Supplemental Material

Molecular structure and peptidoglycan recognition of Mycobacterium tuberculosis ArfA (Rv0899).

Yong Yao¹, Neha Barghava¹, Johnny Kim¹, Michael Niederweis², Francesca M. Marassi^{1 ||} ¹Sanford Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA ²Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.

Table S1. NMR restraints and Structure statistics. ^a						
	ArfA-c(D236A)	ArfA-c				
Experiment Restraints						
NOE distances	1967	1897				
dihedral angles	217	167				
HN RDC orientations	114	98				
Root Mean Square Deviation (RI	MSD)					
RMSD from experimental rest	traints					
NOE (Å)	0.029	0.039				
dihedral angle (deg)	0.456	0.478				
HN RDC (Hz)	0.523	0.364				
RMSD from idealized covaler	nt geometry					
bonds (Å)	0.006	0.006				
angles (deg)	0.579	0.630				
impropers (deg)	0.899	0.916				
Coordinate Precision ^b						
Average RMSD from mean (Å	Á)					
backbone atoms (A)	0.83±0.16	0.77±0.24				
all heavy atoms (Å)	1.31±0.17	1.38±0.26				
Ramachandran Plot φ/ψ Angle S	tatistics ^c					
most favored regions	90.5%	86.60%				
additional allowed regions	8.6%	12.20%				
generously allowed regions	0.3%	0.70%				
disallowed regions	0.6%	0.50%				
^a Calculated for the 20 lowest-en calculated structures. ^b Calculated	ergy structures of for the structured	a total 200 core of the				

protein from residue 211-326 for ArfA-c(D236A) or residues 211-225 and 237-326 for ArfA-c. ^cCalculated with PROCHECK.

Table S2. Distance restraints used to model the ArfA-c(D236)/MDP complex. ^a													
		atom 2					Å (+/-)						
assign	(resid	1	and	name	H8*)	(resid	302	and	name	HN)	4.0	2.2	1.5
assign	(resid	4	and	name	NZ)	(resid	262	and	name	OD*)	4.0	2.2	0.5
assign	(resid	4	and	name	NZ)	(resid	262	and	name	0)	4.0	2.2	0.5
assign	(resid	4	and	name	OH*)	(resid	319	and	name	NH*)	3.5	1.7	0.5
assign	(resid	4	and	name	OH*)	(resid	277	and	name	NH*)	3.5	1.7	0.5
assign	(resid	4	and	name	HA)	(resid	269	and	name	HD*)	4.0	2.2	2.0
assign	(resid	4	and	name	HA)	(resid	269	and	name	HG2*)	4.0	2.2	2.0

^a Distances were derived from observations of the chemical shift mapping and STD experiments. They do not represent experimental NOEs.

All ¹H/¹⁵N HSQC spectra were obtained at 40°C and pH7. (a) NMR spectra of ArfA-c obtained after forming the disulfide bond with GSSG (orange) or after reducing the disulfide bond with DTT (black). (b) NMR spectra of ArfA-c obtained at pH7 (black) or pH4 (orange). Peaks in boxes are observed at a lower contour level.

Fig. S2. Effect of D236A and L232G mutations on the NMR spectrum of the C domain of ArfA.

All ¹H/¹⁵N HSQC spectra were obtained at 25°C and pH7, after treatment with GSSG to form the disulfide bond. (a) Spectra of wild-type ArfA-c (black) and ArfA-c(D236A) (orange). (b) Spectra of wild-type ArfA-c (black) and ArfA-c(L232G) (orange). (c) Superimposed lowest energy structures of ArfA-c (pink) and ArfA-c(D236A) (cyan). (d) Significant chemical shift changes (\geq 0.03 ppm) due to the L232G mutation map to key residues (yellow) in helix α 3 and in the β -sheet of ArfA-c.

(a) G289 V290 C283 C273 C273 C273 C273 C273 C273 C273 C273 C273 C273 C275	5 281 6259 F225 8 7277 3	R320 Pal (2AIZ) VIAD	<i>י</i>
(b) ArfA MkanA1_23014 MMAR_4637 MUL_0252 Pal YiaD MotB RmpM	196 201 201 201 9 46 70 50	α1 β1 α2 β2 QAPP-GPPASGPCADLQSAINAVTGGPIAFG-NDGASLIPADYEILNRVADKLKACPD-ARVTINGYTDNTGS2 GPIAFG-NDGASLIPADYEILNRVADKLKACPD-ARVTINGYTDNTGS2 ASPPPGSGAAGPCADLQAVTALTGGAIAFK-NDGVSLTPADNQILSQVAAKLKACPD-ARVTVNGYSDNGGG2 STPPTGPAATGACADLQAAVTALTGGAIAFG-NDGVSLTPDSNKVLTQVVDKLRACPD-AKVTVNGYTDNSGS2 STPPTGPAATGACADLQAAVTALT	56 72 72 75 36 71 24
ArfA MkanA1_23014 MMAR_4637 MUL_0252 Pal YiaD MotB RmpM	267 273 273 273 76 137 172 125	α3 β3 α4 β4 EGINIPLSAQRAKIVADYLVARGVAGDHIATVGLGS VNPIASNATPEGRAKNRVEIVVN 3 EGINIPLSAQRAKIVADYLVARGVAGDHIATVGLGS ANPIASNATPEGRAKNRVEIVVS 3 EGINIPLSAQRAQTVADFLAAQGVARDHITARGYGS ANPIASNDTPEGRAKNRVEIVVS 3 EGLNIPLSAQRAQTVADFLVAHGVPTDHITAKGLGS ANPIASNDTAEGRIKNRVEIVVS 3 EGLNIPLSAQRAQTVADFLVAHGVATDHITAKGLGS ANPIASNDTAEGRIKNRVEIVVS 3 - EGLNIPLSAQRAQTVADFLVAHGVATDHITAKGLGS ANPIASNDTAEGRIKNRVEIVVS 3 - PEYNIALGQRADAVKGYLAGKGVDAGKLGTVSYGE EKPAVLGHDEAAYSKNRAVLAY 1 - HDLNMRLSQQRADSVASALITQGVDASRIRTQGLGP ANPIASNSTAEGKAQNRRVEITLSPL 1 RFKSHYELAANRAYRVMKVLIQYGVNPNQLSFSSYGS TNPIASNSTAEGKAQNRRVEITLSPL 1 PEYNALSERRAYVANNLVSNGVPVSRISAVGLGESOAOMTOVCEAEVAKLGAKVSKAKKREALIACIEPDRRVDVKIRSIVTROVVPAHNHHOH 2	26 32 32 34 98 57 20

Fig. S3. Structure-based sequence alignment of the C domain of *M. tuberculosis* ArfA with representative OmpA-like domains (pfam00691) of known structure.

(a) Structures of *M. tuberculosis* ArfA-c(D236A); *H. influenzae* Pal²¹; *E. coli* YiaD; *H. Pylori* MotB²²; and *N. meningitis* Rmpm²³. PDB accession codes are provided in parentheses for each structure. Structural elements colored red are unique to each protein and not part of the core $\beta\alpha\beta\alpha\beta\alpha\beta$ OmpA-like fold. (b) Sequences are for: *M. tuberculosis* ArfA (NP_215414); *M. kansasii* MkanA1_23014 (ZP_04750863); *M. marinum* MMAR_4637 (YP_001852895); *M. ulcerans* MUL_0252 (YP_904461); *H. influenzae* Pal (NP_438542); *E. coli* YiaD (NCBI: YP_003034446); *H. pylori* MotB (NP_207609); and *N. meningitis* Rmpm (NP_273431). Perfectly conserved residues and Cys (single letter), highly conserved residues (\bullet), and secondary structure of *M. tuberculosis* ArfA, are marked above the sequences. Residues with at least 20% conservation are colored with the ClustalX scheme. Citation numbers are from the main text.

Fig. S4. Effect of peptidoglycan peptide analogs on the NMR spectra of the C domain of ArfA.

 1 H/ 15 N HSQC spectra of ArfA were obtained at pH7, with (orange) or without (black) ~20 molar equivalents of peptidoglycan peptide analogs. (a) ArfA-c(D236A) ± UMDP at 25°C. Peaks from the natural abundance peptide are enclosed in boxes. (b) ArfA-c(D236A) ± UMKP at 25°C. (c) ArfA-c ± GMAG dipeptide at 40°C. (d) ArfA-b1 ± UMDP at 25°C. The peptide structures are shown at top.

Fig. S5. Effect of R277E mutation on the ability of ArfA-c to bind the peptidoglycan peptide precursor UMDP.

(a) ${}^{1}H/{}^{15}N$ HSQC spectra of ArfA-c(D236A;R277E) double mutant were obtained at pH7 and 25°C, with (orange) or without (black) ~20 molar equivalents of the peptidoglycan peptide precursor UMDP. Peaks from the natural abundance peptide are enclosed in boxes. Labeled peaks serve as comparison to the data in Fig. S4. (b) Close up view of the peptidoglycan binding pocket with structural model of bound MDP (MurNAc–L-Ala–D- γ -Glu–m-DAP–D-Ala–D-Ala) derived from the data. Key residues important for peptidoglycan binding are labeled in red. R277 is in the red circle.

Figure S6. Saturation transfer difference NMR spectra showing the proximity of ArfA-c S302 to the MurNAc N-acetyl methyl group of UMDP.

One-dimensional ¹H NMR spectra were obtained without (black) or with (orange) saturation at the frequency designated by the arrows. (a) Chemical structure of UMDP. The MurNAc methyl and amide groups are labeled. (b) Spectra for a mixture of ArfA-c(D236A) and UMDP (1/20 molar ratio). Saturation at the backbone amide HN frequency of S302 transfers to the MurNAc N-acetyl CH3 group (orange asterisk). (c) Spectra for free UMDP. Saturation at the MurNAc HN frequency transfers to the neighboring N-acetyl CH3 group (orange asterisk). (d) Spectra for free ArfA-c(D236A). Saturation at the backbone amide HN frequency of S302 transfers to the neighboring N-acetyl CH3 group (orange asterisk). (d) Spectra for free ArfA-c(D236A). Saturation at the backbone amide HN frequency of S302 transfers to neighboring protein sites.