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SI Text
Experimental Setup. Amazon’s Mechanical Turk. Amazon’s Mechani-
cal Turk (AMT) is a Web-based labor market with large volumes
of small tasks [called human intelligence tasks (HITs)] offered
for small reward. Typical tasks include image labeling, sentiment
analysis, or classification of uniform resource locators, and wages
are typically on the order of $0.01–$0.10 per HIT. AMT is be-
coming increasingly popular with behavioral science researchers,
in part because it allows experiments to be run faster and more
inexpensively, and in part because it provides access to a po-
tentially much broader cross-section of the population than is
typical of university-based laboratory experiments (1–4). Ac-
cordingly, we posted each of our experimental sessions as a HIT
and recruited workers to participate in the experiment. After
seeing a screenshot of the experiment with explanatory text,
workers could choose to accept the HIT; at that point, the work
was officially assigned to them and they could begin participating
in the study. More details about AMT and its application to
behavioral science experiments are given by Mason and Suri (5).
Panel Recruitment. In our experiment, we required all players to
participate simultaneously, which is atypical for tasks onAMT. To
do this, we follow Suri and Watts (6) in creating a virtual “waiting
room.” Once arriving participants accepted the HIT, they were
directed to a screen informing them that the experiment had not
yet filled, along with how many remaining players were required.
Once all positions had been filled, participants in the waiting
room were informed that the game was about to commence.
Consistent with previous work (6), we found that posting the

HIT on AMT was insufficient to fill networks of size n = 16 in
a reasonable time, resulting in participants abandoning the
waiting room and the HIT being terminated. To alleviate this
problem, we ran a series of experiments with simple networks
comprising n = 8 subjects, during which parameters were varied
to produce landscapes that were neither too easy (the peak is
always found) nor too difficult (the peak is never found). After
participating in at least one experiment, the subjects were asked
to report their demographics and then were given the opportu-
nity to opt-in to a standing panel of experienced players who were
familiar with the rules of the game and were willing to be con-
tacted for future games. The experiments reported in this article
were then conducted by recruiting from this standing panel.
Participants.All participants were recruited through AMT. A total
of 120 unique players participated in the 232 games reported in
this study. Of these, 58 reported their sex as male and 61 reported
their sex as female. The median reported age was 28 y, with
quartiles of 23 y and 34 y. The modal response for annual
household income was “less than $30,000,” and the modal re-
sponse for the highest level of education attained was “Bach-
elor’s Degree.” The majority of participants played in 3 or fewer
games, although there were a few who played in as many as 12
(Fig. S1).

Game: Wildcat Wells. As described in the main text, the collabo-
rative problem-solving task that we studied was presented to
participants in the form of a game called “Wildcat Wells,” in
which players were tasked with exploring a desert landscape in
search of hidden oilfields. When n = 16 participants had ac-
cepted the task on AMT, the session would begin. As shown in
Fig. S2, each player would see (a) the full landscape to be ex-
plored; (b) his or her own current and previous locations; (c) the
scores corresponding to those locations; and (d) the previous
locations and corresponding scores of his or her three assigned

collaborators (i.e., network neighbors), whose locations are
made visible. On each turn, all players could choose any of the
100 × 100 grid squares as their next location to “drill.” If the
player hovered over one of the drill locations, the exact score
would appear and the corresponding bar in the player’s (or
neighbor’s) history would be highlighted. Similarly, hovering
over a bar in the history would show the points and the corre-
sponding location on the landscape.
Players had to select and submit a location to drill within some

amount of time; in the first 2 rounds of the game, they had 60 s to
make their decision, and in the remaining 13 rounds, they had 30 s.
If they did not submit a location in that time, the round was
skipped and they earned no points for that round (therefore, no
information about the fitness landscape was obtained; an example
of how this was displayed to the user can be seen in the player’s
round 4 in Fig. S2). The total number of points the players had
accumulated was always displayed to them. At the end of the 15
rounds, they were shown a summary of the game as well as the
total number of points they earned before advancing to the next
game. In all, they played eight games, one for each network
topology, which typically took a total of 50–60 min.
All payoffs were determined by a hidden fitness landscape,

which comprised two components: a main “peak” and a back-
ground “noise” distribution, which are described in the next
section. For each game, the participants were paid according to
the points that they earned across all eight games in each session
at a rate of $0.00075 per point. Thus, participants were finan-
cially motivated to find the main peak and, failing that, to find
the minor peaks present in the noise. On average, participants
received a total of 819 points per game, which translates to
roughly $0.614 per game, or $4.91 per session. When the peak
was not found, participants earned $0.449, on average, with
a maximum of $0.645. When the peak was found, participants
earned $0.736, on average, with a maximum of $1.118. Carried to
the extreme, if players never found the peak in all eight games,
they could have earned, at most, $5.16, whereas if they found the
peak in all eight games, they could have earned up to $8.94.

Generating Perlin Noise. Perlin noise is a method for generating
pseudorandom noise that was originally developed to improve the
realism of computer graphics (7) but can also be used to create
“landscapes” of arbitrary ruggedness.
As noted in the main text, Perlin noise (8) is created by

summing a sequence of “octaves,” where each octave is gener-
ated in three stages:

i) For some integer ω ∈ [ωmin, ωmax], divide the grid into 2ω ×
2ω cells and assign a random number drawn uniformly from
the interval [0,1] to the coordinate at the center of each cell.

ii) Assign values to all other coordinates in the L×L grid by
smoothing the values of cell centers using bicubic interpo-
lation.

iii) Scale all coordinate values by ρω, where ρ is the “persis-
tence” parameter of the noise distribution.

Figs. S3 A and B and S4 illustrate these steps schematically in
one dimension: Fig. S3A shows the allocation of random values
to cells; Fig. S3B shows the interpolation between random values
to form a smooth surface; and Fig. S4 shows the summation of
several octaves for different values of the persistence.

Generating Networks. The networks to which participants were
assigned were constructed as follows. Starting with a regular
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random graph comprising n = 16 nodes, each with k = 3
neighbors, a series of degree-preserving random rewirings was
conducted, where only rewirings that decreased a specified loss
function f(ϕ) were accepted, where ϕ was one of several network
statistics of interest, as described below. The rewiring procedure
terminated when no more rewirings were possible, and the whole
procedure was repeated 100 times to avoid local minima. There
are no guarantees that the discovered graph is actually the global
optimum, but the resultant graphs were sufficient to capture
variance in the relevant features.
The loss function f(ϕ) either maximized or minimized the

average ϕ across all nodes in the graph, the highest ϕ for any
single node, or the lowest ϕ for any single node. The four net-
work features we focused on, enumerated below, were chosen
because they were known to be related to information flow in
networks. The features of the resultant graphs are shown in
Table S1.
Betweenness. Betweenness centrality captures the amount of in-
formation that flows between nodes in the network by way of the
target node. Specifically, it is the proportion of shortest paths
between pairs of nodes that pass through the central node (9).
More formally, if we let σst denote the number of shortest paths
from s to t and let σst(u) denote the number of shortest paths
from s to t that go through u, then

CbðuÞ ¼
X

s≠u≠t∈V

σstðuÞ
σst

:

Closeness. Closeness centrality was originally devised by Beau-
champ (10) to indicate how reachable a node was from all other
nodes in the network. It is the reciprocal of the average length of
the shortest path between the node and all other nodes:

CcðuÞ ¼ n− 1P
v∈Vdðu; vÞ

:

Here, n is the number of nodes in the network, and d(u, v) is the
length of the shortest path from u to v.
Clustering. The clustering coefficient (11) is a measure of the
connectedness of a neighbor’s contacts. If Γ(u) denotes the set of
nodes that u connects to (Γ(u) = {v j (u, v) ∈ E}) and deg(u) =
jjΓ(u)jj is the degree of node u, the clustering coefficient of node
u is given by:

ccðuÞ ¼ jfði; jÞji∈ΓðuÞ and j∈ΓðuÞgj�
degðuÞ
2

� :

Constraint.Network constraint, developed by Burt (12), is intended
to capture the extent to which a person bridges different groups.
Burt (12) defined the network constraint of node u as follows:

ncðuÞ ¼ 1

degðuÞ2
X
v∈ΓðuÞ

0
@puv þ

X
w∈ΓðuÞ;w≠v

puwpwv

1
A
2

: [S1]

Here, puv denotes the fraction of direct attention that node u
gives to node v. The sum

P
w∈ΓðuÞ;w≠vpuwpwv is the total fraction of

indirect attention that u gives to v through some intermediary w.
When the sum of the direct plus indirect attention u gives v is
high, u is wasting effort on giving redundant attention to v.
Therefore, network constraint is “better” for the individual when
it is small.
Eq. S1 defines network constraint for a weighted, directed

network. In an undirected, unweighted network, puv is equal to
the inverse of degree; thus, Eq. S1 reduces to:

ncðuÞ ¼ 1

degðuÞ2
X
v∈ΓðuÞ

0
@1þ

X
w∈ΓðuÞ;w≠v

pwv

1
A
2

:

In either case, the measure is minimized when none of u’s
neighbors are neighbors with each other; in that case, it evaluates

to
1

degðuÞ.

SI Results
Excluded Games. To verify the robustness of the results, we also
conducted the analyses after excluding the 61 games in which
a player did not take an action in more than half of the rounds.
The results were qualitatively and quantitatively similar for all 232
games. As with the complete set of games, networks with higher
clustering showed less exploration and networks with shorter path
lengths diffused information about the peak faster, leading to
better success for the players.
Collectives earned 30 points more than independent searchers

(t = 89.7, P ≈ 0) when the peak was found and 8 points more
when the peak was not found (t = 34.7, P ≈ 0). The peak was
found in 107 of the 171 games, or 62.6% of the time. The re-
lationship between path length and points was again negative
and marginally significant (β = −3.89, P ≈ 0.06). Efficient net-
works again earned more points overall than inefficient net-
works, although there is somewhat more variance. The time for
information about the peak to reach a node was exactly equal to
the path length separating them 73% of the time. The difference
between the efficient and inefficient networks is even clearer
with the 61 games excluded, both in the frequency of finding the
peak (although the differences are still not significant) and in the
amount of copying. It is also still true that increased clustering is
associated with neighbors imitating each other and increased
imitation is associated with increased copying by the focal node.
Similarly, the results still show that players who copied more
(before the peak was found) earned more points, on average,
and that the probability of finding the peak in the subsequent
round was negatively related to the number of players copying
each other in the current round.

Exploration of Independent Searchers. The independent searchers
did not find the peak significantly more often than the networked
collectives. Seventeen (70.8%) of the 24 groups of independent
searchers had at least one person find the peak, whereas 138
(59.5%) of 232 groups of collective searchers had at least one
person find the peak (Fig. S6). Although the independent
searchers had a higher proportion of groups that found the peak,
this was not significant with a χ2 test (χ2 = 0.746, not significant).
This is somewhat surprising, because the independent search-

ers were exploring more with respect to the amount of space they
were covering. The independent searchers, not being able to
observe where the other players were exploring, naturally visited
more unique points in the landscape than the networked groups,
as shown in Fig. S7A. However, this difference disappears when
focusing on the round before the peak is found (Fig. S7B).
One possible explanation for this is the fact that the in-

dependent searchers tended to gravitate toward their own best
solutions as the end of the game approached. This can be seen in
Fig. S8, which shows the average distance from the player’s best
solution decreases for both the networked players and the in-
dependent searchers, even when the peak is not found.

Efficiency Predicts Success. To determine whether efficiency pre-
dicts success, we fit a linear model of the form pts ∼ α + βpl,
where pts is the average points earned by players in a particular
network and pl is the average path length in that network. The
relevant parameter estimates and significance results are shown
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in Table S2. The advantage of short path length can be also seen
in Fig. S9, which shows the path length and average points for
each graph type.

Impact of Network Position on Individual Performance. As stated in
the main text, for centralized networks, individuals in central
positions performed well relative to individuals in peripheral
positions, but individuals in decentralized networks generally
outperformed all individuals in centralized networks. Fig. S10
supports the first part of this statement, showing that higher
betweenness centrality and closeness centrality both correlate
with faster convergence time for individuals, where convergence
time refers to the number of rounds after the peak is discovered
required for an individual to locate the maximum possible score.
By contrast, Fig. S10 also shows the opposite tendency for
clustering coefficient and network constraint.
To illustrate this result more clearly, Fig. S11 shows the average

number of rounds required for each position to locate the peak
(given the peak is found at all), where lighter colors correspond
to faster discovery times. From this figure, it is clear that pe-
ripheral nodes in centralized networks suffer for the simple
reason that when the peak is discovered far from them, the in-
formation must propagate for several steps to reach them. By
contrast, central nodes always receive the information within
a few steps. Moreover, all nodes in decentralized networks re-
ceive the information within a few steps.

SI Simulations
Our main finding regarding the superiority of efficient networks
raises three related questions with respect to the previous findings
of agent-based models (13, 14). First, what is it about the rules
governing artificial agents that leads inefficient networks to
outperform efficient networks in the simulation but not in our
experiments? Second, do humans or agents perform better
overall? Third, do either agents perform close to what is theo-
retically achievable (i.e., optimal)?
To address these questions, we conducted two sets of agent-

based simulations, where networks of 16 agents searched a fitness
landscape identical to that in the experiments using human
subjects. These two agents differed with respect to the behavioral
rules, which are described next.

Rule LF. This rule was adapted from Lazer and Friedman (13),
using the following key passage: “We assumed that in each round
of the simulation, actors’ decisions proceed in two stages. In the
first stage, each actor evaluates whether anyone to whom he or
she is connected has a superior solution. If so, he or she copies
the most successful individual to whom he or she is connected. If
no one is more successful, then the agent myopically searches for
a better strategy than he or she has in the status quo strategy. To
capture this myopia, we assumed that agents examine the impact
of randomly changing one digit of their status quo solution, and
if that potential change offers an improvement, they change their
solution” (ref. 13, p. 2).
Mapping this rule to our own context, we assume whenever

a network neighbor has a better score than the focal individual, he
or she should copy his or her neighbor. When the focal individual
has the highest score, however, there is no obvious equivalent of
myopic search; thus, we consider a family of models, LFr, where r
constitutes the radius of myopic search. Specifically, we consider
four values of r: 3, 6, 12, and 20. We note that r = 6 is equivalent
to the radius of the main peak and r = 20 is roughly half of the
grid length (L = 50); hence, the r = 3 setting is extremely my-
opic, whereas r = 20 is only weakly restrictive. Our choice of LFr
models thus allows us to explore effectively a wide range of
sensible interpretations of myopic search.

Rule O.We have derived a rational best-response rule with respect
to a simplified fitness landscape with just two payoffs: nonpeak
and peak. Clearly, this landscape differs from the landscapes that
our human subjects were searching in potentially important ways;
indeed, as we will show below, the derived “optimal” rule is far
from optimal when applied to the actual landscapes. Neverthe-
less, the modeling exercise still proved useful by exposing the
deficiencies in our assumptions.
Specifically, we assume the following notation:

Pt = expected payoff to exploration t steps from end
p = payoff from peak
n = payoff from nonpeak
f = p[finding peak in 1 round of exploration] = R/L
R = width of peak
L = side length of grid
T = number of rounds

From this, we proceed by backward induction.
At round T − 1, and assuming the player has not yet found the

peak, the expected payoff to exploring a new location is:

PT�1 ¼ fpþ ð1− f ÞðnÞ: [S2]

The first part of this equation, fp, is the expected utility of finding
the peak on the next round, and the second part of the equation,
(1 − f)n, is the expected utility of not finding the peak on the next
round. From this, it follows that the expected utility of exploring
on round T − 2 is the value of finding it that round (and ex-
ploiting it for the remaining rounds) plus the value of not finding
it and exploring on the remaining rounds: PT−1. This process
leads to the following recursive payoff function:

PT�2 ¼ 2 fpþ ð1− f Þðnþ P1Þ
PT�3 ¼ 3 fpþ ð1− f Þðnþ P2Þ

⋮
P1 ¼ nfpþ ð1− f Þðnþ Pt− 1Þ

Given this recursive payoff function, for any round t= (T − τ), we
can compute explicit payoffs, P∗

τ for t = 1,2,. . .T − 1. From this,
we can determine the following best-response rule: If P∗

τ is
greater than the highest observed solution, choose a new loca-
tion uniformly at random; otherwise, copy the highest observed
solution.

SI Results
Comparison with LF Agents. Figs. S12–S15 summarize our findings:

i) All LF agents performed worse than human agents, where
greater myopia corresponded to lower likelihood of finding
the main peak and, hence, worse performance. Also, all LF
agents copied far more than human agents.

ii) Inefficient networks slightly outperformed efficient net-
works for LF6 and LF12 agents (intermediate myopic).
However, for highly myopic (LF3) networks, and also for
only weakly myopic (LF20) networks, performances did not
appear to depend on efficiency.

Our interpretation of these results is that the main result of
Lazer and Friedman (13), namely, the superiority of inefficient
networks, depends on a rather nongeneric tradeoff. Specifically,
because agents start exploring from different (randomly chosen)
locations on the fitness landscape, the slower they converge on
a solution, the more of the space they are likely to explore.
Because inefficient networks disseminate information about
globally suboptimal solutions more slowly than efficient net-
works, they will spend more time exploring than efficient net-
works. At the same time, however, the radius of myopic search
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determines how much of the space any individual can explore,
and thus the likelihood that the main peak will be found at all.
The interaction between these two conflicting forces produces

the following result. When search is extremely myopic, neither
efficient networks nor inefficient networks are likely to find the
peak; hence, no performance difference is registered between
them. At the other extreme, when search is only weakly myopic,
both efficient and inefficient networks are likely to find the peak;
hence, again, there is no performance difference and all networks
perform better. Only when search is of intermediate myopia (the
LF6 and LF12 cases) does the time delay associated with in-
efficient networks translate into an advantage in terms of finding
the peak.
In recovering the LF result, in other words, we have also

shown that the claimed benefit of inefficiency depends somewhat
sensitively on the choice of parameters. Moreover, this particular
choice does not result in the best overall performance for either
efficient or inefficient networks, because even intermediate my-
opic search decreases the likelihood of the main peak being
found. Nor do real human agents appear to embody this par-
ticular form of myopia, thus accounting for why we see no benefit
to inefficiency in our experiments.
To summarize, our conclusion that human agents behave in

systematically different ways than is assumed in agent-based
models appears sound, although the more detailed comparison
also reveals (a) that the LF model is generically inferior to what
human agents do and (b) that the LF inefficiency result, although
replicable in our problem space, arises only for a somewhat
narrow range of parameters and that this range is suboptimal
even for LF agents.

Comparison with O Agents. Fig. S16 summarizes the performance
of the O strategy agents. Curiously, they perform much worse
than human agents, for three reasons:

i) They find the main peak much less frequently.
ii) They are less likely to exploit it when they do.
iii) They are also less likely to exploit local maxima.

Obviously, there is something very nonoptimal about this rule
when applied to the actual landscapes rather than the simplified
landscape assumed to derive the rule.
The problem, we believe, is that the proposed simplification

leads O agents (in contrast to LF agents) to explore far more

than they should. The actual landscape, that is, exhibits sub-
stantial spatial correlations in the noise that human agents are
clearly exploiting. In contrast, the simplified landscape (re-
sembling a “needle in a haystack” landscape) used to derive
optimal behavior offers no exploitable correlations; hence, O
agents (a) do not locally explore when they are near peak and (b)
continue exploring almost until the last round.
It is not clear why this behavior results in O agents finding the

main peak so much less frequently than human agents; however,
it is clear that their excessive exploration prevents them from
discovering or exploiting local maxima. Moreover, because a
simplified landscape also assumes that the peak is flat, in the
sense of comprising a single value, even when O agents do
stumble on the peak, they often continue searching globally
rather than switching to local search, which is what the human
agents do.
Unfortunately, although the shortcomings of the assumptions

underpinning the O strategy are now evident, the solution is not.
Clearly, human agents are paying attention to spatial correla-
tions in the fitness landscape, and this is clearly helping them
a great deal. It would also clearly be of interest to solve for an
optimal strategy under increasingly realistic assumptions about
the landscape; however, such an exercise is well beyond the
scope of this paper.
Instead, we have simulated a variant of the O strategy, which

we call O+. This strategy addresses one of the obvious short-
comings of the O strategy, namely, that O agents fail to switch to
local search when they discover the peak (i.e., if they land very
close to the maximum). To solve this problem, the O+ strategy
simply adds the following heuristic: If highest observed score is
greater than 60, search within the radius of the peak, R.
One would not expect this strategy to be optimal either (be-

cause it does nothing to address the lower likelihood of finding the
peak), and, indeed, O+ agents still perform worse than human
agents. However, as Fig. S17 shows, it does improve performance
in the expected way.
Thus, although our analysis fails to answer the question of

whether human agents are performing optimally, it does suggest
that it is not easy to outperform human agents. Moreover, we find
that for O+ agents, efficient networks once again outperform
inefficient networks, reinforcing our conclusion that the efficient
network result is reasonably robust.
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Fig. S1. Distribution of the number of games played. Most participants only played 1 game, although a few participants played as many as 12 different games.

Fig. S2. Screenshot of the game Wildcat Wells, as seen by a single player.
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A B

Fig. S3. Construction of one octave for generating Perlin noise in one dimension; a number of random points are chosen (A), and a cubic spline is interpolated
through the points (B).

A B C D E

Fig. S4. Several smoothed curves with increasing frequency and decreasing amplitude (A–D) are summed to create the final Perlin noise distribution (E).
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Fig. S5. Example of the fitness landscape being searched by the players.
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Fig. S6. Proportion of games in which the peak was found by at least one searcher for independent searchers and collectives. Error bars show binomial
proportion confidence interval.
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A B

Fig. S7. Average number of unique coordinates visited by a group of players for the networked groups and independent searchers, for all rounds (A) and for
only the rounds before the first player finds the peak (B).

Fig. S8. Average distance from the each participant’s highest scoring location across all rounds for networked groups and independent searchers.
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Fig. S9. Points earned by graph across all games and rounds. The average path (Avg) length is indicated by the color, where orange is shorter and green is
longer, and is displayed on the bar in white. Max, maximum; Min, minimum; Var, variance.

Fig. S10. Fit for hierarchical linear model of convergence time as a function of betweenness centrality (A), closeness centrality (B), clustering coefficient (C),
and network constraint (D). Clearly, higher betweenness and closeness centrality correlates with faster convergence time, whereas the opposite applies to
clustering coefficient and network constraint. Each of the colored lines represents the best fitting line for each of the eight network structures.
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Fig. S11. Average number of rounds to find the peak after it has been discovered for each position within each graph. Brighter colors indicate faster discovery.
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Fig. S12. Probability of finding the peak for each graph type and points earned over rounds for the LF3 agents. The average path length is indicated by the
color, where orange is shorter and green is longer, as well as the number located on the bar. Avg, average; Max, maximum; Min, minimum; Var, variance.

Fig. S13. Probability of finding the peak for each graph type and points earned over rounds for the LF6 agents. The average path length is indicated by the
color, where orange is shorter and green is longer, as well as the number located on the bar. Avg, average; Max, maximum; Min, minimum; Var, variance.
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Fig. S14. Probability of finding the peak for each graph type and points earned over rounds for the LF12 agents. The average path length is indicated by the
color, where orange is shorter and green is longer, as well as the number located on the bar. Avg, average; Max, maximum; Min, minimum; Var, variance.

Fig. S15. Probability of finding the peak for each graph type and points earned over rounds for the LF20 agents. The average path length is indicated by the
color, where orange is shorter and green is longer, as well as the number located on the bar. Avg, average; Max, maximum; Min, minimum; Var, variance.
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Fig. S16. Probability of finding the peak for each graph type and points earned over rounds for the O agents. The average path length is indicated by the
color, where orange is shorter and green is longer, as well as the number located on the bar. Avg, average; Max, maximum; Min, minimum; Var, variance.

Fig. S17. Probability of finding the peak for each graph type and points earned over rounds for the O+ agents. The average path length is indicated by the
color, where orange is shorter and green is longer, as well as the number located on the bar. Avg, average; Max, maximum; Min, minimum; Var, variance.
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Table S1. Structural properties of communication networks used in game

Topology Radius Diameter Closeness Betweenness Clustering Constraint

Min avg betweenness 3 3 0.45 0.09 0 0.33
Max max closeness 3 5 0.41 0.1 0.06 0.36
Min avg clustering 3 4 0.44 0.09 0 0.33
Max var constraint 3 6 0.39 0.12 0.25 0.47
Max avg clustering 6 6 0.31 0.16 0.5 0.6
Max avg betweenness 5 9 0.27 0.2 0.44 0.57
Min max closeness 5 9 0.27 0.2 0.37 0.53
Max max betweenness 3 6 0.31 0.17 0.37 0.54

avg, average; max, maximum, min, minimum; var, variance.

Table S2. Parameter estimates for linear model predicting points
by path length of graph

Estimate SE t P

α 70.95 5.46 12.99 ≈0
β −4.63 1.79 −2.58 0.01
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