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MODEL STRUCTURE

Overview. Each city is separated into two distinct human
populations: travelers from other cities, T, and long-term
residents of the city, R. Travelers are subdivided into
compartments by their city of residence (because they may
return there) and infection state. Residents are subdivided
only by infection state. Each city also contains a single mos-
quito population. There are three independent types of tran-
sition events that take place: travel, infection progression, and
birth/death. Because these processes are independent, we treat
them in discrete steps. For each time step, we first calculate the
number of travelers traveling between each city in each infection
state. We then update each compartment accordingly. Next, we
calculate updates to infection status (exposure, becoming infec-
tious, and recovery) and, lastly, the population dynamics.
Travel. The first step is to calculate the number of travelers

who move between each city pair. We assume that one-half
of the outgoing travelers, Y, between locations i and j will be
outgoing residents (and the other one-half will be travelers
from j returning to j). The probability of outgoing resident
travel, pi,j, is, thus, one-half the number of expected outgoing
travelers divided by the total resident population, R (including
each compartment, c) currently in i:

pi, j ¼ ðYi,j=2Þ=ð∑
c
Ri,cÞ:

For each resident compartment, Ri,c, the number of out-
going travelers, VR, to each other city is sampled from a
multinomial distribution:

VR
i,:,c ¼ MultinomialðRi,c,pi,�Þ:

For travelers who are residents of j but currently in i, the
number returning to j in a time step is sampled from a bino-
mial distribution for each traveler compartment, Ti,j,c, with a
constant probability of return, r:

VT
i,j,c ¼ BinomialðTi,j,c,rÞ:

After calculating all V, resident compartments are updated by
adding the compartment-specific total number of returning trav-
elers from each other city less the number of outgoing travelers:

Ri,c ( Ri,c þ∑
N

j6¼i
ðVT

i,j,c �VR
i,j,cÞ:

Each traveler compartment is also specific to the city of ori-
gin, and therefore, the change in one time step is the number

of incoming compartment-specific travelers from the other

city minus the number returning to that city:

Ti,j,c ( Ti,j;c þVR
i,j,c �VT

i,j,c:

Infection states. Humans can be classified into four principal
states relative to yellow fever infection: susceptible, exposed/
incubating, infectious, and recovered/immune (HS, HE, HI, and
HR, respectively). TheHE andHI compartments are subdivided
into temporal states to give more flexibility to the classification
of these transient periods1 and carry an additional subscript
representing the time within that state. Subscripts for location
and travelers versus residents are omitted for simplicity in
presentation and because both residents and travelers are
subject to the same local transmission dynamics. Nonetheless,
to preserve the travel dynamics, in the code, there are explicit
compartments and subcompartments for each resident and
traveler group. Because we do not track changes in all
compartments over time, all of the change components (h) are
calculated before updating the compartments (H) themselves.
Human infection in each city is dependent on the number of
susceptible humans, HS, and the force of infection for humans,
lVH, the product of the vector density, j, the daily biting rate,
a, the efficiency of vector to human transmission, bVH, and the
proportion of vectors currently infectious, the total number
of infectious vectors, VI, divided by the total number of vec-
tors from all compartments,SV:

lVH ¼ jabVH

�
VI

�
∑V

�
:

Newly exposed humans are then sampled from a bino-
mial distribution:

hS!E0
¼ BinomialðHS,lVHÞ

Humans become infectious with a time step-dependent
probability, pIIP(t), determined by the cumulative distri-
bution of the intrinsic incubation period, FIIP (described
in Parameterization):

hEt!I0 ¼ Binomial HEt,pIIPðtÞð Þ;
for

t ¼ 1, 2, . . . tIIP:

They may also become infectious the same day that they
are infected:

hS!E0!I0 ¼ Binomial hS!E0
,pIIPð0Þð Þ:



The human infectious period is expressed as a time-dependent
cumulative distribution function, FIP, with time step-specific
probabilities of recovery, pIP(t):

hIt!R ¼ Binomial HIt,pIPðtÞð Þ
for

t ¼ 1, 2, . . . tIP:

Individuals may also recover the same day that they
become infectious:

hEt!I0!R ¼ Binomial hEt!I0 ,pIPð0Þð Þ;
for

t ¼ 1, 2, . . . tIP;

and

hS!E0!I0!R ¼ Binomial hS!E0!I0 ,pIPð0Þð Þ:
Vector mosquito populations are divided into three states rel-
ative to infection: susceptible, exposed/incubating, and infec-
tious (VS, VE, and VI, respectively). Only the VE compartment
includes subcompartments, because infectious mosquitoes are
assumed to remain infectious until their death (mosquito mor-
tality is discussed in the next section). In each city, the force of
infection for vectors, lVH, is the product of the biting rate, a,
the efficiency of human to vector transmission, bHV, and the
proportion of humans currently infectious, the total number
of humans from all infectious subcompartments, SHI, divided
by the total number of humans from all compartments, SH:

lHV ¼ abHV ∑HI

�
∑HÞ:

�
This rate is used to sample a binomial distribution for newly
exposed/incubating individuals:

vS!E0
¼ BinomialðVS,lHVÞ:

Progression from exposed/incubating subcompartments to the
infectious state is dependent on completing the temperature-
dependent extrinsic incubation period, FEIP, with probabilities
of progression pEIP(t, TEMP) (described in Parameterization):

vEt!I ¼ Binomial VEt,pEIPðt,TEMPÞð Þ
for

t ¼ 1, 2, . . . tEIP

and

vS!E0!I ¼ Binomial vS!E0
,pEIPð0,TEMPÞð Þ:

Population dynamics. In addition to infection, populations
are also susceptible to mortality. For the human population,
we assume that there is no mortality. Although this assumption
is clearly not realistic, human longevity greatly exceeds the
complete course of a yellow fever virus (YFV) infection, and
thus, human mortality may be ignored while modeling the
short-term dynamics of YFV spread.
All vector compartments are susceptible tomortality, m, which

is dependent on mean daily local temperature, TEMP, and
vapor pressure deficit, VPD (described in Parameterization).
Each vector compartment, c, is exposed to the same spatio-

temporally explicit mortality rate that we convert to a proba-
bility of survival:

vc!survive ¼ Binomial vc, 1� mðTEMP,VPDÞð Þ:
New susceptible vectors are generated from a Poisson distri-
bution. The mean of this distribution is the product of the
parameterized nominal mean vector density (per human;
described later), j, the minimum daily mortality, mmin, and
the human population size, SH:

vemerge!S ¼ Poisson
�
jmmin∑H

�
:

This parameterization results in a vector density of approx-
imately j under ideal environmental conditions (i.e., when
mortality is minimal).
Model updates. After each vector and human change

component is calculated, new values are calculated for each
compartment:

HSðt þ 1Þ ¼ HSðtÞ � hS!E0
;

HE1
ðt þ 1Þ ¼ hS!E0

� hS!E0!I0 ;

and

HEtþ1
ðt þ 1Þ ¼ HEtðtÞ � hEt!I0

for

t ¼ 1, 2, . . . tIIP;

HI1
ðt þ 1Þ ¼ hS!E0!I0 � hS!E0!I0!R þ∑

tIIP

t¼1

hEt!I0 � hEt!I0!Rð Þ

and

HItþ1
ðt þ 1Þ ¼ HIt ðtÞ � hIt!R

for

t ¼ 1, 2, . . . tIP;

HRðt þ 1Þ ¼ HRðtÞ þ hS!E0!I0!R þ hE0!I0!R þ∑
tIP

t¼1

hIt!R,

VSðt þ 1Þ ¼ vemerge!S þ BinomialðVSðtÞ � vS!E0
,

1� mðTEMP,VPDÞÞ;
VE1

ðt þ 1Þ ¼ Binomial vS!E0
� vS!E0!I , 1� mðTEMP,VPDÞð Þ;

and

VEtþ1
ðt þ 1Þ ¼ Binomial VEtðtÞ � vEt!I , 1� mðTEMP,VPDÞð Þ

for

t ¼ 1, 2, . . . tEIP;

and

VIðt þ 1Þ ¼ Binomial

�
VIðtÞ þ vS!E0!I þ∑

tEIP

t¼1

vEt!I ,

1� mðTEMP,VPDÞ
�
:



PARAMETERIZATION

Populations. A total of 141 cities were selected for the
model based on their importance to international travel,
proximity to yellow fever endemic areas, and involvement in
the recent spread of chikungunya virus. Approximate human
population sizes for each city were obtained from the United
Nations Statistics Division (2005 Demographic Yearbook)
and Population Division (World Urbanization Prospects: The
2007 Revision Population Database).
We first attempted to develop a complete Aedes aegypti life

cycle model similar to the model of CIMSim.2 However, mod-
eling local populations in each city using standardized contain-
ers produced results that were not consistent with empirical
data. For example, some cities only had adults seasonally,
whereas ample empirical evidence suggests that adult vec-
tors are present year round. Instead of modeling the com-
plete lifecycle, we based the mosquito population on general
habitat suitability and a maximum density of Ae. aegypti per
person. First, we qualified each city as suitable if it experi-
enced greater than 6 months in the average year with tem-
peratures above 10�C and at least 1 mm of rainfall. Under
those conditions, oviposition and survival of previously depos-
ited eggs are unlikely.3 For suitable cities, the initial vector
population size is a random variable from a Poisson distribu-
tion with a mean of the product of this density, j, the human
population size, NH, and the ratio of nominal mortality, mmin,
to actual mortality, m(TEMP, VPD):

VS ¼ Poisson

�
jNH

mmin

mðTEMP,VPDÞ
�
:

As described above, new susceptible mosquitoes were
added daily to susceptible cities at a rate that would allow the
population to reach the maximum density if weather condi-
tions permitted minimum mortality. Three different maximum
densities were assessed: one, two, and four female mosquitoes
per person. These densities cover a spectrum of measured den-
sities and exceed estimated dengue transmission thresholds.4

Qualitatively, the populations showed expected patterns,
with presence/absence and varying degrees of seasonality
dependent on local climate.
Travel. Travel volumes between each city pair were esti-

mated using a generalized linear regression model. The mod-
eled outcome was the total number of itineraries originating
and/or ending in a US airport included in the model from a
10% sample of all such flights (US Department of Transpor-
tation, www.transtats.bts.gov/Tables.asp?DB_ID=125). Itiner-
aries were used rather than direct connection data, because
direct travel only represents a proportion of travelers and con-
necting travelers are of particular importance when transmis-
sion efficiency is spatially heterogeneous.5 To ensure that travel
was directionally balanced, we used combined characteristics
of the origin and destination cities and characteristics of the
route between them as potential covariates. City characteris-
tics included population size and airline network characteris-
tics such as adjacency, strength, and betweenness centrality.6

Route characteristics included physical distance, number of
required connections, number of alternative routes, maximum
daily passengers along the route, average connectivity of con-
necting cities, and whether the origin and destination are in
the same country. The overall network was characterized using

direct connection data (Official Airline Guide, www.oagavia
tion.com/Solutions/AnalysisTools/Traffic/t100inet.html).
Selecting the strongest correlates and eliminating potentially

redundant measures, the final model used adjacency, strength,
population size, and whether the origin and destination are in
the same country. Although this model consistently overesti-
mated infrequently traveled routes, it accounted for approxi-
mately 90.8% of the overall variation (R2

KL).
7 This US-based

model was then used to estimate daily travel volumes for each
city pair within the complete set of global cities.
The duration of stay for travelers in locations other than

their home city was parameterized as an exponential dis-
tribution, with mean duration of stay, d:

FRETURN ¼ 1� e�t=d:

The mean stay was estimated to be 18 days.8 Because the
exponential hazard is independent of time, the daily probabil-
ity of return is equal to the cumulative distribution function
over the first day:

r ¼ 1� e�1=18 � 0:054:

Vector activity. The rate of mosquito feeding, a, is difficult
to measure directly. Although requiring one blood meal per
gonotrophic cycle, Ae. aegypti often feed multiple times, either
because of incomplete, interrupted feeding or metabolic
necessity.9 Variability also relates to the size of the mosquito10

and the length of the gonotrophic cycle,11 both dependent, in
turn, on temperature. Rates of daily Ae. aegypti human biting
ranging from 0.25 to 1.2 have been used for modeling.12–14 The
most comprehensive field study to date estimated rates of 0.63
and 0.76 human blood meals per mosquito per day in Puerto
Rico and Thailand, respectively.9 Here, we use three different
values to capture the range of likely values: 0.5, 0.7, and 1.
Temperature- and humidity-dependent Ae. aegypti mor-

tality was parameterized according to the CIMSim model
by Focks and others2:

fTEMPðTEMPÞ¼

0:05
0:05þð0:95=4ÞTEMP
1
6:7�ð0:95=6ÞTEMP
0:05

if TEMP�0
if 0<TEMP�4
if 4<TEMP�36
if 36<TEMP�42
if 42<TEMP

,

8>>>><
>>>>:

fVPDðVPDÞ¼
1
1:2�0:02ðVPDÞ
0:6

if VPD�10
if 10<VPD�30
if 30<VPD

, and

8<
:

mðTEMP,VPDÞ¼1�0:91 fTEMPðTEMPÞð Þ fVPDðVPDÞð Þ:

Infection dynamics. The extrinsic and intrinsic incubation
periods were assumed to follow Weibull and log-normal dis-
tributions, respectively, following previous work by Johansson
and others15:

FEIPðt,TEMPÞ ¼ 1� e�lEIPtvEIP ;

where

nEIP ¼ 1:7

and

lEIP ¼ e�7:6þ0:11ðTEMPÞ;



and

FIIPðtÞ ¼ �F
lnðtÞ � mIIP
1=

ffiffiffiffiffiffiffiffi
dIIP

p
� �

for t> 0, where mIIP ¼ 1:46 and dIIP ¼ 8:0. Using observations
by Hindle16 that human patients were only found to be infec-
tious to mosquitoes during the first 3 days of fever, we conser-
vatively assume that the infectious period was log-normally
distributed with a mean of 3.0 days (log-mean, mIP � 0.97) and
a log-standard deviation of 0.5 (precision, dIP ¼ 4:0):

FIPðtÞ ¼ �F
lnðtÞ � mIP
1=

ffiffiffiffiffiffiffi
dIP

p
� �

for t > 0. Under this model, 75% of infected individuals are
infectious between 2.3 and 7.1 days and 95% were infectious
between 1.5 and 10.7 days. We used means of 3.0 and 4.0 days
for the low and high transmissibility models, respectively, to
test for sensitivity to this parameter, both with the same pre-
cision (4.0). Daily probabilities of progression, pEIP, pIIP,
and pIP, are calculated using the relevant cumulative distribu-
tion function, FEIP, FIIP, and FIP, respectively (and the daily
temperature covariate in the case of the extrinsic incubation
period). Because we are converting from continuous to discrete
distributions, we calculate the probabilities of progression
based on half days to better maintain the underlying distribu-
tions. The probability of spending 0 days in state X is the
cumulative probability of spending 0.5 days or less there:

pXð0Þ ¼ FXð0:5Þ:
For subsequent days, the probability of progression on day t is
the probability of progression between day t � 0.5 and day
tþ 0.5 given that progression has not occurred by day t� 0.5:

pXðtÞ ¼ FXðt þ 0:5Þ � FXðt� 0:5Þð Þ= 1� FXðt� 0:5Þð Þ
for

t ¼ 1, 2, . . . tX � 1;

where tX is the maximum length of the respective period. To
ensure progression of remaining individuals, the probability
of progression in the final subcompartment of each state is
set to one:

pXðtXÞ ¼ 1:

The maximum extrinsic incubation period, tEIP, was set at
45 days, much longer than the average lifespan of a mosquito
(11 days at the minimum mortality rate used here). The max-
imum intrinsic incubation and infectious periods, tIIP and tIP,
respectively, were set at 15 days when greater than 99% of indi-
viduals will have already progressed to the next stage.
Transmissibility. The effective rate of human to vector

transmission, bHV, is also difficult to characterize. Compre-
hensive studies including Ae. aegypti from diverse locations
found laboratory-controlled infection rates ranging from 0.07
to 0.5717 and from 0 to 0.644.18 More geographically focused
studies have found probabilities of 0.4 to 119 and 0.12 to
0.28.20 Previous models have assumed ranges of 0.1 to 0.512,14

or complete efficiency, bHV ¼1.13 We use three values, including
a low, moderate, and high estimate: 0.2, 0.5, and 1, respectively.

The effective rate of vector to human transmission, bVH, is,
for practical reasons, immeasurable, because performing the
relevant experiments would put humans at unacceptable risk.
One study found that the probability of an infected mosquito
successfully transmitting YFV to a mouse was 0.3–0.7.19 It is
also clear that the range of this rate must be greater than zero
(because transmission does occur) and less than or equal to
one, equivalent to every bite being successful. With little infor-
mation to go on, we use two values: 0.5 and 1 (0.5 is used for
the low and moderate transmission models).

R0 CALCULATION

We break R0 into two components, the average number of
infectious mosquitoes produced per infectious human, RHV

0 ,
and the average number of infectious humans produced per
infectiousmosquito,RVH

0 :

R0 ¼ RHV
0 RVH

0 :

RHV
0 is the product of the number of female mosquitoes per

person, j*, the contact rate between humans and mosquitoes
(bites per day), a, the effective rate of transmission from human
to vector, bHV, the average duration of the human infectious
period (in days), DIP, and the average proportion of vectors
surviving the extrinsic incubation period, pSurvEIP:

RHV
0 ¼ j*abHVDIPpSurvEIP:

The actual vector density, j*, reflects the stable vector den-
sity under relevant environmental conditions. The nominal
density is multiplied by the ratio of nominal to actual (i.e.,
temperature- and humidity-dependent) mortality:

j* ¼ j mmin=mðTEMP,VPDÞð Þ:
As parameterized here, the mean infectious period is:

DIP ¼ emIPþ1
2d

�1
IP :

The proportion of vectors surviving the extrinsic is calcu-
lated as the integral of the product of the probability density
function for becoming infectious and the cumulative dis-
tribution function for survival, SV:

pSurvEIP ¼
ð1
0

fEIPðtÞSVðtÞdt:

Here, these functions are

fEIPðt,TEMPÞ ¼ vEIPlEIPtvEIP�1e�lEIPtvEIP

(as parameterized above) and

SVðtÞ ¼ e�lSURV t;

where

lSURV ¼ � logð1� mðTEMP,VPDÞÞ:

The average number of humans infected per infectious mos-
quito is the product of the contact rate, a, the effective rate of



transmission from vector to human, bVH, and the average vec-
tor longevity, LV:

RVH
0 ¼ abVHLV :

Given the continuous hazard assumed for climate-dependent
mosquito survival,

LV ¼ 1=lSURV :

Together, the average number of humans newly infected per
infectious human is

R0 ¼ j*a2bHVbVHLVDIPpSurvEIP:

Lastly, we adjust for areas where Ae. aegypti populations
are unlikely to persist. As detailed in Parameterization,
Populations, persistence is unlikely in cities with monthly
temperatures below 10�C or rainfall below 1 mm for at least
6 months of the year. For these cities, we assume R0 ¼ 0.

PROBABILITY OF INTRODUCTION

As above, the probability of an individual traveling from
city i to city j can be written as pi,j, with the probability that
the individual does not travel to city j being 1 � pi,j. Thus, for
any number of infected individuals in city i at time t, NI

i,t,
the probability of no infected travelers from city i to j is

ð1� pi,jÞN
I
i,t ;

where

NI
i,t ¼∑

tIIP

t¼1

HEðt, tÞ þ∑
tIP

t¼1

HIðt, tÞ:

The probability of at least one infected traveler traveling from
i to j at time t is

pINTRO�ði, j,tÞ ¼ 1� ð1� pi,jÞN
I
i,t :

The probability of infected individuals traveling is also depen-
dent on other potential sources or sinks for infected people
and the accumulation of risk over time. The cumulative prob-
ability of spread from city i0 to any other city by time T can be
written as one minus the cumulative probability of no infected
individuals traveling to any city at any time up to time T:

pSPREADði0,TÞ ¼ 1�
YT
t¼0

YI
i6¼i0

ð1� pi0 ,iÞN
I
i0 ,t ;

where i is the city index for cities I ¼ 1, 2, . . . , I and I is the
total number of cities. The cumulative probability of introduc-
tion from any other city to city i0 by time T can be written as

pINTROði 0,TÞ ¼ 1�
YT
t¼0

YI
i6¼i0

ð1� pi,i0 ÞN
I
i,t :

PROBABILITY OF INTRODUCED
AUTOCHTHONOUS TRANSMISSION

The probability of introduction leading to autochthonous
transmission is approached as a branching process problem.21

This approach caches the problem in terms of generations. In

our case, a single infectious individual may generate a gen-
eration of infectious vectors, which may, in turn, generate a
generation of infectious humans and so on. However, at each
generational step, there is a chance for extinction. To analyze
the branching process of interest here, probability generating
functions, g(s), where 0 � s � 1, are assigned to each stochastic
process within the model. The transmission components can
be summarized as two Poisson distribution-generating functions
based on RHV

0 and RVH
0 :

gVðsÞ ¼ eR
HV
0

ðs�1Þ

and

gHðsÞ ¼ eR
VH
0

ðs�1Þ:

Because both RHV
0 and RVH

0 are subject to spatiotemporal
variation, we assign them subscripts (i for location and t
for time):

gVðs, i, tÞ ¼ eR
HV
0 i,t

ðs�1Þ

and

gHðs, i, tÞ ¼ eR
VH
0 i,t

ðs�1Þ:

The composite function for autochthonous transmission given
the introduction of an infectious human is

gV gHðs, i, tÞð Þ ¼ eR
HV
0 i,t

ðeR
VH
0 i,t

ðs�1Þ�1Þ:

(Note that, for the introduction of an infectious vector, this
expression would be different—gH gVðs,i,tÞð Þ—but our interest
is the introduction of infectious humans.)
We also need to incorporate the probability of infected

travelers from city i arriving in another city, j. The generating
function, using the notation presented above, is

gTI
ðs, i, j, tÞ ¼ 1� pi,j þ pi,js

� �NI
i,t :

The composite probability generating function for the com-
plete process is

gTI
gV gHðs, i, j, tÞð Þð Þ ¼

�
1� pi,j þ pi,je

RHV
0j,t

ðeR
VH
0j,t

ðs�1Þ�1Þ
�NI

i,t

:

One useful property of probability generating function is
that g(0) is the probability of extinction at zero generations
(i.e. no additional transmission events take place). Note that the
probability of introduction presented in the previous section is

pINTRO�ði, j, tÞ ¼ 1� gTI
ð0, i, j, tÞ ¼ 1� 1� pi,j

� �NI
i,t :

Here, the interest is the probability of autochthonous transmis-
sion in city j resulting from an epidemic in city i, pAUTO + (i,j,t):

pAUTO�ði, j, tÞ ¼ 1� gTI
gV gHð0, i, j, tÞð Þð Þ

¼ 1� 1� pi,j þ pi,je
RHV

0j,t
ðe�RVH

0j,t �1Þ
� �NI

i,t

:



The probability of spread from city i0 resulting in local trans-
mission in any other city by time T is

pSPREAD�>AUTOði0,TÞ ¼ 1�
YT
t¼0

YI
i6¼i0

1� pAUTO�ði0, i, tÞð Þ

or

pSPREAD!AUTOði0,TÞ¼1�
YT
t¼0

YI
i6¼i0

1� pi0 ,i þ pi0 ,ie
RHV
0i,t

ðe�RVH
0i,t �1Þ

� �NI
i,t

:

The probability that novel autochthonous transmission occurs
in city i0 by time T is dependent on all potential source cities:

pAUTOði0,TÞ ¼ 1�
YT
t¼0

YI
i6¼i0

1� pAUTO�ði, i0, tÞð Þ

or

pAUTOði0,TÞ ¼ 1�
YT
t¼0

YI
i6¼i0

1� pi,i0 þ pi,i0e
RHV

0i0 ,tðe
�RVH

0i0 ,t�1Þ
 !NI

i,t

:

Vaccination can have an impact on this process. In the case
of vaccination, the entire human population is no longer sus-
ceptible, meaning that some infectious vectors will feed on
immune humans, increasing the probability of YFV extinction.
This finding can be adjusted by using the effective reproduc-
tive number, RVH

E , adjusted for the proportion of the popula-
tion that is vaccinated, pVAX, instead of RVH

0 :

RVH
E ¼ RVH

0 ð1� pVAXÞ:
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