAA_10044 DtxS2	U1	CCG <u>GAATTC</u> CAACCACCAGTTTTGGCTTT	EcoRI	749
	U2	CCGGAATTCGCGAGGATCAAGGAGTAACG	EcoRI	
	L1	CGG <u>ACTAGT</u> CCAGGTATGCGGAGCATATT	Spel	679
	L2	TGC <u>TCTAGA</u> GGGTTGAGTGAAAGGGTCAA	Xbal	
	F	TGCTTGAATCCCCAATCTTC		1,611 (WT)
	R	TGCCATCTGGTCCTTTCCTA		1,731 (KO)
MAA_10043, MAA_10044 DtxS1, DtxS2	U1	CG <u>CTGCAG</u> CAACGCCCAAATCCAAGAGC	Pstl	2,236
	U2	CG <u>CGTCAG</u> ATTCAAGCAGCGCACCTTCC	Pstl	
	L1	CGGACTAGTATGCAATTTCGAGGGCCGTA	Spel	1,513
	L2	CGGACTAGTCGAGCTTGCCATCTGGTCCT	Spel	
	F	TCGCAGGCACAATGACAAGA		426 (WT)
	R	GCGGCCGTATTCAGTTGAGC		1,367 (KO)
MAA_10045 <i>DtxS3</i>	U1	TGCTCTAGAAACCCTGCAGTCCAGTGAAT	Xba I	711
-	U2	TGCTCTAGAGAGATGGTGGAATTCGAAGC	Xba I	
	L1	CGCGGATCCCCGTTGGCATCTGGTAGACT	BamHI	922
	L2	CGCGGATCCATGGAACGGTCAAAGGCATA	BamHI	
	F	TGGCCAAAGTATCTCTTGAAA		1,470 (WT)
	R	GTTGTCCCCGATTTAGCGTA		1,428 (KO)

Table S6. Cont.

PNAS PNAS

Genes		Primers*	Restriction enzymes	Length (bp) [†]
MAA_10046 DtxS4	U1 CGCGGATCCCCAATGG	CGCGGATCCCCAATGGAGAGTCCGAGAGA	BamHI	1,820
	U2	CGCGGATCCCTTTGCCGTTTCCCTCATTA	BamHI	
	L1	CGGACTAGTGGAACGGTTGAGGGACTTTT	Spel	2,142
	L2	CGGACTAGTGGAAGGACGAGGTTAGTCCA	Spel	
	F	CGAGCAGATGAACTTGACGA		1,459 (WT)
	R	ACCGCTTCCAATCCCTTG		1,228 (KO)
185	F	CAGGGCTCTTTTGGGTCTTG		652
	R	AGTTTCAGCCTTGCGACCAT		

*The introduced enzyme restriction sites are underlined. [†]The PCR product sizes are provided for the wild-type (WT) and corresponding gene knockout (KO) mutants.