

Figure S1. Alignment of the nine predicted BIS coding sequences of 'Golden Delicious'. Shading indicates nucleotide identity, dashes mark gaps.

Figure S1 continued

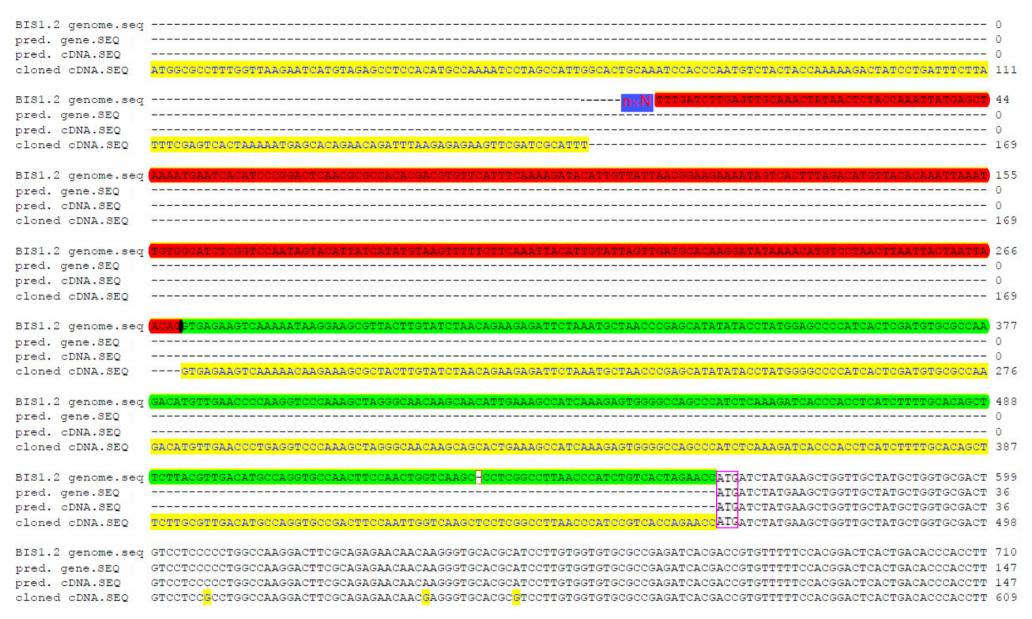

BIS1.1.SEQ	acccaccttgacatactggtggg <mark>ccac</mark> gctctttttgctga <mark>y</mark> ggagcatctgctgtgatagttggggc <mark>t</mark> aatccagagcct <mark>r</mark> aaattgagaggcc <mark>c</mark> ctgtttgaaawcgtggcatgcagg 7	20
BIS1.2.SEQ	ACCCACCTTGACATACTGGTGGG <mark>T</mark> CA <mark>C</mark> GCTCTTTTTGCTGATGGAGCATCTGCTGTGATAGTTGGGGC <mark>T</mark> AATCCAGAGCCTGAAATTGAGAGGCC <mark>G</mark> CTGTTTGAAATCGTGGCATGCAGG 5	49
BIS1.3.SEQ	ACCCACCTTGACATACTGGTGGG <mark>CCAC</mark> GCTCTTTTTGCTGATGGAGCATCTGCTGTGATAGTTGGGGCC <mark>T</mark> AATCCAGAGCCTGAAATTGAGAGGCC <mark>GT</mark> TGTTTGAAATC <mark>A</mark>	85
	acccacct <mark>a</mark> gacatact <mark>a</mark> gtggggcaagctctttttgctgatggagcatctgctgtgat <mark>t</mark> gttggggccaatccagagcctgaaattgagag <mark>t</mark> ccactgtttgaaatcgtggcatgcaga 7	20
BIS2.2.SEQ	acccacct <mark>a</mark> gacatact <mark>a</mark> gtggggcaagctctttttgctgatggagcatctgc <mark>yr</mark> tgat <mark>t</mark> gttggggccaatccagagcctgaaattgagag <mark>k</mark> ccact <mark>r</mark> tttgaaatcgtggcatgcaga 7	20
BIS2.3.SEQ	acccacct <mark>a</mark> gacatact <mark>a</mark> gtggggcaagctctttttgctgatggagcatctgc <mark>ca</mark> tgat <mark>t</mark> gttggggccaatccagagcctgaaattgagaggccact <mark>a</mark> tttgaaatcgtggcatgcaga 2	
BIS2.4.SEQ		70
BIS3.SEQ	acccaccttgacata <mark>t</mark> tggtggg <mark>t</mark> caagctctttttgctga <mark>c</mark> ggagcatctgctgtgatagttggggccaatccagagcctgaaattgagaggccact <mark>a</mark> tttgaaatcgtggc <mark>t</mark> tg <mark>t</mark> agg 7	14
		20
'		
BIS1.1.SEQ	$\mathtt{CAGACGATCATACCTAAC}$ TCAGAGCATGGTGT AGTGGCCAACATTCGTGAAATGGGGTTTAATTATTATTTAT	40
BIS1.2.SEQ	$\mathtt{CAGACGATCATACCTAAC}$ TCAGAGCATGGTGTAGTGGCCAACATTCGTGAAATGGGGTTTAATTATTATTTAT	69
BIS1.3.SEQ		85
BIS2.1.SEQ	CAGACGATCATACCTAATTCAGAGCATGGTGTCGTGGCCAACATTCGTGAAATGGGGTTTAATTATTATTATCAGGAGAAGTCCCCAAATTTGTTGGTGGAAATGTTGTGGATTTTCTG	40
BIS2.2.SEQ	CAGACGATCATACCTAATTCAGAGCATGGTGTCGTGGCCAACATTCGTGAAATGGGGTTTAATTATTATTATCAGGAGAAGTCCCCAAATTTGTTGGTGGAAATGTTGTGGATTTTCTG 8	40
BIS2.3.SEQ	CAGACGATCATACCTAATTCAGAGCATGGTGTCGTGGCCAACATTCGTGAAATGGGGTTTAATTATTATTATCAGGAGAAGTCCCCAAATTTGTTGGTGGAAATGTTGTGGATTTTCTG	54
BIS2.4.SEQ	CAGACGATCATAC <mark>Y</mark> TAATTCAGAGCATGGTGTCGTGGCCAACATTCGTGAAATGGGGTTTAATTATTATTATCAGGAGAAGTCCCCAAATTTGTTGGTGGAAATGTTGTGGATTTTCTG	90
BIS3.SEQ	$\mathtt{CAPACPATCC}^{\mathtt{PAAC}}$ TCAGAGCATGGTGT $_{GGTGGCCAACATTCGTGAAATGGGGTTTAATTATTATTATCAGGAGATGTCCCCAAATT_{\mathtt{CGTTGGTGGAAATGTTGTGGATTTTATCAGGAGATGTTCAGGAGATGTTCGTGGATTTTATGAGGAGATGTTCAGGAGATGTTGTGGATTTTATGAGGAGATGTTAATTATTA$	34
		40
'		
BIS1.1.SEQ	actaaaacttttgaaaaggttgacggaaagaataagga <mark>c</mark> tggaactccttgtttttcagtgtgcaccctggtgggcc <mark>t</mark> gc <mark>c</mark> attgtagaccaggtgga <mark>k</mark> gagcaattgggtttgaaggaa 9	60
BIS1.2.SEQ	actaaaacttttgaaaaggttgacggaaagaataagga <mark>c</mark> tggaactccttgtttttcagtgtgcaccctggtgggcc <mark>t</mark> gc <mark>c</mark> attgtagaccaggtgga <mark>t</mark> gagcaattgggtttgaaggaa 7	89
BIS1.3.SEQ		04
BIS2.1.SEQ	actaa <mark>s</mark> acttttgaaaa <mark>a</mark> gttgacggaaagaataaggattggaactccttgttttt <mark>t</mark> agtgtgcaccctggtgggcccgctattgtagaccaggtggaggagcaattgggtttgaaggaa 9	60
BIS2.2.SEQ	actaa <mark>r</mark> acttttgaaaa <mark>a</mark> gttgacggaaagaataaggattggaactccttgttttt <mark>y</mark> agtgtgcaccctggtgggcccgctattgtagaccaggtggaggagcaattgggtttgaaggaa 9	60
BIS2.3.SEQ	ACTAAAACTTTTGAAAA <mark>A</mark> GTTGACGGAAAGAATAAGGATTGGAACTCCTTGTTTTTCAGTGTGCACCCTGGTGGGCCCGCTATTGTAGACCAGGTGGAGGAGCAATTGGGTTTGAAGGAA 4	74
BIS2.4.SEQ	actaa <mark>g</mark> acttttgaaaa <mark>a</mark> gttgacggaaagaataaggattggaactccttgttttt <mark>t</mark> agtgtgcaccctggtgggcccgctattgtagaccaggtggaggagcaattgggtttgaaggaa 5	10
BIS3.SEQ	actaaaacttttgaaaaggt <mark>a</mark> ga <mark>t</mark> gg <mark>c</mark> aagaa <mark>a</mark> aagga <mark>c</mark> tggaactccttgtttttcagtgtgca <mark>t</mark> cctggtgg <mark>a</mark> cc <mark>t</mark> gccattgtagaccaggtggaggag <mark>a</mark> aattgggtttgaaggaa 9	54
BIS4.SEQ	actaaaacttttgaaaaggttga <mark>t</mark> gg <mark>e</mark> aagaa <mark>g</mark> aagga <mark>c</mark> tggaactccttgtttt <mark>a</mark> cagtgtgca <mark>t</mark> cctggtgggcccgc <mark>c</mark> attgtagaccaggtggaggagcaattgggtttgaaggaa 9	60
BIS1.1.SEQ	GGGAA <mark>G</mark> CTTAGGGC <mark>T</mark> ACAAGGCATGTGTTGAGTGAGTATGGCAACATGGGAGCTCCATC <mark>G</mark> GTGCACTTTATTTTGGATGAGATGAGAAA <mark>T</mark> AAGTCGATTG <mark>G</mark> GGAAGGCAAAGCCACAACT 1	080
BIS1.2.SEQ	GGGAA <mark>SCTTAGGGCT</mark> ACAAGGCATGTGTTGAGTGAGTATGGCAACATGGGAGCTCCATC <mark>S</mark> GTGCACTTTATTTTGGATGAGATGAGAAA <mark>T</mark> AAGTCGATTG <mark>S</mark> GGAAGGCAAAGCCACAACT 9	09
BIS1.3.SEQ		04
BIS2.1.SEQ	GGGAAACTTAGGG <mark>S</mark> AACAAGGCATGTGTTGAGTGAGTATGGCAACATGGGAGCTCCATCTGT <mark>C</mark> CACTTTATTTTGGATGAGATGAGAAAGAAGTCGATTGA <mark>A</mark> GAAGGCAAAGCMACAACT 1	080
BIS2.2.SEQ		080
BIS2.3.SEQ		94
		30
		074
BIS4.SEQ	GGGAAACTTAGGGCAACAAGGCATGTGTTGAGTGAGTATGGCAACATGGGAGCTCCATCTGTGCACTTTATTTTGGATGAGATGAGAAA <mark>C</mark> AAGTCGAT <mark>G</mark> GAGGAAGGCAAA <mark>T</mark> CCACAACT 1	080
		173
		002
BIS1.3.SEQ		08
		173
		173
		23
		167
		185
DIST.SEQ	octorrocti i corritorati cucultura i cataluca de la cataluca de la cataluca de la cataluca de la cataluca de l	100

Figure S2. Phylogenetic tree of nine BIS coding sequences of 'Golden Delicious'.

Figure S3. Alignment of the predicted *BIS1.1* gene and cDNA sequences of 'Golden Delicious' (MDP0000641583) with the cloned cDNA sequence of 'Holsteiner Cox'. An intron is labeled in yellow, as well as some single nucleotide substitutions. Segments that were annotated as intron sequences but are coding sequences are marked in green. The red box indicates a nucleotide deletion in the sequence of the predicted gene.

Figure S4. Alignment of the predicted *BIS1.2* gene and cDNA (MDP0000257119) with the corresponding genome sequence of 'Golden Delicious' and the cloned cDNA of 'Holsteiner Cox'. Nucleotides of the cloned cDNA that are located upstream of the predicted start codon (pink box) are labeled in yellow, as well as some single nucleotide substitutions. The corresponding genome sequence, as far as is available, is marked in green. The upstream genome sequence that is an intron is marked in red. The label $n \times N$ against a blue background indicates an unknown number of missing nucleotides in the genome sequence. A deletion behind nucleotide 531 in the coding part of the genome sequence is indicated by a red box.

Figure S5. Alignment of the predicted *BIS2.4* gene and cDNA sequences of 'Golden Delicious' (MDP0000168735) with the cloned cDNA sequence of 'Holsteiner Cox'. A segment that was annotated as intron but is present in the cloned cDNA is labeled in yellow, as well as some single nucleotide substitutions. The major portion of the corresponding genome sequence labeled in light green consists of unclear nucleotides (N), whereas the shorter downstream portion (dark green) was readable. A stretch of 279 unidentified nucleotides highlighted in red was predicted and is intron.