
APPENDIX I 

The Leabra framework used for implementing the model is described in detail in 

O’Reilly and Munakata (2000) and O’Reilly (2001), and summarized here. This framework has 

been used in over 40 different models in O’Reilly and Munakata (2000), and a number of other 

research models.  The current model therefore represents an extension to a systematic modeling 

framework using standardized mechanisms.  The model can be obtained by emailing the 

corresponding author. 

 

Pseudocode.   

 

The pseudocode for Leabra is given here, showing exactly how the pieces of the 

algorithm described in more detail in the subsequent sections fit together.  

 

For each event:  

1. Iterate over minus (−), plus (+), and update (++) phases of settling for each event.  

(a) At start of settling:  

i. For non-PFC/BG units, initialize state variables (activation, v m, etc).  

ii. Apply external patterns (clamp input in minus, input & output, external 

reward based on minus-phase outputs).  

(b) During each cycle of settling, for all non-clamped units:  

i. Compute excitatory netinput (ge(t) or ηj, eq 2) (eq 21 for SNr/Thal 

units).  



ii. For Striatum Go/NoGo units in ++ phase, compute additional excitatory 

and inhibitory currents based on DA inputs from SNc (eq 20).  

iii. Compute kWTA inhibition for each layer, based on  

A. Sort units into two groups based on g 

B. If basic, find k and k+1th highest; if avg-based, compute avg of 

1 → k & k +1 → n.  

C. Set inhibitory conductance gi from g 

iv. Compute point-neuron activation combining excitatory input and 

inhibition 

(c) After settling, for all units:  

i. Record final settling activations by phase  

ii. At end of + and ++ phases, toggle PFC maintenance currents for stripes 

with SNr/Thal act > threshold (.1).  

2. After these phases, update the weights (based on linear current weight values):  

(a) For all non-BG connections, compute error-driven weight changes (eq 8) with 

soft weight bounding (eq 9), and hebbian weight changes from plus-phase 

activations (eq 7), and overall net weight change as weighted sum of error-driven 

and hebbian (eq 10).  

(b) For PV units weight changes are given by delta rule computed as difference 

between plus phase external reward value and minus phase expected rewards (eq 

11).  

(c) For LV units, only change weights (using eq 13) if PV expectation >θpv or 

external re-ward/punishment actually delivered.  



(d) For Striatum units, weight change is the delta rule on DA-modulated second-

plus phase activations minus unmodulated plus phase acts (eq 19).  

(e) Increment the weights according to net weight change.  

 

Point Neuron Activation Function  

 

Leabra uses a point neuron activation function that models the electrophysiological 

properties of real neurons, while simplifying their geometry to a single point. The membrane 

potential Vm is updated as a function of ionic conductances g with reversal (driving) potentials E 

as follows:  

 

∆𝑉𝑚(𝑡) =  𝜏 ∑ 𝑔𝑐(𝑡)𝑔̅𝑐(𝐸𝑐𝑐 −  𝑉𝑚(𝑡))      (1) 

 

with 3 channels (c) corresponding to: e excitatory input; l leak current; and i inhibitory input. 

Following electrophysiological convention, the overall conductance is decomposed into a time-

varying component gc(t) computed as a function of the dynamic state of the network, and a 

constant gc that controls the relative influence of the different conductances.  

The excitatory net input/conductance ge(t) or ηj is computed as the proportion of open 

excitatory channels as a function of sending activations times the weight values:  

  

𝜂𝑗 =  𝑔𝑒(𝑡) =  〈𝑥𝑖𝑤𝑖𝑗〉 =  1
𝑛
∑ 𝑥𝑖𝑤𝑖𝑗𝑖       (2) 

 



The inhibitory conductance is computed via the kWTA function described in the next 

section, and leak is a constant. Activation communicated to other cells (yj) is a thresholded (Θ) 

sigmoidal function of the membrane potential with gain parameter γ:  

 

𝑦𝑗(𝑡) =  1
(1+ 1

𝛾[𝑉𝑚(𝑡)− 𝜃]+
)
       (3) 

 

where [x]+ is a threshold function that returns 0 if x < 0 and x if x > 0. Note that if it returns 0, we 

assume yj(t) = 0, to avoid dividing by 0. To produce a less discontinuous deterministic function 

with a softer threshold, the function is convolved with a Gaussian noise kernel (µ = 0, σ = .005), 

which reflects the intrinsic processing noise of biological neurons:  

 

𝑦𝑗∗(𝑥) =  ∫ 1
√2𝜋𝜎

𝑒−
𝑧2

2𝜎2𝑦𝑗(𝑧 − 𝑥)𝑑𝑧∞
−∞      (4) 

 

where x represents the [Vm(t) − Θ]+ value, and yj(x) is the noise-convolved activation for that 

value. In the simulation, this function is implemented using a numerical lookup table.  

 

k-Winners-Take-All Inhibition  

 

Leabra uses a kWTA (k-Winners-Take-All) function to achieve inhibitory competition among 

units within a layer (area). The kWTA function computes a uniform level of inhibitory current gi 

for all units in the layer, such that the k +1th most excited unit within a layer is generally below 

its firing threshold, while the kth is typically above threshold:  

 



𝑔𝑖 =  𝑔𝑘+1𝜃 +  𝑞(𝑔𝑘𝜃 −  𝑔𝑘+1𝜃 )     (5) 

 

where 0 < q < 1 (.25 default used here) is a parameter for setting the inhibition between the upper 

bound of gk
Θ and the lower bound of gk+1

Θ. These boundary inhibition values are computed as a 

function of the level of inhibition necessary to keep a unit right at threshold:  

 

𝑔𝑖𝜃 =  𝑔𝑒
∗𝑔�𝑒(𝐸𝑒− 𝜃)+ 𝑔𝑙𝑔�𝑙(𝐸𝑙−𝜃)

𝜃−𝐸𝑖
     (6) 

 

where ge
* is the excitatory net input without the bias weight contribution — this allows the bias 

weights to override the kWTA constraint.  

In the basic version of the kWTA function, which is relatively rigid about the kWTA 

constraint and is therefore used for output layers, gk
 Θ and gk+1

 Θ are set to the threshold inhibition 

value for the kth and k +1th value for the top most excited units, respectively. In the average-

based kWTA version used here, gk
 Θ is the average gi

 Θ value for the top k most excited units and 

gk+1
 Θ is the average of gi

 Θ for the remaining n – k units. This version allows for more flexibility 

in the actual number of units active depending on the nature of the activation distribution in the 

layer.  

 

Hebbian and Error-Driven Learning  

 

Leabra uses a combination of error-driven and Hebbian learning. Error-driven learning in 

Leabra is the symmetric midpoint version of the GeneRec algorithm (O’Reilly, 1996), which is 

functionally equivalent to contrastive Hebbian learning (CHL). The network settles in two 



distinct phases, an expectation (minus) phase where the network’s produces an output, and an 

outcome (plus) phase where the target output is experienced.  The network then computes the 

difference of a pre and postsynaptic activation product between these two phases. For Hebbian 

learning, Leabra uses essentially the same learning rule used in competitive learning which can 

be seen as a variant of the Oja normalization (Oja, 1983). The error-driven and Hebbian learning 

components are combined additively at each connection to produce a net weight change.  

 

The equation for the Hebbian weight change is:  

 

∆ℎ𝑒𝑏𝑏𝑤𝑖𝑗 = 𝑥𝑖+𝑦𝑗+  − 𝑦𝑗+𝑤𝑖𝑗 = 𝑦𝑗+(𝑥𝑖+ − 𝑤𝑖𝑗)    (7) 

 

and for error-driven learning using CHL:  

 

∆𝑒𝑟𝑟𝑤𝑖𝑗 = �𝑥𝑖+𝑦𝑗+� − (𝑥𝑖−𝑦𝑗−)       (8) 

 

which is subject to a soft-weight bounding to keep within the 0 − 1 range:  

 

∆𝑠𝑏𝑒𝑟𝑟𝑤𝑖𝑗 = [∆𝑒𝑟𝑟] +  �1 − 𝑤𝑖𝑗� +  [∆𝑒𝑟𝑟]− 𝑤𝑖𝑗    (9) 

 

The two terms are then combined additively with a normalized mixing constant khebb:  

 

∆𝑤𝑖𝑗 =∈ [𝑘ℎ𝑒𝑏𝑏(∆ℎ𝑒𝑏𝑏) + (1 − 𝑘ℎ𝑒𝑏𝑏)(∆𝑠𝑏𝑒𝑟𝑟)]    (10) 

 



PVLV Equations  

 

See Hazy, Frank & O'Reilly (2010), O’Reilly, Frank, Hazy, & Watz (2007) and O'Reilly & 

Frank (2006) for further details on the PVLV system. We assume that time is discretized into 

steps that correspond to environmental events (e.g., the presentation of a CS or US). All of the 

following equations operate on variables that are a function of the current time step t – we omit 

the t in the notation because it would be redundant. PVLV is composed of two systems, PV 

(primary value) and LV (learned value), each of which in turn are composed of two subsystems 

(excitatory and inhibitory). Thus, there are four main value representation layers in PVLV (PVe, 

PVi, LVe, LVi), which then drive the dopamine (DA) layers (VTA/SNc). There are several 

changes in the algorithm from this previous work (most notably the inclusion of the PVr and NV 

systems; see Learning Rules section below). These changes are efforts to increase the biological 

plausibility of the system (e.g. removing synaptic depression), and will be discussed in detail in a 

future work. The simulations and results described in this paper were only performed using the 

PVLV system described here; the changes to the algorithms described here were developed 

completely independently.  

 

Value Representations  

 

The PVLV value layers use standard Leabra activation and kWTA dynamics as described above, 

with the following modifications. They have a three-unit distributed representation of the scalar 

values they encode, where the units have preferred values of (0, .5, 1). The overall value 

represented by the layer is the weighted average of the unit’s activation times its preferred value, 



and this decoded average is displayed visually in the first unit in the layer. The activation 

function of these units is a “noisy” linear function (i.e., without the x/(x + 1) nonlinearity, to 

produce a linear value representation, but still convolved with gaussian noise to soften the 

threshold, as for the standard units, equation 4), with gain γ = 220, noise variance σ = .01, and a 

lower threshold Θ= .17. The k for kWTA (average based) is 1, and the q value is .9 (instead of 

the default of .6 in other layers). These values were obtained by optimizing the match for value 

represented with varying frequencies of 0-1 reinforcement (e.g., the value should be close to .4 

when the layer is trained with 40% 1 values and 60% 0 values). Note that having different units 

for different values, instead of the typical use of a single unit with linear activations, allows 

much more complex mappings to be learned. For example, units representing high values can 

have completely different patterns of weights than those encoding low values, whereas a single 

unit is constrained by virtue of having one set of weights to have a monotonic mapping onto 

scalar values.  

 

Learning Rules.  

 

The PVe layer does not learn, and is always just clamped to reflect any received reward value (r). 

By default we use a value of 0 to reflect negative feedback, .50 for no feedback, and 1 for 

positive feedback (the scale is arbitrary). The PVi layer units (yj) are trained at every point in 

time to produce an expectation for the amount of reward that will be received at that time. In the 

minus phase of a given trial, the units settle to a distributed value representation based on 

sensory inputs. This results in unit activations yj
-, and an overall weighted average value across 

these units denoted PVi. In the plus phase, the unit activations (yj
+) are clamped to represent the 



actual reward r (a.k.a., PVe). The weights (wij) into each PVi unit from sending units with plus-

phase activations xi
+ , are updated using the delta rule between the two phases of PVi unit 

activation states:  

 

∆𝑤𝑖𝑗 =∈ �𝑦𝑗+ − 𝑦𝑗−�𝑥𝑖+      (11) 

 

This is equivalent to saying that the US/reward drives a pattern of activation over the PVi units, 

which then learn to activate this pattern based on sensory inputs. In addition to the PVe and PVi 

layers there is an additional PVr layer that is associated with learning about reward detection. 

This system learns exactly the same way as the PVi system, but has a slower learning rate for 

weight decreases relative to increases. The LVe and LVi layers learn in much the same way as 

the PVi layer (Equation 11), except that the PV system filters the training of the LV values, such 

that they only learn from actual reward outcomes or when reward is expected by the PVr system, 

and not when no rewards are present or expected. This condition is as follows:  

 

𝑃𝑉𝑓𝑖𝑙𝑡𝑒𝑟 = 𝑚𝑖𝑛(𝑃𝑉𝑟,𝑃𝑉𝑖) <  𝜃𝑚𝑖𝑛˅max(𝑃𝑉𝑟 ,𝑃𝑉𝑖) >  𝜃𝑚𝑎𝑥    (12) 

 

∆𝑤𝑖 = � ∈ �𝑦𝑗
+ − 𝑦𝑗−�𝑥𝑖+    if 𝑃𝑉𝑓𝑖𝑙𝑡𝑒𝑟

  0                                otherwise
�      (13) 

 

 

where Θmin is a lower threshold (0.20 by default), below which negative feedback is indicated 

and Θmax is an upper threshold (0.80), above which positive feedback is indicated (otherwise, no 

feedback is indicated). Biologically, this filtering requires that the LV systems be driven directly 



by primary rewards (which is reasonable, and required by the basic learning rule anyway) and 

that they learn from DA dips driven by high PVr expectations of reward that are not met. The 

only difference between the LVe and LVi systems is the learning rate ∈, which is .05 for LVe 

and .001 for LVi. Thus, the inhibitory LVi system serves as a slowly integrating inhibitory 

cancellation mechanism for the rapidly adapting excitatory LVe system.  

Finally, the NV layer signals stimulus novelty and produces dopamine bursts for novel 

stimuli, which slowly decay in magnitude as a stimulus becomes familiar. The habituation for 

this system is simply: 

 

∆𝑤𝑖 = −𝑁𝑉𝑥𝑖       (14) 

  

The PV, LV, and NV distributed value representations drive the dopamine layer 

(VTA/SNc) activations in terms of the difference between the excitatory and inhibitory terms for 

each. Thus, there is a PV delta, an LV delta, and an NV delta:  

 

𝛿𝑝𝑣 = 𝑃𝑉𝑒 − 𝑃𝑉𝑖       (15) 

 

𝛿𝑙𝑣 = 𝐿𝑉𝑒 − 𝐿𝑉𝑖       (16) 

 

𝛿𝑛𝑣 = 𝑁𝑉        (17) 

 

The dopamine (DA) system integrates each of these inputs, using a temporal derivative 

computation to only produce brief bursts or dips relative to a baseline level of activation (this is 



the primary difference from the synaptic depression mechanism used in the earlier published 

version). The key issue is when to use each of the above values: If primary rewards are present 

or expected but not present, then the PV system dominates, and otherwise, LV + NV drive it. 

With the differences in learning rate between LVe (fast) and LVi (slow), the LV delta signal 

reflects recent deviations from expectations and not the raw expectations themselves, just as the 

PV delta reflects deviations from expectations about primary reward values. This is essential for 

learning to converge and stabilize when the network has mastered the task. These two delta 

signals need to be combined to provide an overall DA delta value, as reflected in the firing of the 

VTA and SNc units. One sensible way of doing so is to have the PV system dominate at the time 

of primary rewards, whereas the LV system dominates otherwise, by using the same PV-based 

filtering as holds in the LV learning rule:  

 

𝛿 = �
�𝛿𝑝𝑣𝑡 −  𝛿𝑝𝑣

(𝑡−1)�                                               𝑖𝑓 𝑃𝑉𝑓𝑖𝑙𝑡𝑒𝑟

�𝛿𝑙𝑣𝑡 −  𝛿𝑙𝑣
(𝑡−1)� + �𝛿𝑛𝑣𝑡 −  𝛿𝑛𝑣

(𝑡−1)�             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
�     (18) 

 

Special Basal Ganglia Mechanisms  

 

Striatal Learning Function  

 

Each stripe (group of units) in the Striatum layer is divided into Go vs. NoGo in an 

alternating fashion. The DA input from the SNc modulates these unit activations in the update 

phase by providing extra excitatory current to Go and extra inhibitory current to the NoGo units 

in proportion to the positive magnitude of the DA signal, and vice-versa for negative DA 



magnitude. This reflects the opposing influences of DA on these neurons (Frank, 2005; Gerfen, 

2001). This update phase DA signal reflects the PVLV system’s evaluation of the PFC updates 

produced by gating signals in the plus phase. Learning on weights into the Go/NoGo units is 

based on the activation delta between the update (++) and plus phases:  

 

∆𝑤𝑖 =∈ 𝑥𝑖(𝑦++ − 𝑦+)      (19) 

 

 

To reflect the finding that DA modulation has a contrast-enhancing function in the striatum 

(Frank, 2005; Nicola, Surmeier, & Malenka, 2000; Hernandez-Lopez, Bargas, Surmeier, Reyes, 

& Galarraga, 1997), and to produce more of a credit-assignment effect in learning, the DA 

modulation is partially a function of the previous plus phase activation state:  

 

𝑔𝑒 = 𝛾[𝑑𝑎]+𝑦+ + (1 − 𝛾)[𝑑𝑎]+      (20) 

 

where 0 < γ < 1 controls the degree of contrast enhancement (.5 is used in all simulations), [da]+ 

is the positive magnitude of the DA signal (0 if negative), y+ is the plus-phase unit activation, 

and ge is the extra excitatory current produced by the da (for Go units). A similar equation is 

used for extra inhibition (gi) from negative da ([da]−) for Go units, and vice-versa for NoGo 

units.  

 

SNrThal Units  

 



The SNrThal units provide a simplified version of the SNr/GPe/Thalamus layers. They receive a 

net input that reflects the normalized Go -NoGo activations in the corresponding Striatum stripe:  

     

η𝑗 = �∑𝐺𝑜− ∑𝑁𝑜𝐺𝑜
∑𝐺𝑜+ ∑𝑁𝑜𝐺𝑜

�
+

       (21) 

 

(where []+ indicates that only the positive part is taken; when there is more NoGo than Go, the 

net input is 0). This net input then drives standard Leabra point neuron activation dynamics, with 

kWTA inhibitory competition dynamics that cause stripes to compete to update the PFC. This 

dynamic is consistent with the notion that competition/selection takes place primarily in the 

smaller GP/SNr areas, and not much in the much larger striatum (e.g., Mink, 1996; Jaeger, Kita, 

& Wilson, 1995). The resulting SNrThal activation then provides the gating update signal to the 

PFC: if the corresponding SNrThal unit is active (above a minimum threshold; .1), then active 

maintenance currents in the PFC are toggled.  

 

This SNrThal activation also multiplies the per-stripe DA signal from the SNc:  

 

δ𝑗 = 𝑠𝑛𝑟𝑗𝛿       (22) 

 

where snrj is the snr unit’s activation for stripe j, and δ is the global DA signal.  

 

Random Go Firing  

 



The PBWM system only learns after Go firing, so if it never fires Go, it can never learn to 

improve performance. One simple solution is to induce Go firing if a Go has not fired after some 

threshold number of trials. However, this threshold would have to be either task specific or set 

very high, because it would effectively limit the maximum maintenance duration of the PFC 

(because by updating PFC, the Go firing results in loss of currently maintained information). 

Therefore, we have adopted a somewhat more sophisticated mechanism that keeps track of the 

average DA value present when each stripe fires a Go:  

 

𝑑𝑎����𝑘 = 𝑑𝑎����𝑘+ ∈ (𝑑𝑎𝑘 −  𝑑𝑎����𝑘)       (23) 

 

If this value is < 0 and a stripe has not fired Go within 1 or 2 trials (in the 2-back and 3-back 

respectively), a random Go firing is triggered with some probability (.1). We also compare the 

relative per-stripe DA averages, if the per-stripe DA average is low but above zero, and one 

stripe’s dak is .05 below the average of that of the other stripes:  

 

𝑖𝑓�𝑑𝑎����𝑘 <  .1� 𝑎𝑛𝑑 (𝑑𝑎����𝑘 − 〈𝑑𝑎����〉 <  −.05);𝐺𝑜      (24) 

 

a random Go is triggered, again with some probability (.1). Finally, we also fire random Go in all 

stripes with some very low baseline probability (.0001) to encourage exploration.  

When a random Go fires, we set the SNrThal unit activation to be above Go threshold, 

and we apply a positive DA signal to the corresponding striatal stripe, so that it has an 

opportunity to learn to fire for this input pattern on its own in the future.  

 



PFC Maintenance  

 

PFC active maintenance is supported in part by excitatory ionic conductances that are toggled by 

Go firing from the SNrThal layers. This is implemented with an extra excitatory ion channel in 

the basic Vm update equation (1). This channel has a conductance value of .5 when active. See 

Frank, Loughry, & O’Reilly (2001) for further discussion of this kind of maintenance 

mechanism. The first opportunity to toggle PFC maintenance occurs at the end of the first plus 

phase, and then again at the end of the second plus phase (third phase of settling). Thus, a 

complete update can be triggered by two Go’s in a row, and it is almost always the case that if a 

Go fires the first time, it will fire the next, because striatum firing is primarily driven by sensory 

inputs, which remain constant. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



APPENDIX II. 
 
Computations Supporting Manual Output: Match vs. Non-match Decision 

As noted in the main text, the network must learn to produce not only the correct verbal 

output (corresponding to the n-back item) but also a manual output (corresponding to whether 

the current item matches or does not match the n-back item).  This match vs. non-match decision 

can be computed by the network simply by comparing the activation patterns in the input with 

those in the verbal output layer and prefrontal cortex.  Indeed, it is precisely this form of 

“coincidence detection” that is accomplished by the posterior cortical layer.  

We confirmed that “coincidence detection” between the verbal output layer and stimulus 

input layer was the underlying computation performed by the posterior cortical layers as follows.  

First, we examined those units in the posterior cortical layer that received strong projections 

from corresponding units in the input and verbal output layers (e.g., large weights from the "A" 

stimulus in both layers, or from the "B" stimulus in both layers, as indicated by a positive 

correlation of weights from these two layers).  We found that these units projected 

disproportionately strongly to the target output response than to the nontarget response, relative 

to those posterior cortical units that do not show this correspondence of weights (e.g., strong 

weights from the "A" stimulus in the input layer but weak weights from the "A" stimulus in the 

verbal output layer): (F(1,98)=4.482, p<.05). Thus, the target manual output is driven largely by 

those posterior cortical units that are themselves strongly activated by matches between the input 

and verbal output layers. 

As such, the match/nonmatch decision relies not only on coincidence detection 

mechanisms, but also on mechanisms supporting activation of the correct verbal output – a 

requirement fulfilled by the connectivity of striatal areas with parietal areas, which trigger the 



gating of prefrontal information into the verbal output layer. Thus the match/nonmatch response 

can be seen as a cumulative result of the network’s behavior in total, although it is most directly 

supported by weight-based computations occurring in the posterior cortical layer. 

 

The Underlying Source of Recent Lure Errors 

Our approach to identify the source of recent lure errors was to examine in detail the 

performance of one network performing the 2-back task over the final 7 epochs of training.  We 

first determined that the match/nonmatch decision was typically being performed correctly by 

the posterior cortical layer (i.e., detecting matches between the recalled verbal output and the 

stimulus present in the input). Only 25% of recent lure errors reflected a failure to respond to 

matches/mismatches between the (correct) verbal output and stimulus input layers. That is, the 

prefrontal layers recalled the correct information to the verbal output layer, but the posterior 

cortical layer incorrectly responded as though this information matched the information 

presented in the input. 

Nonetheless, approximately 75% of recent lure errors reflected recall of the 1-back 

instead of the 2-back item in the verbal output layer.  To determine whether item confusion 

within the relevant prefrontal stripe was to blame for this incorrect recall, we examined the 

representational differentiation among items in prefrontal layers that were gated on a particular 

trial, using a similar cluster plot analysis as presented in the main text.  In particular, we recorded 

the activations in a prefrontal stripe with a preferred serial order of 1 across the final 7 epochs of 

training. For each unit in this stripe, we averaged activations across correct trials and incorrect 

trials separately, conditional on the verbal output for that trial and the current trial’s serial order.  

Finally, we constructed separate cluster plots for correct and incorrect trials to visualize the 



differentiation of prefrontal representations of each item x order combination. 

This analysis indicated that stripes demonstrated good differentiation among items of the 

preferred serial order on correct recent lure trials (Figure 1), but a much more haphazard pattern 

of representational differentiation on incorrect recent lure trials (Figure 2). Thus, recent lure 

errors are associated with increased item confusion within the prefrontal layers. 

 

 

In principle, this item confusion within the prefrontal layers could arise from a gating 

error.  That is, this prefrontal stripe may have been gated inappropriately on the current trial, or 

some other recent trial, and been exposed to items of a dispreferred serial order.  In this case, 

poor differentiation of items would reflect that this stripe had been updated with information that 

it was poorly suited to represent.  However, we found no appreciable differences in the striatal 

activations between correct and incorrect trials – neither on the trial where the incorrect verbal 

output was provided, nor on either of the two preceding trials.  Thus, prefrontal stripes were 

gated similarly on incorrect and correct recent lure trials, as well as on the trials immediately 

preceding them, indicating that gating errors are not a source of the item confusion occurring on 



incorrect recent lure trials.  

If not due to gating, what could be the source of the item confusion occurring on 

incorrect recent lure trials?  We found that the haphazard pattern of representational 

differentiation in prefrontal activation states on incorrect recent lure trials – i.e., item confusion – 

was paralleled by haphazard patterns of net input to prefrontal layers on incorrect recent lure 

trials.  Whereas net input to prefrontal layers was substantially different in terms of whether the 

current trial was of serial order 1 or 2 on correct recent lure trials (Figure A3), incorrect recent 

lure trials showed much more similar net input to prefrontal layers across trials of serial order 1 

and 2 (Figure A4).  This result indicates that recent lure errors arise from an instability of 

prefrontal activation states independent of gating: The clean separation between representations 

of items of different serial orders is corrupted on incorrect recent lure trials, both in terms of 

prefrontal activations and net input to prefrontal layers. 

We conducted further analyses of representational differentiation on the trial preceding 

incorrect and correct recent lure trials, but found no appreciable differences in the prefrontal 

representations on the trials preceding recent lure errors relative to the representations on the 

trials preceding correct rejections of recent lures.  This similarity indicates that the corruption of 

prefrontal representations on incorrect recent lure trials is due to the recent lure itself, and not to 

a corruption of the representation of the 2-back stimulus occurring prior to the recent lure.  Our 

model thus indicates that recent lure errors occur due to a lack of stability of prefrontal 

representations to interference arising from the recent lure itself. 

In summary, these analyses suggested that recent lure errors did not arise because of 

gating problems, but rather because of non-robust representations in prefrontal cortex that were 

susceptible to interference from incoming stimuli. These particular representations may have 



been susceptible to interference from lures to the extent that they were similar to the 1-back 

stimulus, perhaps as a result of Hebbian learning in the sequences leading up to recent lure 

errors.  

 

 

 

Hebbian and Error-driven Computations Contributing to Item Differentiation in the Prefrontal 

Layers 

The binding of items to context in our n-back model relies on two principle 

developments: the development of an order-based striatal gating signal as a result of 

reinforcement learning, and the increasing prefrontal differentiation of items occurring with a 

preferred serial order as a result of Hebbian and error-driven learning.  As discussed in the main 

text, the order-based gating policy develops as a result of reinforcement learning because it is 

supported by strong connectivity between the parietal and striatal layers, but also because it 

maximizes reinforcement relative to alternative gating policies. 



In contrast, increasing representational differentiation in the prefrontal layers develops 

via Hebbian and error-driven learning processes over repeated training experiences.  To see why 

Hebbian and error-driven learning lead naturally to this kind of representational differentiation, 

consider an incorrect trial on the 2-back task, where the serial-order based gating policy had 

correctly updated a prefrontal stripe with the “A” stimulus presented 2 trials previously, but the 

prefrontal representation of this “A” stimulus is not yet sufficiently distinct from its 

representation of other stimuli.  This indistinct prefrontal representation may bias the posterior 

cortical and verbal output layers such that the “B” unit in the verbal output layer is ultimately 

activated instead of the correct “A” unit.  Thus, there will be a resulting difference in activation 

states between the incorrect answer (produced during Leabra’s minus phase, as described in 

Appendix I) and the correct answer (produced during Leabra’s plus phase, also described in 

Appendix I).  This difference will lead to an error-driven learning signal that changes specifically 

those weights – from the prefrontal layer that was gated on this trial to the verbal output and 

posterior cortical layer with which the prefrontal layers are connected – that served to conflate 

the “B” and “A” stimuli.  In addition, Hebbian learning will further strengthen connections 

among those (correct) units that are simultaneously activated in Leabra’s plus phase.  Iterative 

learning of this type eventually converges to yield prefrontal representations that maximally 

distinguish the stimuli that any given stripe must represent, so that such errors are not produced.  

Thus, because each stripe eventually contains representations of items occurring with only one 

particular serial order (due to the order-based gating policy learned by the striatum), error-driven 

and Hebbian learning only ever train stripes to maximally distinguish those stimuli of that 

preferred serial order. 


