MMP-12 variant ^a	Location of mutation	General Substrate FS-6		fEln-100	
MMP-12		$\mathbf{k}_{cat}/\mathbf{K}_{m}, \mathbf{M}^{-1}\mathbf{s}^{-1}$	$k_{cat}/K_m, M^{-1}s^{-1}$	K_m , μM	\mathbf{k}_{cat} , 10^{-2} s ⁻¹
	-	$133,800 \pm 6000$	$10,690 \pm 430$	1.06 ± 0.04	1.06 ± 0.04
Y132S	hA	$158,900 \pm 4800$	9710 ± 390	0.86 ± 0.04	0.83 ± 0.03
S142E	hA	$144,600 \pm 4300$	9130 ± 370	1.15 ± 0.04	1.05 ± 0.04
V144A	hA	$141,700 \pm 4300$	9030 ± 360	1.18 ± 0.05	1.07 ± 0.04
K148T	sII	$146,700 \pm 4400$	$10,200 \pm 410$	1.06 ± 0.04	1.08 ± 0.04
N153Y	II-III loop	$132,600 \pm 4000$	$10,850 \pm 430$	1.04 ± 0.04	1.13 ± 0.05
V162S	sIII	$157,800 \pm 4700$	$10,\!380\pm420$	1.29 ± 0.04	1.34 ± 0.05
A164V	sIII	$148,800 \pm 4500$	$10,410 \pm 420$	1.10 ± 0.04	1.15 ± 0.05
G166R	sIII	$140,100 \pm 4200$	9830 ± 390	0.97 ± 0.04	0.95 ± 0.04
D200E	V-B loop	$144,800 \pm 4300$	9470 ± 380	0.88 ± 0.03	0.84 ± 0.03
S207V	V-B loop	$143,300 \pm 4300$	9440 ± 380	0.97 ± 0.04	0.92 ± 0.04
I255R	hC	$136,000 \pm 4100$	9770 ± 390	0.99 ± 0.04	0.97 ± 0.04
I255V	hC	$138,400 \pm 4200$	9980 ± 400	1.08 ± 0.04	1.08 ± 0.04

Table S1. Catalytic properties (at 25 °C, pH 7.5) of MMP-12 variants with mild substitutions and activities nearly intact.

^a Each mutation is found at the equivalent position in a less elastolytic homologue such as MMP-3, 8, 10, 11, 26, 27, or MT-MMP.

Fig. S1. "Double" mutant cycle analysis of effects on (a) k_{cat}/K_m and (b) k_{cat} for triple mutations that include a point mutation on either extreme of the active site cleft: F185Y on the unprimed side or T205K on the primed side. The data are plotted as described in the legend of Fig. 4. $\Delta\Delta G_T^{\ddagger}$ is calculated using eq. 1 and $\Delta\Delta G^{\ddagger}$ using eq. 3.

Fig. S2. Comparison of affinity for α-elastin of MMP-12 variants that have apparent K_m increased by more than two-fold. (a) Intrinsic tryptophan fluorescence changes of 1.3 µM MMP-12 variants were monitored as a function of increasing α-elastin concentration which quenched the fluorescence emission of the MMP, which is maximal at 323 +/1 nm. Elastin lacks any tryptophan. (b,c) The titrations with α-elastin were conducted in triplicate for wt MMP-12 and the four mutants having K_m increased > two-fold, each of which contain the M156E lesion. The fluorescence emission changes were normalized to a scale of 0 to 1 using the maximum fluorescence change at the plateau reached from 2 to 3 mg/ml. α-elastin (*1*) is a continuum of species migrating with apparent mobility on SDS-PAGE ranging from ~10 kDa to > 150 kDa. By oversimplifying this heterogeneity to an average MW of ~80 kDa, the α-elastin concentration was converted to the pseudo, apparent molar concentration labeled atop (b, c) for comparison with (d). (d) For comparison, simulated binding isotherms for simple single-site binding are plotted for K_D values approximately spanning the range of fitted K_m values.

Fig. S3. Amplitude of motions differed detectably in the 8th lowest normal mode, as a result of the M156E mutation of MMP-12. The amplitude of fluctuations is represented on an arbitrary scale both by the the vertical axes of panels a and b and the length of arrows in panels c and d. Results are shown for the unmodified, lowest energy NMR structure at left and carrying the M156E substitution at right. Labels in c and d mark residues with locally high fluctuations that were changed by M156E. In c and d, red backbone coloration indicates relatively larger fluctuations and white medium-sized fluctuations. The simulations used the anisotropic network model available at an online server (2).

Movie S1. Fluctuations of normal mode 8 with M156E. The simulation in the accompanying .mpg file is that of Fig. S3b,d and was generated using the Normal Mode Wizard and Movie Maker plugin of VMD (*3*).

REFERENCES

- 1. Partridge, S. M., Davis, H. F., and Adair, G. S. (1955) The chemistry of connective tissues. 2. Soluble proteins derived from partial hydrolysis of elastin, *Biochem J 61*, 11-21.
- 2. Eyal, E., Yang, L.-W., and Bahar, I. (2006) Anisotropic network model: systematic evaluation and a new web interface, *Bioinformatics* 22, 2619-2627.
- 3. Humphrey, W., Dalke, A., and Schulten, K. (1996) VMD: visual molecular dynamics, *J Mol Graph 14*, 33-38, 27-38.