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SI Materials and Methods
Age Models and Map. For age models for Ocean Drilling Program
(ODP) sites 1210 and 1262 we used orbitally tuned age models (1)
to determine sedimentation rates, and placed the Cretaceous/
Paleogene (K∕Pg) boundary at 65.5 Ma. For site 1210, we used
the revised composite depth (2). Ages were estimated for samples
from Deep Sea Drilling Project (DSDP) site 465 using the cor-
relation of the carbon isotope record of benthic foraminifera,
which shows the same pattern at all sites (3), to the orbitally tuned
age model for site 1210. We used these benthic isotopes also to
modify the age model in ref. 4, and correlate the record for site
690 more precisely to that at the other sites (Fig. 2). The map
(Fig. 1) was made using ref. 5.

Benthic Foraminiferal Data.The consistency of our dataset is unpre-
cedented (6): The same authors used the same procedures,
studied the same size fraction (>63 μm) and used the same taxo-
nomic concepts (7) for all sites. To construct Fig. 1 in the text, we
used our published data from North-West Atlantic Blake Nose
ODP site 1049 (8, 9); Gulf of Mexico sections La Lajilla, El
Mulato, Coxquihui, and La Ceiba (8, 10–13); Caribbean section
Loma Capiro (Cuba) (14); North-East Atlantic sections Bidart
and Loya Bay (France) (15, 16); Tethyan sections Agost (Spain)
(17); and Aïn Settara and El Kef (Tunisia) (8, 18).

As a proxy for diversity of the benthic foraminiferal assem-
blages, we calculated the Fisher-α diversity index (19) (Table S1,
Table S2). As proxies for trophic conditions at the sea floor (20),
we calculated the benthic foraminiferal accumulation rates
(BFARs), and changes in relative abundance of habitat-related
benthic foraminiferal morphogroups (infaunal vs. epifaunal)
across the boundary (Table S1, Table S2). There is a relationship
between test morphology and microhabitat (20, 21), and despite
significant exceptions, this relation appears to be accurate about
75% of the time (22). Based on this assumption, variations in
the proportion of habitat-related benthic foraminiferal mor-
phogroups (infaunal vs. epifaunal) can be considered as proxies
for the oxygenation and trophic conditions at the sea floor (20),
with epifaunal morphogroups supposedly flourishing in more
oligotrophic environments. We allocated all specimens to mor-
phogroups (23–25), with extinct taxa assigned following ref. 3.
Variations in the percentage of infaunal taxa across the K∕Pg
boundary are shown in Fig. 4, Fig. S1, and in Table S1 and
Table S2.

The benthic foraminiferal data for sites 1262, 1210, and 465
have been published (3, 10, 26), but we checked all assignments
to infaunal or epifaunal taxa to ensure consistency between sites,
and recalculated all BFAR to ensure the use of the same age
model for all sites. To calculate BFAR, we weighed the sample
split from which benthic foraminifera were picked and obtained
the number of benthic foraminifera per gram of sample in the size
fraction larger than 63 μm. We then calculated the number of
benthic foraminifera per gram bulk sediment, using the weight
percent of dry sample material larger than 63 μm, as obtained
during sample processing. We used sedimentation rates as deter-
mined from the orbitally tuned age models, number of foramini-
fera per gram dry bulk sediment, and density of sediment to
calculate benthic foraminiferal accumulation rates (number of
foraminifera per square cm per 1,000 y). Bulk density of the sedi-
ment is after ref. 27 for site 1262, ref. 28 for site 465, ref. 29 for
site 1210, and ref. 30 for site 690.

Low-resolution benthic foraminiferal data but not BFAR
across the K∕Pg transition of Southern Ocean Maud Rise
ODP site 690 were published (31), but we provide higher resolu-
tion data. Calcareous chalks and oozes were deposited at upper
abyssal to lower bathyal depths (∼1;900 m paleodepth). Benthic
foraminiferal assemblages were quantitatively analyzed in 31
samples from sections 690C-24H-7 to 24H-1, comprising the
upper 4.6 m of the Maastrichtian (planktic foraminiferal
Abathomphalus mayaroensis zone and calcareous nannofossil
Cribrosphaerella daniae zone) and the lower 9.8 m of the Danian
(up to planktic foraminiferal zone AP1b and calcareous nanno-
fossil zone CP2) (4). Samples were spaced at few centimeters
directly below and above the K∕Pg boundary, with decreasing
resolution (50 cm to ∼1 m) further away from the boundary. Se-
diments were dried, then soaked in warm water with detergent,
and wet-sieved over a 63-μm sieve. Approximately 300 specimens
of benthic foraminifera larger than 63 μm were picked and iden-
tified per sample (Table S2).

BFAR and percentage infaunal taxa are shown for each site
compared to the carbon isotope record in Figs. 3 and 4, and for
all sites combined in Figs. S1 and S2.

Isotope Analyses. Isotope analyses were performed at the
University of Santa Cruz, Yale University, and the University of
Michigan. All results are reported in per million (‰) relative to
the Vienna Peedee belemnite (VPDB) standard (Table S3).

Stable isotopes for bulk samples of site 1262 were published in
ref. 32. Stable isotope analyses on benthic foraminifera (Nuttal-
lides truempyi) were performed at the University of Michigan on
a Thermo MAT 253 coupled to a Kiel IV carbonate device.
Samples were reacted at 70 °C and measured enrichments were
converted to VPDB utilizing a normalization based on the ana-
lysis of National Bureau of Standards (NBS)-18, NBS-19, and
Atlantis II, an isotopic standard whose composition closely ap-
proaches the benthic values. Analytical precision is maintained
better than 0.1‰ for both δ18O and δ13C, based upon routine
replication of standard materials.

Stable isotope data for site 690 include data published in
ref. 33, and additional data on bulk samples, benthic foraminifera
(N. truempyi, Stensioeina beccariiformis) and calcareous dinocysts
collected at the Earth Systems Center for Stable Isotopic Studies
at Yale University, using a Thermo Gasbench II interfaced to a
DeltaXP Stable Isotope Ratio mass spectrometer with a CTC
Analytics GC-PAL autosampler, with analytical precision
averages 0.07% for δ18O and 0.04% for δ13C. Precision was mon-
itored by analysis of NBS-19 and NBS-18 every 10 samples.
Benthic foraminiferal (N. truempyi) and bulk isotope data for site
1210 were also collected at the Yale facility.

Stable isotopes on benthic foraminifera (S. beccariiformis) and
bulk samples for site 465 were generated at an Autocarb coupled
to a PRISM mass spectrometer at the University of California
at Santa Cruz Stable Isotope Laboratory facilities. All values
are reported relative to the VPDB standard. Analytical precision
based on replicate analyses of in-house standard Carrara marble
and NBS-19 averages 0.06% for δ18O and 0.03% for δ13C (1σ).

We used bulk fraction stable isotopes as recorder of the pa-
leoenvironmental signal in waters relatively close to the ocean
surface, i.e., within the mixed layer down to the lower thermo-
cline, with dominant production of living coccolithophores oc-
curring in the middle photic zone (∼50–100 m depth) (34), see
refs. 32 and 35. The persistent offset between carbon isotope
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values for bulk and benthic foraminifera during the Cretaceous
and after the disturbance due to the extinction indicates that

the two signals indeed reflect bottom waters and waters closer
to the surface, with bulk values more positive.
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Fig. S1. Relative abundance of infaunal species across the K∕Pg boundary at sites in the Pacific, Southeast Atlantic, and Southern Ocean. See Fig. 1 for location.
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Fig. S2. BFAR across the K∕Pg boundary at sites in the Pacific, Southeast Atlantic, and Southern Ocean. See Fig. 1 for location.
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