Supporting Information

Qian et al. 10.1073/pnas.1115307109

Fig. S1. Laser desorption ionization (LDI) mass spectrum of $Au_{333}(SR)_{79}$ nanoparticles in the range of 500 to 500,000 Da.

Fig. S2. Linear fittings of the ESI-MS peaks of $Au_{333}(SR)_{79}$ nanoparticles. In both 4+ and 3+ ion sets, the slope of 133.28 or 133.8 corresponds to the atomic mass of Cs (standard value: 133). The intercept, 76,432.8 (standard deviation $\sigma = \pm 3.5$) or 76438.9 ($\sigma = \pm 1.28$), is the molecular mass of the nanoparticle. The lower mass [MCs_x]⁴⁺ set offers a higher accuracy, thus, we take this set to determine the molecular mass of the nanoparticle, M = 76,432.8 ± 3.5 Da.

Number		Calculated Mass (Da)	Deviation from experiment (Da)	Calculated Organic wt%	Deviation from experiment		
	0151((50)			(00070)		
328	84	/6,131.6	-301.2	15.1	0.6		
328	85	76,268.8	-164.0	15.3	0.8		
328	86	76,406.1	-26.7	15.4	0.9		
328	8/	76,543.3	110.5	15.6	1.1		
328	88	/6,680.5	247.7	15./	1.2		
329	83	76,191.3	-241.5	14.9	0.4		
329	84	76,328.5	-104.3	15.1	0.6		
329	85	76,465.7	32.9	15.2	0.7		
329	86	76,603.1	170.3	15.4	0.9		
329	87	76,740.3	307.5	15.5	1.0		
330	81	76,113.9	-318.9	14.6	0.1		
330	82	76,251.1	-181.7	14.7	0.2		
330	83	76,388.3	-44.5	14.9	0.4		
330	84	76,525.5	92.7	15.1	0.6		
330	85	76,662.7	229.9	15.2	0.7		
331	80	76,173.7	-259.1	14.4	-0.1		
331	81	76,310.9	-121.9	14.6	0.05		
331	82	76,448.1	15.3	14.7	0.2		
331	83	76,585.3	152.5	14.9	0.4		
331	84	76,722.5	289.7	15.0	0.5		
332	78	76,096.1	-336.7	14.1	-0.4		
332	79	76,233.3	-199.5	14.2	-0.3		
332	80	76,370.5	-62.3	14.4	-0.1		
332	81	76,507.8	75.0	14.5	0.01		
332	82	76,645.0	212.2	14.7	0.2		
333	77	76,155.9	-276.9	13.9	-0.6		
333	78	76,293.1	-139.7	14.0	-0.5		
<u>333</u>	<u>79</u>	<u>76,430.3</u>	<u>-2.5</u>	<u>14.2</u>	<u>-0.3</u>		
333	80	76,567.5	134.7	14.3	-0.2		
333	81	76,704.8	272.0	14.5	-0.02		
334	76	76,215.6	-217.2	13.7	-0.8		
334	77	76,352.9	-79.9	13.8	-0.7		
334	78	76,490.1	57.3	14.0	-0.5		
334	79	76,627.3	194.5	14.1	-0.4		
335	75	76.275.4	-157.4	13.5	-1.0		
335	76	76,412.6	-20.2	13.6	-0.9		
335	77	76,549.8	117.0	13.8	-0.7		

Table S1. The formulas corresponding to the TGA-determined organic wt% of 14.5 (allowed to fluctuate ± 0.5	in
order to expand the search range for the formula)	

Note that the m/z ~ 19,107 being the monoadduct of $[MCs_1]^{4+}$ can be ruled out by taking into consideration the result of thermogravimetric analysis. Should the m/z ~ 19,107 peak be $[M-Cs_1]^{4+}$, then the molecular mass = 19,107 × 4 – 133 = 76,295. From the above table, one finds a matched formula of $Au_{333}(SR)_{78}$ (theoretical mass: 76,293), but the calculated weight loss (14.0%) is too much deviated from the experimental value of 14.5%. The 0.5% deviation falls out of the error range of TGA (< ± 0.3%).

Table S2. The calculated *n*th zeros of spherical Bessel functions $j_{I+1/2}(\beta r)$ of the first kind

	<i>l</i> = 0	<i>l</i> = 1	<i>l</i> = 2	<i>l</i> = 3	<i>l</i> = 4	<i>l</i> = 5	<i>l</i> = 6	<i>l</i> = 7	<i>l</i> = 8	<i>l</i> = 9	<i>l</i> = 10	<i>l</i> = 11	<i>l</i> = 12
0th zero	3.14	4.49	5.76	6.99	8.18	9.36	10.5	11.66	12.79	13.91	15.0	16.14	17.25
1st zero	6.28	7.73	9.09	10.4	11.7	13.0	14.2	15.43	16.64	17.84	19.0	22.20	21.37
2nd zero	9.42	10.9	12.3	13.7	15.0	16.4	17.6	18.92	20.18	21.43	22.66	23.89	25.10
3rd zero	12.6	14.1	15.5	16.9	18.3	19.7	21.0	22.30	23.59	24.87	26.14	27.40	28.65
4th zero	15.7	17.2	18.7	20.1	21.5	22.9	24.3	25.60	26.93	28.24	29.53	30.82	32.1
5th zero	18.8	20.4	21.9	23.3	24.7	26.1	27.5	28.87	30.22	31.55	32.87	34.18	35.48
6th zero	22.0	23.5	25.0	26.5	27.9	29.3	30.7	32.11	33.47	34.83	36.17	37.50	38.81

According to these $\alpha_{n,l}$ values, electron orbitals are constructed, for example, the smallest $\alpha_{n,l}$ is 3.14 for (n,l) = (0,0), labeled 1s in analogy with atomic orbital, the next $\alpha_{n,l}$ value is 4.49 for (n,l) = (0,1), labeled 1p, and so on. The as-constructed orbitals are as follows:

1s, 1p, 1d, 2s, 1f, 2p, 1g, 2d, 1h, 3s, 2f, 1i, 3p, 1j, 2g, 3d, 4s, 1k, 2h, 3f, 1l, 4p

PNAS PNAS