
Supporting Information
Tseng and Li 10.1073/pnas.1119684109
SI Text
Selecting the Surface Attributes of a Protein. To characterize a pro-
tein surface, we used the surface attributes, which are geometrical
and physicochemical features, including the number of amino acid
residues on the surface pocket, solvent-accessible area, and shape
of the surface (Table 1). We focused on the residue compositions
on the binding sites, captured their topological shapes, and ana-
lyzed their physicochemical properties in a large-scalemanner. For
the 28,986 identified functional surfaces, we used the surface
attributes to study functional diversity. Assessing these attributes in
a high-dimensional space allows us to characterize a protein in an
effective manner.
To integrate the surface attributes, we present protein global and

local surfaces in a scattermatrix (i.e., a display of related plots) that
depicts 2D values for a set of attributes. In Fig. S2, the plots along
the diagonal show the attribute distributions, and the display gives
a comprehensive view of the properties of protein surface in re-
lation to one another. For example, the functional surface of
a protein has a mean number of 31 residues but its shape is diverse.
Most shapes are angular because the mean sphericity (sph) is only
0.57. The larger binding surfaces are closer to the mass center as
shown in the len-d plot, where len refers to length (i.e., the number
of residues in a pocket) and d measures the anisotropic distance
(1) (SI Geometrical Features). However, they usually have a lower
value of sphericity, indicating a weaker compactness in the len-sph
plot. Moreover, the total area occupied by hydrophobic (apolar)
residues on the binding surface has a mean of 960.51 Å2, whereas
that of a hydrophilic (polar) surface has a smaller area of 586 Å2.
The ratio of hydrophobic to hydrophilic area is ∼10:6 on a typical
binding surface of ∼1,600 Å2. For the attribute distributions,
a panel of kernel-density plots, for example, len, Wsph, and len-
Wsph in Fig. S3, where Wsph denotes the global sphericity of
a protein, can be used to capture the shape and texture of a protein
surface. Figs. S2 and S3 also reveal the complexity of protein
surfaces because of weak global trends and wide ranges of attribute
values. Although attribute distributions in general are Gaussian
(Fig. S2), distinct surface types may share overlapped values of
surface attributes, potentially increasing the challenges of surface
classification.

Determining the Number of Subtypes in a Surface Type. One way to
estimate the number of subtypes is to use the number of modes of
a distribution as an initial estimate of the number of subtypes n. As
an example, we computed the pairwise distances of the binding
surfaces of 41 oxidoreductases to obtain a histogram and ap-
proximated it by a continuous distribution (Fig. S4B). The number
of modes of the distribution can be taken as the initial estimate of
the number of subtypes. For example, the number of modes in Fig.
S4B is 5, so an initial estimate of n is 5. Then, using an automated
progressive search, we obtained an optimal value of n = 3 when
the Tanimoto coefficient between this classification and its actual
Enzyme Commission (EC) (2) annotations reaches the maximum
value (see SI Materials and Methods for the definition of the Ta-
nimoto coefficient). Similar to a hierarchical clustering, this sub-
grouping approach is to specify the number of surface subtypes for
obtaining an optimal classification in terms of function. In Fig.
S4C, we cluster the 41 oxidoreductases into three subtypes (n= 3)
because it gives an optimal Tanimoto coefficient. After the surface
subtypes are determined, we can compute the equatorial radii of
the ellipsoid boundaries that separate different surface subtypes.
This basic inference naturally gives rise to a classification approach
in which a specific ellipsoid contains as many related members as

possible. Therefore, identifying the effective attributes of a func-
tional surface is crucial for characterizing a functional surface.

SI Materials and Methods
Collecting the Functional Pockets of Bound Structures. We collected
∼68,000 structures from the Protein Data Bank (PDB) that were
then grouped into a bound group and an unbound group. The
surface of a functional pocket (3, 4) of a bound form is “canoni-
cal,” because it has a standard (fixed) shape associated with its
binding substrate and molecular function. This is important,
because the canonical shapes of two functional pockets can be
superimposed and then compared in a reliable manner. The
functional surfaces of bound forms have been identified previously
(5, 6). In this study, a total of 28,986 functional pockets of bound
forms were collected and used for the surface classification based
on pairwise shape similarities.

Geometric Matching to Compare the Shapes of Two Pockets. In shape
analysis, the two aligned pocket fragments are superimposed to
calculate theatomiccoordinate root-mean-squaredeviation (rmsd).
Because the pocket residues of a fragment are sequence-ordered,
we used the nonpermutable measure of rmsd to assess the shape
similarity between two pockets (http://pocket.uchicago.edu/fpop).
Denote the kth pocket sequence by Sk = (r1, r2, . . ., rp), where p

is the number of residues in the pocket sequence and ri ∈ ℜ3

represents the coordinates of the Cα in the ith residue in the pocket
sequence. Denote the k′th pocket sequence by S′k′ ¼ ðr′1; r′2:::::; r′qÞ.
Let n be the length of the superimposed alignment and denote
the aligned subsequences as {gi} and fg′ig. Let R be an ortho-
normal matrix for the linear transformation R: ℜ3 → ℜ3. The
rmsd between Sk and S′k′ is minimized by optimizing the trans-
formation matrix R (7), using the singular value decomposition,
so that R is represented by a form of translation-rotation-trans-
lation 4 × 4 matrix:

R ¼ �
rij
� ¼

2
664
a b c ux
d e f uy
g h i uz
vx vy vz 1

3
775;

where rij ∈ ℜ and i, j ∈ [1,2,3,4],

" a b c
d e f
g h i

#
is a 3 × 3 rotation

matrix, (ux, uy, uz) is a translation vector before rotation, and
(vx, vy, vz) is a translation vector after rotation.

Surface Comparisons by Geometric Matching. We conducted an all-
against-all surface comparison to assess the structural relationships
between any two functional pockets (surfaces), using the technique
of geometricmatching describedabove.Essentially, these structural
relationships yield a comprehensive network to increase the
knowledge of surface classification. Therefore, we computed the
surface rmsds in an exhaustive manner. We selected all rmsds with
a significant P value (smaller than a defined threshold) and then
ranked rmsds by their P values. Subsequently, we constructed
a look-up table of pairwise relationships for each surface. After
computing all tables of surface similarity, we were able to effec-
tively cluster similar surface types with an agglomerative technique.

Clustering Algorithm of a Coarse Surface Classification. Denote by F
the set of members, R the set of all possible pairwise relationships,
and T the set of surface classifications (functional types) in the
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SplitPocket database (5). Let mi be the center by measuring the
highest degree of significant structural relationships with the
smallest mean rmsd within the same protein type Ti. Ti is created
with mi whenever mi ∉ Tk, k = 1···i−1. Subsequently, each Ti is
represented bymi. The center of a functional type can be found as
follows.
For a functional surface sq in Ti, define the local similarity Dq

as Dq ¼
Pnq

t¼1
RMSDðsq; stÞ
nq

, where st ∈ Ti, RMSD(sq, st) is the rmsd
value between sq and st, and nq is the degree of graph connec-
tivity of sq within type Ti. By comparing Da with Db for all b in Ti,
one can obtain the centermi = sq with Dq the smallest among the
Da’s for every member a in type Ti.

Surface Characteristics of a Functional Pocket. Geometrical features.
For each functional pocket, we computed its residue composition,
surface-accessible area A, and molecular volume V at the atomic
level (8, 9). Then, the shape of a pocket can be depicted by the

sphericity, defined as Ψ≡ π1=3ð6V Þ2=3
A . Note that Ψ is sensitive to the

measurements of V and A, which can be analytically computed by
an exact algorithm (4, 9). A perfect round shape (i.e., sphere) has
the highest value of Ψ = 1, the octahedron has Ψ ∼ 0.864,
whereas an angular shape such as a tetrahedron has a smaller
value of Ψ ∼ 0.671.
We also computed the anisotropic shape proposed by Nicola and

Vakser (1), which is a measure of the distance dk ¼ jΔk −Δmcj be-
tween the mass centerΔk of a surface and thatΔmc of the protein P.
The centers of mass can be easily computed by

Δk ≡
δi·ðxi; yi; ziÞP

i∈k
δi

;

Δmc ≡
δi·ðxi; yi; ziÞP

i∈P
δi

where δi is the weight of atom type i ∈ {C, N, O, S} and (xi, yi, zi)
is its corresponding 3D coordinates. In a large-scale study of
proteins, we found that the functional pocket has the shortest
distance jΔk − Δmcj. In addition, the weight of a surface is de-
fined as SDk ≡ Δk

Ak
to compute a surface density.

In addition to the surface characteristics of a functional pocket,
we followed Ballester and Richards (10) to compute the moments
μk of a distribution, which can be used to depict the asymmetry of
a protein shape and the outliers of a large set of atoms. The kth
moment is defined as

μk ≡E
�
ðX − μÞk

�
;

where μ is the mean of the variable X. Specifically, the third stan-
dardized moment is the skewness and the fourth standardized mo-
ment is the kurtosis, which are used to obtain an initial assessment of
the protein shape for screening the similarity of surface character-
istics. The empirical distribution X of the distances fromN atoms to
the mass center of a protein is calculated as X = (x1, x2 ,. . ., xN).
Skewness g1 and kurtosis g2 (g1, g2 ∈ ℜ) are computed by

g1 ≡
μ3
σ3

¼
PN
i¼1

ðxi − μÞ3

ðN − 1Þσ3 ;

g2 ≡
μ4
σ4

− 3 ¼
PN
i¼1

ðxi − μÞ4

ðN − 1Þσ4 − 3;

where σ is the sample standard deviation.

Skewness is a measure of the asymmetry of protein shape. The
skewnessof aperfectly symmetric distributionof atoms is 0.Kurtosis
is a measure of how outlier-prone a distribution of atoms is, that is,
a measure of peak and tail of the distribution. The kurtosis of the
normaldistributionofatoms is 3; aprotein shapewithahighvalueof
kurtosis tends to have a segment(s) away from the center of mass.
We computed these geometrical attributes as a shape profile

for each protein. Using the shape profile, we are able to char-
acterize a protein surface and relate one surface to another.
Physicochemical features. The solvent-accessible area of a residue is
classified into hydrophobic (apolar) and hydrophilic (polar). The
solvent-accessible areas of a residue at the atomic level are an-
alytically computed by the Volbl package (4, 9), so that they can
be divided into hydrophobic and hydrophilic with respect to the
whole structure (global) and the functional pocket (local). This
calculation of solvent accessibility is highly accurate for sepa-
rating surface areas to assess hydrophobicity strength and charge
concentration. The ratio of hydrophobic to hydrophilic areas
gives a means of surface comparison. That is, a comparison of
surface hydrophobicity between two proteins can reveal similar
functions across superfamilies.
Evolutionary features. The residue compositions of a pocket se-
quence domain (PSD) (11) are used to assess protein divergence
in terms of sequence identity. Moreover, the evolutionary con-
servation of a functional pocket is computed with a surface con-
servation index (SCI) ranging from 0 to 1 (5). In a protein, the
functional pocket usually has the highest value of SCI, including
85% of all functional surfaces. Ranking the SCI values of the pu-
tative pockets on a protein surface, we are able to filter out non-
functional pockets and identify the canonical surface of a protein.
Furthermore, biological information such as the structural

positions of catalytic residues from UniProt-KB/SwissProt (12) is
mapped onto a functional pocket. It gives support to our claim
that our predicted pockets are actually functional. In a system-
atic manner, the geometrical, biological, physicochemical, and
evolutionary features of a functional pocket are extracted from
its structural coordinates and then recorded as structural at-
tributes. The selected features of the functional pocket of
a bound structure are accessible at SplitPocket (5) (http://pocket.
uchicago.edu) and PSD (http://pocket.uchicago.edu/psd).

Cosine Similarity and Tanimoto Coefficient. We used the cosine
transformation to compare the two sets of surface attributes. In
this way, we are able to assess the structural similarity of two
surfaces. Denote the n attributes of surface type T1 by α = (α1,
α2,. . ., αn) and those of surface type T2 by β = (β1, β2,. . ., βn).
Define the similarity between T1 and T2 as cosθ ¼ α·β

kαkkβk, where
cosθ ∈ [−1,1] and α,β are attribute vectors.
Moreover, the cosine measure is extended to the Tanimoto

coefficient (13) when attributes are binary. The Tanimoto co-
efficient is defined as Γ ¼ Nc

NaþNb −Nc
, where Na is the number of

properties in surface a, Nb is the number of properties in surface
b, and Nc is the number of properties in the intersection set c
(i.e., number of matched properties).

Assessment of Statistical Significance for a Functional Surface
Alignment. Because the functional surface alignment computed
by the Smith–Waterman algorithm follows the model of extreme
value distribution (14), it allows estimating the statistical signif-
icance of functional similarity scores at P values.

p
�
Z> z

� ¼ 1− exp
�
− e

z:πffiffi
6

p −Γ′ð1Þ�
;

where an observed z value is calculated by z ¼ ðΦ′− μÞ
σ through μ

and σ, which represent the mean and standard deviation of
sampled scores Φ′, respectively.
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The empirical estimation was performed by matching a query
against the basic set of 28,986 functional surfaces. Sampled μ and
σ are estimated for each query after a matching process. With
the equation above, a functional similarity (z value) can be
converted to a probability (P value). To evaluate the statistical
significance of a functional similarity score, we chose a P value of
5 × 10−4 as the threshold.

Performance Evaluation. Our classification focuses on the charac-
teristics of functional surfaces associated with protein function. To
evaluate performance, we used the EC classification as our gold

standard because protein structures with EC annotations have been
experimentally verified with a panel of enzymatic assays. A positive
is defined when a classified and unique label matches its EC an-
notation. Let P be the number of positives andN be the number of
negatives. We then compared the results of surface classification
with EC classification by constructing a contingency table where TP
denotes the number of true positives, TN denotes the number of
true negatives. Based on the contingency table, we calculated the
accuracy (i.e., rand index) defined as TPþTN

PþN , which is identical to an
assessment by the Tanimoto coefficient.
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Fig. S1. The distribution of the number of members in a surface type (Ns). In the basic set of 1,974 functional surface types, most surface types have Ns < 10.
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Fig. S2. Distributions of selected geometrical and physiochemical attributes in the 28,986 identified functional surfaces.
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Fig. S3. The kernel densities of the length and global sphericity attributes. The panels highlight higher-density areas (red), the areas colored according to the
ratio of the spectrum on the right. A binding surface typically has a mean number of 31 amino acid residues (len) (A) and a global sphericity (Wsph) of 0.51 (B).
The global shape of a protein with a smaller binding surface tends to be round. (C) The correlation between len and Wsph.

Tseng and Li www.pnas.org/cgi/content/short/1119684109 4 of 10

www.pnas.org/cgi/content/short/1119684109


0.6

sph

0.4

20
6

len
50

d

10

−3 −2 −1 0 1 2

0
.0

0
.2

0
.4

0
.6

Z−scores

p
ro

b
a
b
ili

ty 10

20

6
0.4

len
50

d

0.6

sph

A B C

Fig. S4. Classification of surface subtypes of oxidoreductase. (A) The 41 oxidoreductases (yellow) lie scattered around the hyperplane (blue) in the plot of the
selected attributes len, sph, and d. (B) Five distinct peaks appear in the distribution of pairwise distances of binding surfaces. The number of modes (peaks) is
used to obtain an initial estimate of the number of surface subtypes. (C) The members colored red, green, and blue in EC labels are grouped into three
subtypes, each of which is approximately bounded by an ellipsoid when we applied the surface attributes to their function identifications.
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Fig. S5. The shape–function relationships of the bound forms of oxidoreductases. The dissimilarity matrix in a heatmap suggests the subtypes of binding
surfaces for a fine classification.
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Fig. S6. The three identified subtypes of oxidoreductases exactly match their EC annotations: PETN (pentaerythritol tetranitrate), EC 1.6.99.1, and EC 1.3.1.42.
Among the 41 surface members, surface subtype A contains 16 members with no EC assignment, whereas subtypes B and C are composed of 11 and 14
members identified by EC 1.6.99.1 and EC 1.3.1.42, respectively.

A B C

Fig. S7. Subtypes of oxidoreductase across different species with the same fold of Aldolase class I have similar binding pockets (green; http://pocket.uchicago.
edu) with key residues (violet) to accommodate the cofactor flavin mononucleotide. The subtype binding surface on (A) PDB1gvr.A of Enterobacter cloacae (EC
not assigned; PETN) contains 33 amino acids with a solvent-accessible area of 675.44 Å2 and a molecular volume of 874.78 Å3, whereas that on (B) PDB1z41.A of
Bacillus subtilis (EC 1.6.99.1) has 34 amino acids with a solvent-accessible area of 634.99 Å2 and a molecular volume of 893.65 Å3 and that on (C) PDB2hs6.A of
Solanum lycopersicum (EC 1.3.1.42) has 29 amino acids with a solvent-accessible area of 473.50 Å2 and a molecular volume of 857.85 Å3.
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Fig. S8. The scatter matrix of surface attributes for identifying the surface subtypes of glycosidase. The nine EC labels are painted in different colors. In
general, members with the same color are clustered in a subtype. High-dimensional attributes are required to subdivide the surface type into subtypes.
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Table S1. Surface attributes and EC annotations of oxidoreductases

ID len Pams aPams Polar aPolar Wsph sph d SD WG1 WG2 EC

1gvr.A 33 0.432 0.568 0.493 0.507 0.560 0.543 8.117 0.687 −0.383 −0.090 PETN
1h50.A 34 0.433 0.567 0.484 0.516 0.564 0.544 8.046 0.686 −0.389 −0.099 PETN
1h60.A 31 0.434 0.566 0.467 0.533 0.560 0.560 8.024 0.785 −0.392 −0.103 PETN
1h61.A 31 0.435 0.565 0.456 0.544 0.556 0.565 8.177 0.770 −0.397 −0.105 PETN
1h62.A 35 0.430 0.570 0.472 0.528 0.560 0.530 8.512 0.711 −0.387 −0.095 PETN
1h63.A 33 0.432 0.568 0.472 0.528 0.558 0.542 7.978 0.659 −0.384 −0.092 PETN
1vys.X 33 0.426 0.574 0.486 0.514 0.556 0.539 7.739 0.614 −0.370 −0.070 PETN
1vyr.A 37 0.436 0.564 0.484 0.516 0.557 0.526 8.420 0.663 −0.355 −0.203 PETN
1gvo.A 38 0.432 0.568 0.477 0.523 0.559 0.510 8.727 0.678 −0.405 −0.101 PETN
1gvq.A 37 0.431 0.569 0.485 0.515 0.560 0.538 8.585 0.745 −0.391 −0.096 PETN
1gvs.A 34 0.438 0.562 0.481 0.519 0.560 0.544 8.006 0.683 −0.402 −0.100 PETN
1h51.A 33 0.432 0.568 0.473 0.527 0.564 0.543 7.878 0.658 −0.405 −0.098 PETN
1vyp.X 35 0.437 0.563 0.473 0.527 0.554 0.535 8.159 0.649 −0.403 −0.101 PETN
2aba.A 38 0.426 0.574 0.476 0.524 0.568 0.511 9.392 0.753 −0.438 −0.089 PETN
3f03.K 32 0.428 0.572 0.473 0.527 0.560 0.541 8.167 0.626 −0.425 −0.128 PETN
2abb.A 30 0.424 0.576 0.434 0.566 0.569 0.553 7.953 0.684 −0.439 −0.111 PETN
1z41.A 34 0.432 0.568 0.452 0.548 0.528 0.532 8.222 0.713 −0.056 0.252 1.6.99.1
1z42.A 21 0.429 0.571 0.505 0.495 0.529 0.596 8.649 0.682 −0.059 0.238 1.6.99.1
1z44.A 21 0.426 0.574 0.512 0.488 0.525 0.592 8.736 0.668 −0.065 0.268 1.6.99.1
1z48.A 31 0.427 0.573 0.462 0.538 0.528 0.544 8.164 0.707 −0.053 0.254 1.6.99.1
1bwk.A 31 0.403 0.597 0.370 0.630 0.550 0.587 6.370 0.610 −0.136 0.065 1.6.99.1
1bwl.A 30 0.399 0.601 0.380 0.620 0.550 0.581 6.783 0.594 −0.132 0.063 1.6.99.1
1k02.A 27 0.409 0.591 0.398 0.602 0.537 0.588 6.378 0.576 −0.096 0.147 1.6.99.1
1k03.A 41 0.410 0.590 0.371 0.629 0.530 0.512 8.765 0.606 −0.036 0.291 1.6.99.1
1oya.A 31 0.402 0.598 0.383 0.617 0.551 0.595 6.776 0.604 −0.109 0.129 1.6.99.1
1oyb.A 37 0.367 0.633 0.311 0.689 0.550 0.552 7.047 0.657 −0.152 0.108 1.6.99.1
1oyc.A 33 0.371 0.629 0.336 0.664 0.554 0.575 6.982 0.562 −0.161 0.108 1.6.99.1
2hsa.A 44 0.390 0.610 0.404 0.596 0.529 0.473 12.322 0.691 −0.267 0.192 1.3.1.42
3hgs.A 34 0.389 0.611 0.418 0.582 0.538 0.537 8.696 0.707 −0.436 −0.054 1.3.1.42
2hs8.A 44 0.392 0.608 0.408 0.592 0.549 0.484 10.240 0.617 −0.497 −0.090 1.3.1.42
3hgo.A 43 0.386 0.614 0.408 0.592 0.547 0.489 11.104 0.722 −0.493 −0.107 1.3.1.42
2hs6.A 29 0.398 0.602 0.434 0.566 0.563 0.566 8.233 0.754 −0.480 −0.090 1.3.1.42
1q45.A 44 0.403 0.597 0.441 0.559 0.547 0.501 10.674 0.719 −0.354 −0.020 1.3.1.42
2q3o.A 28 0.515 0.485 0.457 0.543 0.589 0.559 10.378 0.510 −0.360 −0.006 1.3.1.42
2g5w.A 33 0.402 0.598 0.400 0.600 0.541 0.543 9.237 0.720 −0.369 −0.015 1.3.1.42
1icp.A 37 0.419 0.581 0.403 0.597 0.529 0.508 8.936 0.586 −0.316 0.038 1.3.1.42
1icq.A 39 0.416 0.584 0.388 0.612 0.536 0.499 8.882 0.665 −0.342 −0.013 1.3.1.42
1ics.A 43 0.413 0.587 0.405 0.595 0.539 0.478 10.256 0.626 −0.309 0.062 1.3.1.42
3hgr.A 44 0.419 0.581 0.398 0.602 0.546 0.491 9.099 0.585 −0.373 −0.039 1.3.1.42
1vji.A 52 0.407 0.593 0.427 0.573 0.540 0.443 10.799 0.675 −0.227 −0.013 1.3.1.42
2q3r.A 26 0.476 0.524 0.343 0.657 0.941 0.546 9.504 0.551 −0.213 0.022 1.3.1.42

aPams, global apolar solvent accessible area (Å2); aPolar, local apolar solvent accessible area (Å2); d, anisotropic (Å); len,
number of residues in a pocket (aa); Pams, global polar solvent accessible area (Å2); Polar, local polar solvent accessible area (Å2);
SD, local surface density (g/mol Å2); sph, local sphericity; WG1, global skewness; WG2, global kurtosis; Wsph, global sphericity.
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Table S2. Representative canonical surfaces from 39 surface
types with selected attributes

PDB ID EC annotation PSC ID CATH ID

2j30.A 3.4.22.56 ST178 3.40.50.1460
1nms.A 3.4.22.56 ST178 3.40.50.1460
2j31.A 3.4.22.56 ST178 3.40.50.1460
2j32.A 3.4.22.56 ST178 3.40.50.1460
1nmq.A 3.4.22.56 ST178 3.40.50.1460
3h0e.A 3.4.22.56 ST178 NA
2j33.A 3.4.22.56 ST178 3.40.50.1460
3deh.B 3.4.22.56 ST178 3.40.50.1460
3dej.B 3.4.22.56 ST178 3.40.50.1460
3dek.B 3.4.22.56 ST178 3.40.50.1460
1cp3.A 3.4.22.56 ST178 3.40.50.1460
3dei.B 3.4.22.56 ST178 3.40.50.1460
1rhm.A 3.4.22.56 ST178 3.40.50.1460
1rhq.A 3.4.22.56 ST178 3.40.50.1460
2c1e.B 3.4.22.56 ST178 3.30.70.1470
2c2k.B 3.4.22.56 ST178 3.30.70.1470
2c2m.B 3.4.22.56 ST178 3.30.70.1470
2c2o.B 3.4.22.56 ST178 3.30.70.1470
2cdr.B 3.4.22.56 ST178 3.30.70.1470
2cjy.B 3.4.22.56 ST178 3.30.70.1470
2cnk.B 3.4.22.56 ST178 3.30.70.1470
2cnl.B 3.4.22.56 ST178 3.30.70.1470
2cnn.B 3.4.22.56 ST178 3.30.70.1470
2dko.B 3.4.22.56 ST178 3.30.70.1470
2h5i.B 3.4.22.56 ST178 3.30.70.1470
2cno.B 3.4.22.56 ST178 3.30.70.1470
2h65.B 3.4.22.56 ST178 3.30.70.1470
3edq.B 3.4.22.56 ST178 3.30.70.1470
1nme.B 3.4.22.56 ST178 3.30.70.1470
3gjq.B 3.4.22.56 ST178 3.30.70.1470
3gjr.B 3.4.22.56 ST178 3.30.70.1470
1rhu.B 3.4.22.56 ST178 3.30.70.1470
3gjt.B 3.4.22.56 ST178 3.30.70.1470

CATH, class, architecture, topology, homologous superfamily; NA, not
assigned; PSC, protein surface classification.
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Table S3. Thirty-three entries in the family of cysteine 3 endopeptidase (EC 3.4.22.56) used for the comparison of similarities among EC,
PSC, and CATH

PDB ID len Pams nPams Polar nPolar Wsph sph d SD WG1 WG2 EC

1bwk.A 31 0.403 0.597 0.370 0.630 0.550 0.587 6.370 0.610 −0.136 0.065 1.6.99.1
2prl.A 47 0.427 0.573 0.313 0.687 0.509 0.496 9.839 0.666 −0.379 −0.292 1.3.5.2
1al7.A 34 0.387 0.613 0.404 0.596 0.521 0.521 10.307 0.631 −0.047 0.075 1.1.3.15
1ag9.A 13 0.439 0.561 0.428 0.572 0.607 0.620 13.500 0.572 −0.126 0.089 NA
1ds7.A 27 0.371 0.629 0.302 0.698 0.476 0.466 13.818 0.570 −0.043 −0.482 1.5.1.34
1c7e.A 13 0.476 0.524 0.408 0.592 0.632 0.597 14.124 0.469 −0.252 −0.011 NA
1g28.A 20 0.383 0.617 0.384 0.616 0.605 0.605 4.736 0.768 0.288 0.342 NA
1e5d.A 15 0.390 0.610 0.392 0.608 0.516 0.612 35.413 0.423 0.056 −0.669 NA
1ja0.B 51 0.418 0.582 0.445 0.555 0.436 0.440 4.521 0.655 −0.146 −0.625 1.6.2.4
1ci0.A 22 0.406 0.594 0.350 0.650 0.489 0.520 11.279 0.612 0.133 −0.563 1.4.3.5
1yrx.A 16 0.384 0.616 0.357 0.643 0.502 0.645 5.520 0.683 1.384 2.465 NA
1ea0.A 42 0.413 0.587 0.401 0.599 0.402 0.536 21.480 0.724 −0.289 −0.310 1.4.1.13
1yrh.A 16 0.387 0.613 0.469 0.531 0.530 0.578 13.783 0.540 0.068 −0.130 NA
1bkj.A 52 0.374 0.626 0.323 0.677 0.464 0.424 8.995 0.594 −0.075 −0.192 NA
1djn.A 25 0.424 0.576 0.353 0.647 0.430 0.607 9.349 0.847 −0.072 −0.445 1.5.8.2
1e20.A 21 0.392 0.608 0.354 0.646 0.539 0.557 15.493 0.483 0.303 0.169 4.1.1.36
1t5b.A 12 0.362 0.638 0.362 0.638 0.541 0.692 14.307 0.466 0.312 −0.266 NA
1n07.A 43 0.396 0.604 0.393 0.607 0.538 0.492 9.140 0.579 −0.282 −0.155 2.7.1.26
2d36.A 30 0.364 0.636 0.362 0.638 0.529 0.513 8.987 0.632 0.077 0.434 NA
2h8x.A 39 0.407 0.593 0.377 0.623 0.556 0.530 9.024 0.728 0.136 0.585 NA
2ohh.A 11 0.395 0.605 0.344 0.656 0.509 0.650 35.726 0.399 0.163 −0.597 NA
2zru.A 43 0.381 0.619 0.401 0.599 0.520 0.489 11.354 0.621 −0.189 −0.182 5.3.3.2
1yw3.A 15 0.386 0.614 0.368 0.632 0.464 0.517 16.149 0.509 0.492 0.417 NA
2z6i.A 70 0.391 0.609 0.385 0.615 0.469 0.434 8.069 0.663 0.378 0.463 1.3.1.9
3gbh.A 22 0.408 0.592 0.394 0.606 0.445 0.516 12.332 0.492 0.005 −0.526 NA
1bvy.A 70 0.403 0.597 0.344 0.656 0.467 0.430 10.115 0.690 −0.230 −0.336 1.14.14.1; 1.6.2.4
1he4.A 33 0.414 0.586 0.440 0.560 0.563 0.504 8.223 0.762 −0.363 −0.049 1.3.1.24; 1.5.1.30
1t6y.A 37 0.415 0.585 0.390 0.610 0.462 0.501 13.735 0.590 0.001 −0.814 NA
1y56.B 62 0.388 0.612 0.413 0.587 0.522 0.460 4.536 0.727 −0.070 −0.429 NA
2i02.A 12 0.430 0.570 0.305 0.695 0.557 0.644 8.917 0.599 −0.099 −0.551 NA
2isj.A 63 0.394 0.606 0.362 0.638 0.458 0.381 11.502 0.704 0.122 −0.108 NA
2j09.A 47 0.405 0.595 0.397 0.603 0.485 0.511 8.592 0.737 −0.044 −0.450 4.1.99.3
2pia.A 42 0.447 0.553 0.451 0.549 0.483 0.475 5.866 0.673 −0.151 −0.454 NA
2vbv.A 33 0.380 0.620 0.342 0.658 0.559 0.541 7.306 0.630 −0.025 0.189 2.7.1.161
3fgc.A 37 0.400 0.600 0.365 0.635 0.469 0.485 9.348 0.704 −0.145 −0.373 1.14.14.3
3g5a.A 43 0.419 0.581 0.435 0.565 0.484 0.471 11.561 0.751 −0.099 0.016 NA
3iam.1 35 0.400 0.600 0.292 0.708 0.496 0.501 7.032 0.736 0.023 −0.214 1.6.99.5
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