#### SUPPLEMENTAL MATERIALS

Figure S1. The 1D proton NMR spectra of HDAC6 ZnF-UBP and HDAC6 ZnF-UBP RY mutant.

Figure S2. Gel filtration elution profiles of HDAC6 ZnF-UBP, ubiquitin and ubiquitin mutants.

Figure S3. The mass spectrometry of the commercial ubiquitin-AFC sample.

Figure S4. CFTR-ΔF508 protein aggregates contain unanchored ubiquitin generated by deubiquitinase ataxin-3.

Figure S5. Characterization of siRNA-mediated ataxin-3 knockdown in culture.

Figure S6. Ataxin-3 knockdown did not affect the total levels of CFTR-ΔF508 expression.

Figure S7. Human Ataxin1-82Q-GFP forms aggresomes in the presence of Ataxin-3.

Figure S8. DUB proteins USP5 or USP13 did not localize to the aggresome.

Table S1. Summary of the gel filtration and dynamic light scattering (dls) results.

#### **Supplementary Figure Legends**

**FIGURE S1.** The 1D proton NMR spectra of HDAC6 ZnF-UBP and HDAC6 ZnF-UBP RY mutant. The HDAC6 ZnF-UBP RY mutant proton spectrum (B) showed similar dispersed signals as wild type HDAC6 ZnF-UBP proton spectrum (A), indicating that that RY mutation did not interfere with the proper folding and this mutant is a folded protein.

**FIGURE S2.** Gel filtration elution profiles of HDAC6 ZnF-UBP, ubiquitin and ubiquitin mutants. (A) Comparison of gel filtration profiles of HDAC6 ZnF-UBP in mixture of wild-type ubiquitin and ubiquitin Ub75 mutant. A 1:1 mixture of HDAC6 ZnF-UBP and wild-type ubiquitin migrated at an apparent mass of 15.8 kDa indicating a complex formation, while the mixture of HDAC6 and Ub75 migrated at the mass as Ub75 or HDAC6 ZnF-UBP alone. (B) Comparison of gel filtration profiles of HDAC6 ZnF-UBP alone formation. C-terminal mutants. Only the

mixture of wild-type ubiquitin and HDAC6 Zn-UBP showed a lower elution volume, indicating interactions between the two proteins. None of the ubiquitin mutants interacted with HDAC6 ZnF-UBP. **FIGURE S3.** The mass spectrometry of the commercial ubiquitin-AFC sample. The peak of 8776 Da is ubiquitin-AFC, and the peak of 8565 is unmodified ubiquitin.

**FIGURE S4.** CFTR-ΔF508 protein aggregates contain unanchored ubiquitin generated by deubiquitinase ataxin-3. Unanchored ubiquitin was co-localized with ataxin-3 in CFTR-ΔF508 aggregates. 293T cells un-transfected or transfected with GFP-CFTR-ΔF508 were treated with either DMSO (A1-5, C1-5) or MG132 (B1-5, D1-5). Cells were labeled for GFP (green), C-terminal ubiquitin (red), and DAPI (blue). In un-transfected cells, unanchored ubiquitin was well dispersed throughout the cells (A2). When GFP- CFTR-ΔF508 was expressed at high levels (arrows in C1-5) or low levels (arrowheads in C1-5), ubiquitin was recruited together with CFTR protein. Upon MG132 treatment (D1-5), CFTR aggregates were observed in perinuclear locations, indicating aggresome formation. Unanchored ubiquitin was co-localized with ataxin-3 in CFTR-ΔF508 aggregates (arrows in D1'-D5') or non-CFTR aggregates (arrowheads in D1'-D5'). When cells are transfected with ataxin-3 siRNA, GFP-CFTR-ΔF508 showed a diffuse signal (arrows in E1 and F1), indicating that aggresome formation was hindered. Scale bars in D1 for A-D, D1' for D', F1 for E-F: 10 μm.

**FIGURE S5**. Characterization of siRNA-mediated ataxin-3 knockdown in culture. Densitometric quantification of ataxin-3 levels in A549 cells transfected with scramble or ataxin-3 specific siRNA, using Image-J software. Raw intensities of ataxin-3 were averaged for triplicates of each condition and normalized to Actin levels.

**FIGURE S6.** Ataxin-3 knockdown did not affect the total levels of CFTR- $\Delta$ F508 expression. The level of GFP-CFTR $\Delta$ F508 were measured in cells that transfected with either scrambled or ataxin-3 RNAi and treated with either DMSO or MG132. Actin was used as a loading control. Knockdown of Ataxin 3 did not affect the total level of GFP-CFTRF508 in a cell treated with either DMSO or MG132.

**FIGURE S7.** Human Ataxin1-82Q-GFP forms aggresomes in the presence of Ataxin-3. Cultured 293T cells were transfected with human Ataxin1-82Q-GFP and either scramble (Lanes 1-6) or Ataxin3 siRNA (Lanes 7-12), and treated with either DMSO (Lanes 1-3, 7-9) or MG132 (lanes 4-6, 10-12). Cell lysates were collected 2 days after transfection. Ataxin1-82Q-GFP aggregates were immunoprecipitated with GFP antibody and resolved by SDS-PAGE and probed for N-terminal Ubiquitin (*A*), C-terminal Ubiquitin (*B*), GFP (C), HDAC6 (*D*) and ataxin-3 (E) and antibody. As shown in *E* (lanes 7-12), ataxin-3 is not completely knocked-down with siRNA, but its reduced levels are enough to significantly reduce the recruitment of HDAC6 (*D*; lanes 7-12) and mono-ubiquitin with exposed C-terminal (*B*; lanes 7-12) into the aggresome.

**FIGURE S8.** Other DUB proteins USP5 or USP13 did not localize to the aggresome. A549 cells were transfected with GFP-CFTR $\Delta$ F508 and treated with MG132 to enhance aggresome formation. Cells were labeled for GFP (Green), USP5 (Red, A2), USP13 (Red, B2) and C-terminal Ubiquitin (Magenta). Neither USP5 nor USP13 colocalized with the aggresome.

# Supplementary Table

|                       | Gel Filtration    |        | Dynamic Light Scattering |        | Interaction       |
|-----------------------|-------------------|--------|--------------------------|--------|-------------------|
| -                     | Elution<br>Volume | SEC MW | Stokes<br>Radius         | DLS MW | with              |
|                       | (ml)              | (kDa)  | (nm)                     | (kDa)  | HDAC6 ZnF-<br>UBP |
| HDAC6 ZnF-UBP         | 14.48             | 6.2    | 1.4                      | 8      | n.a.              |
| Ubiquitin and Mutants | 14.30             | 6.4    | 1.3                      | 6      | n.a.              |
| wt Ub + ZnF-UBP       | 12.73             | 15.8   | 2.1                      | 19     | Yes               |
| Ub75 + ZnF-UBP        | 14.48             | 6.2    | 1.5                      | 9      | No                |
| Ub74 + ZnF-UBP        | 14.48             | 6.2    | 1.4                      | 8      | No                |
| Ub G76A + ZnF-UBP     | 14.27             | 6.9    | 1.6                      | 11     | No                |
| Ub G75A,G76A + ZnF-   |                   |        |                          |        |                   |
| UBP                   | 14.48             | 6.2    | 1.5                      | 9      | No                |

# Table S1. Summary of the Gel Filtration and Dynamic Light Scattering (DLS) Results







### FIGURE S4









