SUPPLEMENTARY INFORMATION ON MAQC STUDY

Contents

Title	Page Number
A. Goals of the MicroArray Quality Control (MAQC) Project	2
B. MAQC Participants and Available Data Sets	3
C. Quality Assessments	7
D. Platform-Specific Protocols and Data Analysis Methods	8
E. Probe Mapping	14
F. Number of Genes Used in Analyses	15
G. Raw Data Used in Figure Representations	17
H. Additional Analyses from MAQC Study	20
I. Apparent Power Analysis	21
J. Reproducibility of Lists of Differentially Expressed Genes - POG Resu	ults 24

MAQC web site: <u>http://edkb.fda.gov/MAQC/</u>

A. Goals of the MicroArray Quality Control (MAQC) Project

- Establish a set of reference RNA samples for use within the MAQC project and more importantly for use by the scientific community;
- Generate a large collection of reference data sets using multiple microarray platforms across multiple laboratories per platform;
- Generate alternative measurements using other gene expression technologies for a large subset of genes;
- Measure relative accuracy as defined by titrated mixtures of the two reference RNA samples;
- Measure basic performance aspects of microarrays such as repeatability and reproducibility using a common set of genes across multiple platforms;
- Develop a framework for conducting cross-platform mapping based on probe sequence mapping to the RefSeq database and the AceView database;
- Develop quality control metrics and thresholds for objectively assessing the performance achievable by various microarray platforms;
- Compare the concordance of expression measurements to other microarray platforms and alternative technologies (*e.g.*, TaqMan[®], QuantiGene[®], and StaRT-PCRTM) based on a predefined list of "common genes" that share a common reference sequence to which the probes were designed;
- Evaluate the advantages and disadvantages of various data analysis methods with the intention of reaching consensus on microarray data analysis;
- Promote the use of reference RNA samples and reference data sets by the large scientific community for quality control and performance validation in order to identify and avoid potential procedural failures;
- Make recommendations on the appropriate uses of the microarray technology.

B. MAQC Participants and Available Data Sets

				Nhow of			
No.	Platform	Protocol	Test Site	Number of Microarrays	Organization*	Representative	
			ABI_1	20	Applied Biosystems	Yongming A. Sun	
1	Applied Biosystems	One-Color Microarray	One-Color Microarray ABI_2 19 US Prot		US Environmental Protection Agency	David J. Dix	
	-	-	ABI 3	19	Vanderbilt University	Shawn Levy	
			AFX 1	20	Affymetrix	Chunmei Liu	
			AFX 2	20	FDA/CDER	Karol L. Thompson	
			AFX 3	20	Asuragen	Mike Wilson	
2	Affymetrix	Microarray	AFX_4 ^b	20	US Environmental Protection Agency	J. Christopher Corton	
			AFX 5 ^b	20	Novartis	Ron Peterson	
			AFX 6 ^b	20	UCLA/Cedars-Sinai	Charles Wang	
		T C 1	AGL 1 ^b	18	Agilent	Patrick J. Collins	
		I wo-Color	AGL 2 ^b	18	FDA/NCTR	Tucker A. Patterson	
2	A 11 /	Microarray	AGL 3 ^b	20	Cogenics/Clinical Data	Edward K. Lobenhofer	
3	Agilent	0 0 1	AG1 1	19	Agilent	Patrick J. Collins	
		Microarray	AG1 2	18	FDA/NCTR	Tucker A. Patterson	
			AG1 3	19	Cogenics/Clinical Data	Edward K. Lobenhofer	
		One-Color Microarray	GEH 1	20	GE Healthcare	Richard Shippy	
4	GE		GEH 2R ^a	20	UMass Boston	Michael J. Lombardi	
	Healthcare		GEH 3	20	GenUs BioSystems	Scott R. Magnuson	
		0 0 1	ILM 1	19	Illumina	Shawn C. Baker	
5	Illumina	One-Color Microarray	ILM 2	20	UT Southwestern	Quan-Zhen Li	
			ILM 3	20	Burnham Institute	Craig A. Hauser	
		T C-1	NCI 1	20	NIH/NCI	Ernest S. Kawasaki	
6	NCI_Operon	Microarray	NCI_2R ^a	13	FDA/NCTR	Tao Han	
		One Caler	EPP_1	20	Eppendorf	Francoise de Longueville	
7	Eppendorf	One-Color	EPP 2	20	MD Anderson	Lajos Pusztai	
		містоагтау	EPP_3	20	Cold Spring Harbor Laboratory	Eli Hatchwell	
8	Applied Biosystems	TaqMan® Assays	TAQ	N/A	Applied Biosystems	Kathleen Y. Lee	
9	Panomics	QuantiGene® Assays	QGN	N/A	Panomics	Yuling Luo	
10	Gene Express	StaRT- PCR™ Assays	GEX	N/A	Gene Express/Ohio Medical University	James C. Willey	

Table S1. Platform Providers and Test Sites

TOTAL 502

^aOriginal MAQC data set replaced with a repeat data set in the main study.

^bData sets not included in this publication. The two-color AGL data is presented in [Patterson, T.A. *et al.*, *Nat. Biotechnol.* **24**(9), 2006]. The total number of microarrays includes 386 hybridizations that were included in this article and 116 hybridizations that were not included.

No.	Organization	Representative
1	Biogen Idec	Lisa J. Croner
2	Expression Analysis	Wendell Jones
3	FDA/NCTR	Leming Shi
4	Harvard Univ./Children's Hospital	Zoltan Szallasi
5	NIH/NCBI	Damir Herman
6	National Institute of Standards and Technology	Walter Liggett
7	SAS	Russ Wolfinger
8	Stanford Univ.	Hanlee Ji
9	UIUC	Sheng Zhong
10	Univ. of Massachusetts-Boston	Roderick V. Jensen
11	ViaLogy	Cecilie Boysen

Table S2. Data Analysis Sites

 Table S3. Data Replaced or Removed from Main Study Analysis

Data Name	Reason for Removal or Replacement	Number of Microarrays
ABI_2_A5	RT control probe LYS_1 showed 20X higher signals compared with mean of other sample A indicating unsuccessful RT reaction	1
ABI_3_D2	Refrigerator failure caused microarray to be warm and dried 'swirled fluid' occurred on the microarray	1
AG1_1_A1	Determined as outlier using metrics in Agilent's Feature Extraction QC Report	1
AG1_2_A3	Determined as outlier using metrics in Agilent's Feature Extraction QC Report	1
AG1_2_D2	Determined as outlier using metrics in Agilent's Feature Extraction QC Report	1
AG1_3_B3	Determined as outlier using metrics in Agilent's Feature Extraction QC Report	1
AGL_1_B5	Determined as outlier using metrics in Agilent's Feature Extraction QC Report	1
AGL_1_D1	Determined as outlier using metrics in Agilent's Feature Extraction QC Report	1
AGL_2_A1	Determined as outlier using metrics in Agilent's Feature Extraction QC Report	1
AGL_2_C4	Determined as outlier using metrics in Agilent's Feature Extraction QC Report	1
ILM_1_C3	Low IVT yield and poor Bioanalyzer trace; Target was not hybridized	0
ILM_2_D3	Low IVT yield; Repeat sample named ILM_2_D6; counted n Table S1.	1
ILM_2_D5	Low IVT yield; Repeat sample named ILM_2_D7; counted n Table S1.	1
NCI_2R_A3	Indicated by the site as an outlier microarray.	1
GEH_2 Set	Data generated in August 2005 used different protocol than other GEH test sites. Replaced by GEH_2R data generated in February 2006 at same site using corrected protocol.	20
NCI_2 Set	Data generated in October 2005 had problems with the hybridization buffer. Replaced by NCI_2R data generated in November 2005 which includes 14 hybridizations: sample A = 4 hybridizations, sample B = 4 hybs, sample C = 3 hybs and sample D = 3 hybs.	20
NCI_3 Set	Data generated in September-October 2005 had problems with the hybridization buffer. Replaced by NCI_3R data generated December 2005-January 2006 which includes 10 hybridizations: 4 pairs of dye-swap hybs with A and B, plus 2 self-self hybs with sample A.	20

TOTAL 71

^{*a*}The total number of microarrays includes four AGL hybridizations that were not analyzed in this paper, 11 hybridizations that were replaced for quality issues and 60 hybridizations that were removed or replaced for protocol issues.

Platform	Code	Protocol	Test Sites	Number of Samples	Number of Replicates	Number of Microarrays Per Test Site
NCI_	NCI	Two-Color	NCI_4: Harvard Univ.	2	5	10
Operon	INCI	Microarray	NCI_3R: FDA/CBER	2	5	10
CapitalBio_ Operon	BIO	Two-Color Microarray	BIO_1: CapitalBio	2	10	20
	BIO1	One-Color Microarray	BIO1_1: CapitalBio	2	5	10
Operon	OPN	Two-Color Microarray	OPN_1: Operon	2	5	10
NMC_ Operon	NMC	Two-Color Microarray	NMC_1: Norwegian Microarray Consortium	2	5	10
·	H25K	Two-Color Microarray	H25K_2: Yale Univ.	2	15	30
TeleChem		One Celer	H25K1_1: TeleChem	4	5	10
	H25K1	Microarray	H25K1_2: Yale Univ.	4	5	10
		wheroarray	H25K1_3: Wake Forest Univ.	4	5	10
					TOTAL	130

 Table S4. Other Available Data Sets

Table S4-A.	"Tumor"	' Data	Included in	the MAQC	C Study ^a
(One microarray	platform	at two	laboratories i	in Stanford	University)

Manufacturer	Code	Protocol	Platform	Number of Probes	Number of Test Sites	Number of Samples	Number of Replicates	Total Number of Microarrays
Affymetrix	AFX	One-Color Microarray	HG-U133 Plus 2.0 GeneChip®	54,675	2	2	5	20

^aTumor_Stanford_Lab1 and Tumor_Stanford_Lab2. T = Tumor (colon adenocarcinoma), N = Normal (normal colon tissue, patient matched). The tumor data set was analyzed in Lin, G., He, X., Ji H., Shi, L., Davis, R.W. and Zhong, S. *Nature Biotechnology*, **24**(10), 2006.

Table	S4-B. '	"Rat <i>Toxico</i>	genomics"	Validation I	Data Inclu	ided in th	ie MAQC S	Study

Manufacturer	Code	Protocol	Platform	Number of Probes	Number of Test Sites	Number of Samples	Number of Replicates	Total Number of Microarrays
Applied Biosystems	ABI	One-Color Microarray	Rat Genome Survey Microarray	26,857	1	6	6	36
Affymetrix	AFX	One-Color Microarray	Rat Genome 230 2.0 GeneChip®	31,099	2	6	6	72
Agilent	AG1	One-Color Microarray	Whole Rat Genome Oligo Microarray, G4131A	43,628 (41,071 – GeneSpring ^a)	1	6	6	36
GE Healthcare	GEH	One-Color Microarray	Rat Whole Genome Bioarray, 300031	35,129	1	6	6	36
TOTAL (Toxicogenomics)								180

^aData from replicating spots were averaged within GeneSpring software to generate a single value for each unique probe. The rat toxicogenomics data set was analyzed in Guo, L. *et al. Nat. Biotechnol.* **24**(9), 1162-1169(2006).

The total number of microarrays used in the MAQC project: 1,329

1. Official:	573 (502 from Table S1 and 71 from Table S3)
2. Additional:	130 (Table S4)
3. Tumor:	20 (Table S4-A)
4. Rat Toxicogenomics:	180 (Table S4-B)
5. Pilots (I* and II**):	426

160 microarrays (four human platforms).
40
60
40
20

MAQC Pilot-I was designed to select two RNA samples for the MAQC main study. Four distinct RNA samples from three commercial vendors were tested on four microarray platforms (AFX, AGL, GEH, and ILM). Except for ILM, each platform was tested at two test sites. For each one-color platform, each RNA sample was tested in five replicates at each test site. Two RNA samples, Stratagene's Universal Human Reference RNA (UHRR) and Ambion's Human Brain Reference RNA (HBRR), designated as MAQC sample A and sample B, respectively, were selected during the second MAQC face-to-face meeting held at FDA/CDER, Rockville, Maryland on May 2-3, 2005 based on criteria including

- 1. Availability in large quantity from a single batch;
- 2. Accessibility from commercial sources;
- 3. High quality;
- 4. Wide gene presence;
- 5. Large fold changes for a number of genes for the sample pair;
- 6. Reproducibility in production.

Consensus on RNA sample selection was reached after Pilot-I data were analyzed, presented, and debated.

****MAQC Pilot-II** (RNA Sample Titration): **266** microarrays (six human platforms).

AFX (1 site):	45
AGL (1 site)	45
AG1 (1 site):	45
GEH (1 site):	46
ILM (1 site):	51
Anonymous (1 site):	34

MAQC Pilot-II was designed to determine the appropriate mixing ratios of sample A and sample B in order to create the titration pools. A decision to include titration mixtures in the MAQC main study was made during the MAQC first face-to-face meeting at FDA/NCTR, Jefferson, Arkansas on February 11, 2005. The experimental design of Pilot-II was listed below. After reviewing the data, the MAQC consortium decided on the 75/25 and 25/75 (A/B) ratios for creating the MAQC samples C and D, respectively.

No.	Sample A (%)	Sample B (%)	Number of Replicates ^a
1	100	0	6
2	99.5	0.5	3
3	99	1	3
4	95	5	3
5	90	10	3
6 (C)	75	25	3
7	50	50	3
8 (D)	25	75	3
9	10	90	3
10	5	95	3
11	1	99	3
12	0.5	99.5	3
13	0	100	6
	Total number of arrays per	site (manufacturer)	45

^aThe actual number of replicates may have varied from platform to platform. TaqMan (TAQ) and QuantiGene (QGN) were also used in Pilot-II study.

Note: Pilot-I and Pilot-II data will not be deposited in public databases until further notice.

C. Quality Assessments

The median length and total yields of amplified RNA (cRNA) were measured for each MAQC sample. These data are available in **Supplementary Table 1** online: MAQC cRNA Sizes and Yields. The purified cRNA size was analyzed using an RNA LabChip assay on the Agilent 2100 Bioanalyzer. The median size was determined by selecting the point (nt) which evenly divided (50%) the area in the electropherogram. Yields of the purified cRNA were determined by spectrophotometry (A260). Yields were reported as either the total amount of cRNA generated or as the normalized output per input of total RNA [cRNA(ug) / Total RNA(ng)] For example, a reaction generating 111.5 ug cRNA from 1000 ng input total RNA has a normalized output of 0.11 ug/ng.

D. Platform-Specific Protocols and Data Analysis Methods

Applied Biosystems Microarrays

Applied Biosystems Human Genome Survey Microarray is part of the Applied Biosystems Expression Array System (http://docs.appliedbiosystems.com/pebiodocs/04338853.pdf), which includes a 1700 Chemiluminescent Microarray Analyzer, labeling and hybridization chemistries, and supporting software. Digoxigenin-UTP labeled cRNA was generated from 1 µg of total RNA for each MAQC sample (A, B, C, D) using Applied Biosystems NanoAmpTM RT-IVT Labeling Kit (P/N 4365715) according to the manufacturer's protocol. Array hybridization, array processing, chemiluminescence detection, image acquisition, and analysis were performed using Applied Biosystems Chemiluminescence Detection Kit and Applied Biosystems 1700 Chemiluminescent Microarray Analyzer following manufacturer's protocol. These protocols are detailed in the Chemiluminescent Microarray Analyzer Chemistry Guide (P/N 4338853, http://docs.appliedbiosystems.com/pebiodocs/04338853.pdf), Chemiluminescent Detection Kit (P/N 4339627, http://docs.appliedbiosystems.com/pebiodocs/0433852B).

The Expression Array System Software suite performs the auto-gridding, feature extraction, fluorescence normalization, and signal data generation. Each probe contains a universal 24-mer control probe (ICP) co-localized. The fluorescent signal of the ICP is used in the quantification process to normalize probe chemiluminescent signal within an array. The quantification data contain many distinct measurements for each probe, including the three basic measurements: Signal, S/N, and Flag values. The Signal value is the fully corrected, background subtracted measurement of chemiluminescent signal for gene expression values. The S/N value represents the ratio of signal above noise, or the measurement uncertainty of the probe signal, and can be used as a confidence level for the probe measurement. An S/N of 3 represents approximately a 99.95% confidence that the probe is detected above the background noise. In situations where the probe showed S/N < 1, the signal measurement is replaced with a 1 SDEV upper limit based on its probe signal SDEV. The Flag value is generated for each probe from a numeric code from a series of feature quality metrics that give a descriptive quality value. Probe signals for FLAG values equal or exceeding 8192 ($>= 2^{13}$) are considered missing values and imputed in data analysis. In addition, there are varieties of control probes included on the array for quality monitoring of various microarray processes. The between array quantile normalization was performed independently for each test site after removing the control probes. Detailed image analysis algorithms and data processing can be found in document http://docs.appliedbiosystems.com/pebiodocs/04367370.pdf. The probe sequences are available at http://www.pantherdb.org.

Affymetrix GeneChip[®] Microarrays

MAQC samples were processed following Affymetrix one-cycle sample preparation protocol (Please refer to GeneChip[®] Expression Analysis Technical Manual for details) and hybridized to Human Genome U133 Plus 2.0 array (catalog #900470, #900466 or #900467). Affymetrix GeneChip[®] Operating Software (GCOS) is used to automate the control of GeneChip[®] Fluidics Stations and Scanners. In addition, GCOS acquires data, manages sample and experimental information, and performs gene expression data analysis. The Probe Logarithmic Intensity ERror (PLIER) algorithm is used to produce a summary value for a probe set by accounting for

experimentally observed patterns for feature behavior and handling error appropriately at low and high abundance. Probe set signal intensity is transformed by adding a constant of 16 and then taking log2 transformation. We use routine QC parameters to monitor the quality of the experiment, which includes visual array inspection, background, scaling factor, noise, 3'/5' GAPDH and Actin ratios, and % Present calls. Probe sequence information is publicly available at http://www.affymetrix.com/support/technical/byproduct.affx?product=hg-u133-plus.

Agilent Microarrays

Data were generated for the MAQC project using both Agilent's One-Color Gene Expression Platform and Agilent's Two-Color Gene Expression Platform. For the one-color data sets (AG1) all four MAQC samples (A - D) were assayed, while for the two-color data sets (AGL) only samples A and B were assayed. Sample labeling, array processing and scanning, and data extraction were performed as described in either One-Color Microarray-Based Gene Expression Analysis – Protocol (AG1) or Two-Color Microarray-Based Gene Expression Analysis – Protocol (AGL). These protocols are available for download at

http://www.chem.agilent.com/scripts/generic.asp?lpage=11617&indcol=N&prodcol=Y. The microarrays used were Agilent's Whole Human Genome Oligo Microarrays (P/N G4112A). Probe sequence information is publicly available at

http://www.chem.agilent.com/cag/bsp/bsp_register.asp.

Labeled cRNAs were generated from 500 ng of total RNA for each of AG1 and AGL using Agilent's Low RNA Input Linear Amplification Kit (P/N 5188-5339). The two-color protocol was modified such that 1.5 µg of labeled cRNA was hybridized per dye channel per microarray. Agilent's Stabilization and Drying Solution was used in processing all microarrays. Microarrays were scanned using Agilent's DNA Microarray Scanner BA (P/N G2565BA) and data extracted using Agilent's Feature Extraction software, version 8.5 (P/N G2567AA). AG1 data were processed using Agilent's GeneSpring[®] GX software, version 7.3 (P/N G1745). Data were transformed by setting all measurements less than 5.0 to 5.0. Data points that did not have detectable signal and those that represent microarray controls were labeled as Absent, those representing either non-uniform or saturated features were labeled as Marginal, and all remaining data points labeled as Present. For AGL data points that did not have detectable signal in both dye channels and those that represent microarray controls were labeled as Absent, those representing either non-uniform or saturated features in either channel were labeled as Absent, those representing either non-uniform or saturated features are median scaled using the median signal intensity value for data points labeled as Present. For AGL data points were labeled as Absent, those representing either non-uniform or saturated features in either channel were labeled as Absent, those representing either non-uniform or saturated features in either channel were labeled as Absent, those representing either non-uniform or saturated features in either channel were labeled as Absent, those representing either non-uniform or saturated features in either channel were labeled as Marginal, and all remaining data points were labeled as Present.

Eppendorf DualChip[®] Microarrays

Each DualChip[®] consists of two identical microarrays on the same slide, with two separate hybridization frames. This DualChip[®]-concept enables two complete gene expression experiments to be run on the same slide, using a one-color labeling technique. The DualChip[®] array used for the MAQC consortium contains capture probes allowing the expression analysis for 294 human genes spotted in triplicate. A reverse transcription with indirect labeling was performed using 10 μ g of total RNA. The internal standard mixture was used for quantification/ normalization and estimation of experimental variation [de Longueville F, *et al. Biochem. Pharmacol.* **64**, 137-49, 2002; Chen & Bittner. *J. Biomedical Optics* **2**, 364-374, 1997]. The DualChip[®] hybridization was carried out overnight (16 hours) at 60°C according to the DualChip[®] instruction manual. The detection was

performed by using a Cy3-conjugated anti-biotin IgG (Jackson Immuno Research Laboratories, West Grove, PA) on biotinylated cDNA.

Using the DualChip[®] evaluation software, the fluorescence intensities of each DNA spot (average intensity of each pixel present within the spot) was calculated using local mean background subtraction. Very bright element intensities (saturated signals, highly expressed genes) and undetected elements were deemed unsuitable for accurate quantitative analysis. The reverse transcription and hybridization efficiency were controlled by the internal standards spiked previously in the samples. First, the values were corrected using a factor calculated from the intensity ratios of the internal standards in the reference and in the experimental samples. A second normalization was performed involving the average ratio from a set of housekeeping genes for which the expression level was effectively constant.

Within the microarray platforms participating to the MAQC project, Eppendorf platform is the only one providing low density arrays. This characteristic induces by itself major differences in the resulting data structure. Analysis procedures (normalization, ...) for high density arrays rely on assumptions that are not valid for low density arrays. Eppendorf has developed specialized data analysis scheme treating the scanning, the background correction and normalization in a suited framework for low density arrays generating array to array gene expression ratio. The data sets submitted are divided in two groups. The first data set provides gene expression ratio comparing two samples and constitutes the standard result for the Eppendorf platform. In addition, normalized intensities intra-sample have been submitted to allow the analysis of reproducibility of intensities of detected (but not saturated) genes intra-sample. Due to the difference of scanner technologies used in the different sites and to our standardized scanning procedure, the detection concordance analysis can not be evaluated from this data set. The small gene subset, the intensive use of detection and saturation flags among the 3 sets of data produced for each array through the standardized triple scanning procedure, the background correction producing negative values and scanning procedure itself render invalid the direct comparison of Eppendorf data with the other platforms. To obtain relevant comparison including all the microarray platforms, the subset of genes has been reduced to the 294 spotted on the Eppendorf DualChip[®]. For each individual computation, this subset of genes has been limited to the "Present" flagged genes. Furthermore, reproducibility of ratio was computed on ratio compliant with the DualChip[®] data analysis (B1/A1, B2/A2, B3/A3,...) for all microarray platform.

GE Healthcare CodeLinkTM Microarrays

MAQC total RNA samples were processed following GE Healthcare's CodeLinkTM iExpress Expression Assay Reagent Kit protocol (Please refer to CodeLinkTM iExpress Expression Assay Regent Kit Technical Manual for details at www.codelinkbioarrays.com) and hybridized to CodeLinkTM Human Whole Genome bioarrays (catalog #300026). All arrays were scanned on the GenePix 4000B scanner using manufacturer recommended settings of 600 PMT, 100% laser power, and 5 micron resolution. The resulting images were processed through the CodeLink Expression Analysis v4.1 software which automatically grids and quantifies each feature while assigning spot quality metrics. These quality metrics are applied to each spot and are displayed both numerically and as a qualitative assignment. In the MAQC study, for all microarray platforms, genes which were not detected (*i.e.*, 'absent') were excluded from subsequent analyses. The spots which are below noise on the GE Healthcare platform are flagged by the software package as "L" and represent cases where the spot mean intensity is less than local background median plus 1.5 standard deviations of local background. Details on the CodeLinkTM detection algorithms can be found at the www.codelinkbioarrays.com

(http://www1.amershambiosciences.com/APTRIX/upp00919.nsf/Content/WD%3AImproved+meth od%28275651129-B500%29?OpenDocument&hometitle=WebDocs).

The CodeLink[™] image quantification algorithms have been empirically optimized using concentration response curves [illustrated in Figure 2 of Tong, W. *et al.*, *Nat. Biotech.* **24**(9), 2006]. The lower limit of detection for the CodeLink[™] platform is at least 50 fM, with 1:2,048,000 mass ratio 'spiking' into cRNA, with 99.2% of negative controls flagged below the detection limit. In other words, the detection algorithms for CodeLink[™] has been tested down to or is approximately been optimized such that the level where signal is indistinguishable from noise which correlates to the non-specific negative control values and concentration response curves. It is recommended that these detection spot quality metrics are utilized since values below noise are unreliable and reduce correlations between platforms [Shippy, R., *et al.*, *BMC Genomics* **5**, 61, 2004]. The CodeLink[™] Expression Analysis Software performs the auto-gridding, feature extraction, fluorescence normalization, signal data generation, and assigns spot quality metrics. Probe sequence information, bioarray content, and custom array formatting options can be found within the CodeLink[™] iCenter at www.gehealthcare.com/codelinkicenter.

Illumina Micorarrays

For each technical replicate, 200 ng of total RNA provided by the MAQC were amplified and labeled using the Illumina[®] TotalPrep[™] RNA Amplification kit (Ambion; catalog #IL1791). Illumina Human-6 whole genome microarrays (Illumina; catalog # BD-25-101) were hybridized to 1.5 micrograms of labeled, amplified material, and then washed, stained, and scanned according to the protocol described in the Illumina Whole Genome Gene Expression for BeadStation Manual, Revision D. Scanning software was BeadScan 2.3.0.10. Data was processed using Illumina BeadStudio version 1.5.0.34 software using background subtraction and cubic spline normalization. Normalized hybridization intensity values were adjusted by adding a constant such that the lowest intensity value for any sample equaled 16. Individual sequences are available at http://www.illumina.com/General/Products/ArraysReagents/zip_files/Human_WG-6_sequence.zip

NCI_Operon Microarrays

Labeling of probes, hybridization of slides and scanning was done essentially as described [Petersen, D. *et al. BMC Bioinformatics* **6**, 63. 2005]. Slides were scanned using an Axon 4000B instrument at 10 micron resolution. All scans were performed at 100% laser power, but the PMT setting varied from slide-to-slide depending on the labeling and hybridization outcomes. Thus, the intensity of the signals among the slides will vary, but the Cy3 and Cy5 ratios will be much less variable. Images were processed and quantified using Genepix 4.0 software (Axon Instruments, Union City, CA). The data were filtered (or flagged) on the basis of signal levels and spot quality. The raw data were submitted to MAQC and further normalized by using LOESS. Probe sequences are available at http://omad.operon.com/download/index.php.

Applied Biosystems TaqMan[®] Assays

MAQC total RNA Samples A, B, C and D were reverse transcribed using random hexamers and Applied Biosystems cDNA Archive Kit to generate cDNA. There was no pretreatment of RNA

before cDNA preparation. Each TaqMan[®] Gene Expression Assay consists of two target specific PCR primers and a TaqMan FAM[™] dye-labeled MGB hybridization probe in a pre-formulated mixture that contains the three oligonucleotides. The cDNA sample and assay reagents are combined together in a single reaction well and no further handling is required. Each TaqMan[®] Assay was run in four replicates for each RNA sample using 10ng total cDNA (measured as total input RNA) in a 10ul final volume. Assays were run with 2X Universal Master Mix (without UNG) on Applied Biosystems 7900 Fast Real-Time PCR System using universal cycling conditions (10 min. at 95° C; 15 sec. at 95° C; 1 min. at 60° C for 40 cycles). POLAR2A was chosen as the reference gene and each replicate C_T was subtracted from the average POLAR2A C_T to give the log2 difference (ΔC_T), the normalized value. The ΔC_T of each replicate for each TaqMan[®] Assay was presented in the final data set as the normalized data. A raw C_T value of 35 (estimated as 5 copies) was set as the limit of detection in this study. Individual replicates with a C_T value >35 were considered not detected, or absent (A); replicates with $C_T < 35$ were considered detectable and identified as expressed or present (P). For ΔC_T calculations, we used C_T of 35 for any replicate that had $C_T > 35$. Fold changes between samples were calculated using the $\Delta\Delta$ C_T method. Detailed information on TaqMan[®] Gene Expression Assays Protocol can be found at http://docs.appliedbiosystems.com/pebiodocs/04333458.pdf. Individual TaqMan[®] Gene Expression Assay information can be found at:

https://products.appliedbiosystems.com/ab/en/US/adirect/ab?JSESSIONID=Gtw2GJ2vxqyptZnQg XnvG8h41z3p4FyNb1Dy9pw5cFTNc39g1zhZ!-

1961426624&cmd=ABGEKeywordSearch&catID=601267

Panomics QuantiGene® Assays

The QuantiGene[®] assays were performed according to the procedure of QuantiGene[®] Reagent System (Panomics), which was previously described in detail. Briefly, 10 µl of starting total RNA (500 ng) from sample A, B, C or D was mixed with 40 µl of Lysis Mixture (Panomics), 40 µl of Capture Buffer (Panomics), and 10 µl of target gene-specific probe set (CE, 1.65 fmol/µl; LE, 6.6 fmol/µl; BL, 3.3 fmol/µl). Each sample mixture was then dispensed into an individual well of a Capture Plate (Panomics). The Capture Plate was sealed with foil tape and incubated at 53°C for 16-20 h. The hybridization mixture was removed and the wells were washed 3 times with 250 ul of Wash Buffer (0.1X SSC, 0.03% Lithium Lauryl Sulfate). Residual Wash Buffer was removed by centrifuging the inverted Capture Plate at 1000x g. Signals for the bound target mRNA were developed by sequential hybridization with branched DNA (bDNA) amplifier, and alkaline phosphatase-conjugated label probe, at 46°C for 1 hour each. Two washes with Wash Buffer were used to remove unbound material after each hybridization step. Substrate dioxetane was added to the wells and incubated at 46°C for 30 min. Luminescence from each well was measured using a Lmax microtiter plate luminometer (Molecular Devices). Three replicate assays measuring RNA directly (independent sampling n = 3) were performed for all described experiments. Genomic DNA contamination in the RNA sample, if there is any, does not affect the QuantiGene[®] assay, since it remains doubled-stranded throughout the entire procedure and thus can not hybridize to the probe sets at the temperature used in the assay.

The QuantiGene[®] assays of 244 genes were performed for MAQC samples A, B, C, D. For all samples, background signals were determined in the absence of RNA samples and subtracted from signals obtained in the presence of RNA samples. Because QuantiGene[®] assay measures RNA directly, no data normalization against a reference gene is required in the data analysis. The

presence and absence call is determined by limit of detection (LOD) of the assay, where LOD = Background + 3SD of Background. If at least two samples out of A, B, C, D has signal below LOD in a gene, we call the gene absent. To determine gene expression fold change in Sample A versus Sample B, the fold change (FC) was calculated using formula log2 FC = $log2(S_A/S_B)$, where S_A represents the assay signal for a target gene in sample A and S_B represents the assay signal for the target gene in sample B. A gene is considered for fold change analysis if the signal in both sample A and sample B passes the LOD.

Gene Express StaRT-PCRTM Assays

Standardized RT (StaRT)-PCR[™] is a quantitative competitive template PCR platform that provides numerical quantification of transcript abundance values at endpoint of PCR over the full range observed in human tissues (more than six orders of magnitude). Following reverse transcription, cDNA molecules representing each gene are measured in relation to a known number of its respective internal standard cDNA molecules. In this MAQC project StaRT-PCR[™] contributed to calibration of the UHRR and HBRR samples by generating numerical transcript abundance data that are directly comparable on a numerical basis to data collected by other investigators in the future. Quantification of cDNA molecules down to as few as 10 molecules/10⁶ ACTB molecules through StaRT-PCR[™] enabled determination of the relationship between number of molecules loaded and measurement variance due to stochastic sampling error. Inclusion of an internal standard in each measurement ensures 100% signal-to-target response in each measurement and provides a useful reference point to assess compression or expansion of signal-to-target response by other manuscript [Canales, R.D. *et al., Nat. Biotechnol.* 24(9), 2006].

E. Probe Mapping

Platform	Length of mapped probe sequence ^a	Number of probe sequences	Number of pr mapping (percent of a	robes that met criteria ^c ll probes, %)	Number of RefSeq NM Accessions mapped to	Number of ID's mapp	Entrez genes ed to probes via	Number of genes, not in Entrez, mapped to probes via
	(nt)	anaryzeu	RefSeq	AceView ^d	probes ^e	RefSeq ^e	AceView ^{d,f}	AceView ^{d,f,g}
ABI	60	32,878	18,547 (56.4)	25,566 (77.8)	21,963	16,763	18,676	3,267
AFX	25	54,675	24,694 (45.2)	44,693 (81.7)	21,318	15,965	18,911	10,129
AG1	60	41,000	22,677 (55.3)	32,024 (78.1)	21,890	16,493	18,051	4,055
GEH	30	53,423	16,881 (31.6)	43,540 (81.5)	20,230	15,429	16,984	18,408
ILM	50	47,282	20,140 (42.6)	31,229 (66.0)	22,161	16,990	10,501 990 18,797 899 17,641	8,666
NCI	39-70	35,235	21,555 (61.2)	29,396 (83.4)	20,987	15,899	17,641	1,411
EPP	161-513	294	285 (98.6)	285 (98.6)	315	285	290	0
QGN	183-2,671	245	234 (95.5)	234 (95.5)	253	233	237	0
GEX ^h	N/A	205	N/A	N/A	203	203	203	N/A
TAQ ^h	N/A	1,004	N/A	N/A	997	997	997	N/A
Union of six	c platforms ⁱ	264,493	125,216 (47.3)	206,448 (78.1)	23,971	18,114	21,662	32,025
Intersection	of six platfor	ms ⁱ			15,615	12,091	13,327	9
Intersection	of six platfor	ms ⁱ and TAO ^h				906		

Table S5. Summary of Probe Mapping per Gene Expression Platform

^aFor the AFX platform, the length of each individual probe is given. For the QGN platform, the length of the intended target is given.

^bThe number of probes for which mapping was attempted may slightly differ from the number of probes arrayed (**Table 1**) because of the removal of control probes and replicate spots. For the AFX platform, the number of probe sets is given.

^cProbes were mapped as described in the Methods section. An exact sequence match was required and probes that match more than one gene were excluded. For the AFX platform, there are generally 11 probes per probe set, and each probe was mapped individually. An exact match of 80% of the probes in a probe set was required for the probe set to qualify as a perfect match. All the mapping data supporting this table are available from supplementary materials online and the MAQC web site (http://edkb.fda.gov/MAQC/).

^dAceView is a transcriptome database that combines RefSeq, GenBank and dbEST entries [Thierry-Mieg, D & Thierry-Mieg, J, Genome Biology **7** (Suppl 1):S12, 2006]. For the details on the AceView mapping, please refer to the supplementary materials online at

ftp://ftp.ncbi.nlm.nih.gov/repository/acedb/MAQC/MaqcMapping2AceViewTranscripts.zip.

^eThe numbers in these columns illustrate the source of the common set of 12,091 genes represented on the six highdensity microarray platforms which have an overlap of 906 genes with the TAQ platform. The data do not fully reflect the coverage of each platform because the degree to which RefSeq and non-RefSeq sequences are emphasized during probe design and selection differs among the platforms.

^fThe number of Entrez genes specifically assayed, through any of their alternative transcript variants, is given in these columns. Probes with a few gaps or mismatches were permitted, but at the same time, probes with even a minor risk of cross-hybridization to another gene (with up to 30% mismatches) were ignored.

- ^gGenes, not yet in Entrez, are supported by cDNAs in GenBank, and are described in AceView. The sum of genes in Entrez (via AceView) and genes not in Entrez that mapped to probes (via AceView) is the total number of genes in the AceView database that are matched by each platform under the mapping criteria chosen for this study.
- ^hFor the two PCR-based platforms (GEX and TAQ), no exact sequence mapping was conducted. Consequently, assay annotation information provided by the manufacturers was used to determine cross-platform mapping.

ⁱThe union and intersection numbers are based on the six high-density microarray platforms (ABI, AFX, AG1, GEH, ILM, and NCI).

F. Number of Genes Used in Analyses

		Subset	of General	lly Detected	l Genes	Subset	of Perfectl	y Detected	Genes
Microarray	MAQC	(<i>i.e.</i>	, Detected	<u>> 3 Replica</u>	tes)	(i.e., 1	Detected in	All Replica	ates) ^c
Platform	Sample	Site	Site	Site	All	Site	Site	Site	All
		1^a	2^a	3 ^{<i>a</i>}	Sites ^b	1	2	3	Sites
	А	8984	8944	9703	8615	8097	8300	8875	7732
Applied	В	9055	8932	9645	8632	8249	7828	8556	7484
Biosystems	С	9549	9357	9777	9081	8749	8301	8846	7999
	D	9510	9300	9585	8980	8696	8195	8978	7926
	А	8565	8270	8542	8016	7966	7671	8028	7389
A ffrom atria	В	8391	8023	8394	7777	7757	7328	7780	7052
Allymeutx	С	8883	8608	8944	8407	8289	7918	8402	7725
	D	8919	8529	8785	8333	8259	7901	8112	7643
	А	9318	9375	9940	9164	9060	9118	9540	8810
Agilent	В	9153	9280	9827	8972	8673	8861	9543	8504
(one color)	С	9664	9815	10324	9561	9329	9429	9849	9067
, , , , , , , , , , , , , , , , , , ,	D	9676	9819	10322	9544	9141	9553	9894	8980
GE Healthcare	А	10869	10982	10827	10619	10036	10462	10370	9475
	В	10897	10927	10759	10593	10293	10433	10281	9652
	С	11085	11171	11031	10847	10559	10576	10537	9811
	D	11130	11149	11055	10861	10508	10310	10664	9605
	А	8872	8709	8505	8361	8568	8241	8062	7952
Thursday	В	8966	8779	8522	8407	8628	8301	8085	7961
mumma	С	9137	8936	8832	8683	8939	8520	8421	8277
	D	9339	9069	8854	8756	9013	8591	8479	8353
	А	12029	11527			11987	11852		
NCL Oneman	В	12030	11671	NT/A	NI/A	11958	11782	NI/A	NT/A
NCI_Operon	С	12024	11522	IN/A	IN/A	11992	11846	IN/A	IN/A
	D	12050	11648			11995	11939		
	А	160	171	174	157				
Ennandard	В	93	119	159	90	NI/A	NI/A	NI/A	NI/A
Eppendorf	С	131	170	181	130	IN/A	IN/A	IN/A	1N/A
	D	128	151	205	128				

Table S6. Number of Genes Used in Within-Platform Analyses

^aNumbers used in intra-site repeatability analysis, including replicate CV distribution (**Figure 1**) and the average of the three replicate CV medians (**Figure 2**).

^bNumbers used in inter-site reproducibility analysis, including total CV median (Figure 2).

^cNumbers used in concordant detection calls (**Figure 3**).

^dEppendorf platform is an open system. Different scanner technologies and settings have been used by the different test sites.

Platform	Test Site	Gene List Size ^a
Amplied	ABI_1	4704
Biosystems	ABI_2	4206
Diosystems	ABI_3	4648
	AFX_1	4441
Affymetrix	AFX_2	4232
	AFX_3	4541
A	AG1_1	5383
Aglient	AG1_2	5458
	AG1_3	5249
	GEH_1	4228
GE Healthcare	GEH_2	4685
	GEH_3	4763
	ILM_1	4153
Illumina	ILM_2	4248
	ILM_3	3763
NCL Operan	NCI_1	3158
NCI_Operon	NCI 2	2097

 Table S7. Size of Differentially Expressed Gene Lists

^aNumber of genes from the 12,091 common set with fold change > 2 and P value < 0.001, which are used in analysis of Gene List Agreement (**Figure 4**).

Table S8.	Number	of Genes	in Log	Ratio	Studies
-----------	--------	----------	--------	-------	---------

Test	ABI	ABI	ABI	AFX	AFX	AFX	AG1	AG1	AG1	EPP	EPP	EPP	GEH	GEH	GEH	ILM	ILM	ILM	NCI	NCI	GEX	QGN	TAQ
Site	_1	_2	_3	_1	_2	_3	_1	_2	_3	_1	_2	_3	_1	_2	_3	_1	_2	_3	_1	_2	_1	_1	_1
ABI_1		7679	7999	6544	6182	6481	7046	7171	7417	110	123	151	7677	7719	7646	6912	6797	6648	8051	7901	118	116	528
ABI_2	7679		7931	6570	6205	6503	7017	7133	7370	112	124	152	7576	7614	7545	6883	6778	6628	7935	7799	120	117	523
ABI_3	7999	7931		6920	6535	6858	7493	7623	7937	116	129	157	8293	8344	8251	7320	7186	7013	8786	8599	125	125	567
AFX_1	6544	6570	6920		6821	7137	6786	6910	7064	107	116	138	7182	7198	7153	6841	6734	6584	7388	7295	119	103	469
AFX_2	6182	6205	6535	6821		6972	6385	6500	6662	103	112	133	6814	6821	6774	6441	6345	6196	7034	6943	107	100	451
AFX_3	6481	6503	6858	7137	6972		6706	6835	7015	107	117	139	7175	7189	7142	6771	6658	6502	7418	7315	115	104	472
AG1_1	7046	7017	7493	6786	6385	6706		8178	8335	120	130	159	7941	7994	7907	7202	7078	6944	8300	8170	122	116	532
AG1_2	7171	7133	7623	6910	6500	6835	8178		8419	117	127	157	8079	8133	8056	7325	7193	7034	8433	8301	124	114	547
AG1_3	7417	7370	7937	7064	6662	7015	8335	8419		122	134	167	8581	8649	8552	7518	7372	7192	9089	8911	131	121	595
EPP_1	110	112	116	107	103	107	120	117	122		122	127	119	120	118	113	112	111	125	125	25	36	53
EPP_2	123	124	129	116	112	117	130	127	134	122		146	135	138	135	123	122	119	144	143	28	44	64
EPP_3	151	152	157	138	133	139	159	157	167	127	146		168	173	167	148	146	143	188	185	31	54	84
GEH_1	7677	7576	8293	7182	6814	7175	7941	8079	8581	119	135	168		10262	10210	7684	7512	7299	10389	10012	147	147	670
GEH_2	7719	7614	8344	7198	6821	7189	7994	8133	8649	120	138	173	10262		10175	7727	7550	7337	10480	10091	146	151	680
GEH_3	7646	7545	8251	7153	6774	7142	7907	8056	8552	118	135	167	10210	10175		7671	7493	7286	10256	9898	148	145	660
ILM_1	6912	6883	7320	6841	6441	6771	7202	7325	7518	113	123	148	7684	7727	7671		7764	7533	7985	7864	120	110	516
ILM_2	6797	6778	7186	6734	6345	6658	7078	7193	7372	112	122	146	7512	7550	7493	7764		7490	7793	7674	120	109	505
ILM_3	6648	6628	7013	6584	6196	6502	6944	7034	7192	111	119	143	7299	7337	7286	7533	7490		7566	7463	117	103	484
NCI_1	8051	7935	8786	7388	7034	7418	8300	8433	9089	125	144	188	10389	10480	10256	7985	7793	7566		11416	152	177	769
NCI_2	7901	7799	8599	7295	6943	7315	8170	8301	8911	125	143	185	10012	10091	9898	7864	7674	7463	11416		147	170	740
GEX_1	118	120	125	119	107	115	122	124	131	25	28	31	147	146	148	120	120	117	152	147		39	82
QGN_1	116	117	125	103	100	104	116	114	121	36	44	54	147	151	145	110	109	103	177	170	39		157
TAQ_1	528	523	567	469	451	472	532	547	595	53	64	84	670	680	660	516	505	484	769	740	82	157	

^aNumbers used in Compression/Expansion (Figure 5A) and Rank Correlation (Figure 5B) analyses.

								Te	sst Site	X							
Test	ABI	ABI	ABI	AFX	AFX	AFX	AG1	AG1	AG1	GEH	GEH	GEH	ILM	ILM	ILM	NCI	NCI
Site	$^{-1}$	6	ε	1	6	$\mathfrak{c}^{ }$	- <mark>-</mark> 1	6	ε	- <mark>-</mark> 1	6	$\omega^{ }$	$^{-1}$	6	$\omega^{ }$	1	6
ABI_1		82.9	87.8	70.5	67.5	70.7	77.7	79.6	78.9	63.1	66.4	66.6	67.5	69.5	63.6	47.6	32.8
ABI_2	92.7		92.2	74.3	71.7	74.2	80.0	82.2	82.2	65.4	68.4	68.7	71.0	72.8	67.1	51.0	35.4
ABI_3	88.9	83.4		73.1	70.2	73.4	79.1	81.4	80.8	64.8	67.9	68.6	69.8	71.1	65.1	49.6	33.6
AFX_1	74.6	70.3	76.5		91.1	95.8	89.1	89.7	87.4	72.2	75.9	76.0	79.4	79.8	74.2	56.8	38.4
AFX_2	75.0	71.2	77.2	95.6		98.5	89.4	89.3	87.3	73.3	76.9	77.0	79.4	79.5	74.3	58.4	39.7
AFX_3	73.2	68.7	75.1	93.7	91.8		88.4	88.3	85.6	71.6	75.6	75.8	77.3	77.6	71.9	56.2	37.9
$AG1_1$	67.9	62.5	68.3	73.5	70.3	74.5		91.4	87.5	64.3	69.1	69.3	67.4	68.6	62.9	47.8	32.9
AG1_2	68.6	63.3	69.3	73.0	69.3	73.5	90.1		88.4	64.0	68.0	68.8	68.5	69.8	63.7	47.2	32.0
$AG1_3$	70.7	65.8	71.5	73.9	70.4	74.1	89.7	91.9		64.1	67.5	68.1	70.1	71.5	65.1	48.3	33.0
GEH_1	70.2	65.1	71.3	75.9	73.4	76.9	81.9	82.6	79.5		91.8	95.5	70.6	71.3	65.3	51.3	35.8
GEH_2	66.7	61.4	67.4	71.9	69.5	73.2	79.3	79.2	75.7	82.8		89.8	65.8	66.5	61.0	48.6	33.6
GEH_3	65.8	60.7	67.0	70.9	68.4	72.2	78.3	78.8	75.0	84.8	88.3		65.3	65.9	60.2	47.6	32.9
ILM_1	76.5	71.9	78.1	84.9	80.9	84.5	87.4	90.1	88.5	71.9	74.3	74.8		95.4	87.4	55.9	38.3
ILM_2	77.0	72.0	77.8	83.5	79.2	82.9	86.9	89.7	88.3	71.0	73.4	73.9	93.3		86.1	54.4	37.5
ILM_3	79.5	75.0	80.4	87.6	83.6	86.8	90.0	92.4	90.8	73.4	76.0	76.2	96.4	97.2		57.8	40.4
NCI_1	70.9	68.0	73.1	79.9	78.3	80.7	81.4	81.5	80.3	68.7	72.2	71.7	73.6	73.2	68.9		51.3
NCI_2	73.5	71.0	74.5	81.4	80.2	82.1	84.4	83.3	82.7	72.2	75.0	74.8	75.9	75.9	72.6	77.3	
Data pre.	sented i	in Figu	ire 4. (Gene lis	t aereei	ment is	defineo	l as the	nercen	t overla	n of ee	t uo səu	the list	for Test	Site Y	that are	also

Table S9. Gene List Agreement Data

Y stiS tesT

G. Raw Data Used in Figure Representations

present on the list for Test Site X. The size of the list of differentially expressed genes for each test site is reported in Table S7.

											Te	st Site	X										
Test	ABI	ABI	ABI	AFX	AFX	AFX	AG1	AG1	AG1	EPP	EPP	EPP	GEH	GEH	GEH	ILM	ILM	ILM	NCI	NCI (GEX (QGN 7	ſAQ
Site	-1	- 2	e,	1	6	$\mathfrak{c}^{ }$	1	6	\mathbf{e}^{l}	-1	6	${f \omega}^{ }$	-1	6	$\mathfrak{c}^{ }$	_1	- 2	ε	_1	2 _	_1	_1	
ABI_1		010	021	113	144	114	.064	060.	.049	158	182	216	244	203	184	145	124	163	439	278	.306	.142	.304
ABI_2	.010		010	107	138	105	.078	.101	.065	202	211	241	223	181	162	135	115	152	419	247	.304	.145	.321
ABI_3	.022	.010		102	133	101	.095	.122	.081	136	152	166	219	176	155	133	112	153	- 425	262	.316	.119	.328
AFX_1	.127	.120	.114		024	.006	.168	.187	.161	033	112	085	129	098	075	041	020	065	292	108	.364	.149	.282
AFX_2	.168	.159	.154	.025		.034	.209	.228	.204	032	119	087	095	063	038	014	.008	034	257	070	.261	.180	.331
AFX_3	.129	.118	.112	006	033		.171	.191	.170	057	135	117	135	103	078	048	025	070	300	127	.240	.128	.251
$AG1_1$	060	072	086	144	173	146		.021	031	177	226	311	287	246	227	179	159	196	477	328	.098	.054	.140
$AG1_2$	083	092	109	157	186	161	021		046	187	228	330	313	274	256	197	178	213	496	356	.076	.146	.069
$AG1_3$	046	061	075	139	169	146	.032	.048		224	272	308	285	243	223	172	151	188	- 479	337	.126	.037	.182
EPP_1	.188	.253	.157	.035	.033	.061	.215	.229	.289		.008	.012	026	.007	.007	.016	.038	013	221	.016	.525	.139	.562
EPP_2	.223	.267	.179	.127	.135	.156	.292	.295	.374	008		.024	019	.035	.046	.111	.137	.071	217	.060	.542	.378	.891
EPP_3	.275	.318	.199	.093	960.	.133	.451	.492	.445	012	024		.041	.092	.107	.088	.102	.042	266	013	.525	.283	.911
GEH_1	.323	.288	.280	.148	.105	.156	.403	.456	399	.027	.019	040		.038	.075	.111	.140	.080	265	072 1	.044	.365	.774
GEH_2	.255	.221	.213	.108	.067	.115	.326	.377	.320	007	034	084	037		.037	.063	.091	.035	304	125	.973	.284	.665
GEH_3	.225	.193	.184	.081	.040	.085	.294	.343	.287	007	044	097	070	036		.036	.063	.006	337	161	.855	.243	.631
ILM_1	.169	.156	.154	.043	.014	.050	.219	.245	.208	016	100	081	100	059	034		.019	032	305 -	120	.455	.259	.401
ILM_2	.141	.131	.127	.020	008	.026	.189	.217	.178	036	120	093	122	083	059	019		048	317	133	.351	.215	.382
ILM_3	.195	.179	.180	690.	.035	.075	.244	.271	.232	.013	066	041	074	034	006	.033	.050		280	082	.403	.268	.448
NCI_1	.784	.721	.739	.412	.346	.428	.912	.985	.921	.284	.277	.363	.361	.437	.509	.438	.464	.389		.217 1	.481 1	.386 1	.672
NCI_2	.385	.327	.355	.121	.076	.145	.488	.553	.507	016	057	.013	.078	.142	.191	.137	.153	.089	178		.915	.780 1	.213
GEX_1	234	233	240	267	207	193	089	070	112	344	351	344	511	493	461	313	260	287	597 .	478	Ì	.284 -	.012
QGN_1	124	127	107	129	153	113	.057	.171	.038	122	274	220	267	221	195	206	177	211	581	438	.397		.286
TAQ_1	233	243	247	220	249	201	123	065	154	360	471	477	436	399	387	286	277	310	626	548	.012 -	.222	
Data re	presente.	d in Fig	zure 5A	Com	pressio	n/expar	tsion is	definea	as the	percen	t differe	nce fro	m equiv	alency.	betwee	n platfo	rm/site.	s (corre	spondin	ig to a	slope va	ilue I fa)r
the best	fitted lin	e using	orthog	onal re _l	gression	n) of thε	e log ra	tio diffe	rential	expres.	sion usi	ng A ai	ıd B rep	plicates.									

Table S10. Compression/Expansion of Log Ratio

Y stiS tesT

ni nc	s positi	ainst its	rder ag	rank o	it Site X	the Tes	gene in	on of a	e positi	relativ	are the	s comp	og ratio	of the la	lations	ık corre	ıan ran	Spearn	3. The	gure 51 er.	d in Fi ank ord	oresente Site Y r	Data rep the Test
	.902	.865	.830	.851	.897	.904	906.	.823	.855	.840	.839	.798	908.	.892	.902	.887	.907	.903	.905	.842	.843	.847	TAQ_1
.902		.834	.775	.821	.872	906.	.880	.770	.800	.805	.834	.803	.904	.858	.863	.876	869.	.845	.864	.842	.860	.836	QGN_1
.865	.834		.792	.755	.832	.826	.834	.730	.750	.731	.590	.698	.785	.831	.852	.842	.812	.796	.814	.739	.742	.757	GEX_1
.830	.775	.792		.901	.785	.780	.781	.690	.710	.709	.720	.729	.796	.757	.763	.765	808.	.808	.808	.722	.725	.725	NCI_2
.851	.821	.755	.901		.802	.802	.801	.705	.727	.723	.748	.762	.815	.772	.779	.781	.832	.833	.831	.741	.745	.742	NCI_1
.897	.872	.832	.785	.802		.991	066.	.851	.864	.862	.882	.893	.903	.922	.927	.927	.932	.929	.936	.873	.870	.867	ILM_3
.904	906.	.826	.780	.802	.991		.994	.851	.865	.861	.895	.903	.906	.926	.931	.930	.938	.935	.941	.882	.877	.873	ILM_2
.906	.880	.834	.781	.801	.990	.994		.853	.865	.863	.894	.904	.911	.926	.932	.930	.939	.935	.941	.881	.874	.870	ILM_1
.823	.770	.730	.690	.705	.851	.851	.853		.972	.980	.812	.789	.826	.834	.853	.851	.857	.854	.856	.817	.819	.815	GEH_3
.855	.800	.750	.710	.727	.864	.865	.865	.972		.968	.796	.772	.817	.849	.865	.864	.871	.871	.872	.833	.835	.834	GEH_2
.840	.805	.731	.709	.723	.862	.861	.863	.980	.968		.790	<i>977.</i>	.821	.845	.861	.859	.871	.870	.872	.825	.829	.824	GEH_1
.839	.834	.590	.720	.748	.882	.895	.894	.812	.796	.790		.980	.964	.870	.872	.867	.855	.830	.847	.842	.839	.835	EPP_3
.798	.803	.698	.729	.762	.893	.903	.904	.789	.772	<i>977.</i>	.980		.954	.878	.861	869.	.853	.818	.846	.853	.845	.834	EPP_2
.908	.904	.785	.796	.815	.903	906.	.911	.826	.817	.821	.964	.954		.911	.903	.901	.861	.834	.855	.864	.850	.848	EPP_1
.892	.858	.831	.757	.772	.922	.926	.926	.834	.849	.845	.870	.878	.911		.980	979.	.932	.929	.933	.874	.871	.872	AG1_3
.902	.863	.852	.763	977.	.927	.931	.932	.853	.865	.861	.872	.861	.903	.980		.986	.935	.931	.936	.880	.874	.877	$AG1_2$
.887	.876	.842	.765	.781	.927	.930	.930	.851	.864	.859	.867	.869	.901	979.	.986		.935	.931	.936	.878	.873	.875	$AG1_1$
.907	.869	.812	.808	.832	.932	.938	.939	.857	.871	.871	.855	.853	.861	.932	.935	.935		766.	966.	.882	.875	.870	AFX_3
.903	.845	.796	.808	.833	.929	.935	.935	.854	.871	.870	.830	.818	.834	.929	.931	.931	766.		.994	.881	.873	.868	AFX_2
.905	.864	.814	.808	.831	.936	.941	.941	.856	.872	.872	.847	.846	.855	.933	.936	.936	966.	.994		.882	.875	.871	AFX_1
.842	.842	.739	.722	.741	.873	.882	.881	.817	.833	.825	.842	.853	.864	.874	.880	.878	.882	.881	.882		.984	.982	ABI_3
.843	.860	.742	.725	.745	.870	.877	.874	.819	.835	.829	.839	.845	.850	.871	.874	.873	.875	.873	.875	.984		.985	ABI_2
.847	.836	.757	.725	.742	.867	.873	.870	.815	.834	.824	.835	.834	.848	.872	.877	.875	.870	.868	.871	.982	.985		ABI_1
אם 11	UGN _1	ы _1	NCI _2		1LM _3	11.M _2	11.M 1	ырн _3	ысн _2	ы 1	ЕРР _3	ЕРР _2	ЕРГ _1	AGI _3	AG1 _2	AGI _1	AFA _3	AFA _2	AFA _1	AB1 _3	A BI _2	AB1 _1	1 est Site
TAO	NUCN	VFV	IUN	IUN	II M	II M	TT M	LFH	CFH	H H H	FDD	FDD	FDD	A C1	121	1 J V	A F V	A FV	AFV	ARI	IAA	ARI	Tact

Table S11. Rank Correlation of Log Ratio

Test Site X

Y stiS tesT

Platform					Platform	on X Axis	5			
on Y Axis	ABI	AFX	AG1	EPP	GEH	ILM	NCI	GEX	QGN	TAQ
ARI	7870	6533	7356	130	7852	6907	8179	121	119	539
ADI	0.984									
AFX		6977	6763	119	7050	6564	7232	114	102	464
AFA	0.875	0.995								
1.01			8311	137	8210	7206	8534	126	117	558
AGI	0.875	0.933	0.981							
EDD				132	141	126	152	28	45	67
EPP	0.845	0.844	0.881	0.966						
CEII					10216	7507	10188	147	148	670
GEH	0.826	0.866	0.853	0.800	0.973					
пм						7596	7724	119	107	502
	0.874	0.936	0.928	0.899	0.860	0.992				
NCI							11416	150	174	755
nci	0.733	0.820	0.770	0.762	0.711	0.792	0.901			
GFX								NA	17	82
GEA	0.746	0.807	0.842	0.691	0.737	0.831	0.773	NA		
OGN									NA	157
QUIT	0.846	0.859	0.865	0.847	0.792	0.886	0.798	0.834	NA	
TAO										NA
1112	0.844	0.905	0.894	0.848	0.839	0.902	0.841	0.865	0.902	NA

H. Additional Analyses from MAQC Study

								· · · · · · · · · · · · · · · · · · ·		- · · · · · · · · · · · · · · · · · · ·
EDD				132	141	126	152	28	45	62
ЕГГ	0.845	0.844	0.881	0.966						
CEU					10216	7507	10188	147	148	670
GEN	0.826	0.866	0.853	0.800	0.973					
TI M						7596	7724	119	107	502
ILIVI	0.874	0.936	0.928	0.899	0.860	0.992				
NCI							11416	150	174	75:
NCI	0.733	0.820	0.770	0.762	0.711	0.792	0.901			
CEV								NA	17	82
GEA	0.746	0.807	0.842	0.691	0.737	0.831	0.773	NA		
OCN									NA	152
QGN	0.846	0.859	0.865	0.847	0.792	0.886	0.798	0.834	NA	
ТАО										NA
IAQ	0.844	0.905	0.894	0.848	0.839	0.902	0.841	0.865	0.902	NA
he table displ	lays summ	aries of bo	th inter-sit	e reproduc	ibility, wh	en the plat	form is co	mpared to	itself, or b	etween-
latform comp	arability w	hen one p	latform is	compared	to a differe	ent platforr	n. The pla	tforms are	labeled ac	cording
ne codes prese	ented in Ta	ble 1. Bo	ttom left)	The average	ge over pai	red sites fo	or the indic	cated platfo	orm pairing	gs of
	4	() 0 1								

Table S12. Average Spearman Rank Correlation (r) of Log (Sample B/A)

Т pl to th Spearman rank correlation (r) for the log (B/A) values between each paired site-platform **Top right**) Italicized numbers highlighted in grey indicate how many genes were detected on average in at least three of the five replicate A and B (both) samples in both paired site-platforms.

		Iable		crage or		I UNE I I				
Platform on Y					Platform	on X Axis	5			
Axis	ABI	AFX	AG1	EPP	GEH	ILM	NCI	GEX	QGN	TAQ
ABI	1.00	1.13	0.92	1.23	1.24	1.16	1.55	0.76	0.88	0.76
AFX	0.88	1.00	0.84	1.10	1.10	1.04	1.25	0.78	0.87	0.78
AG1	1.08	1.19	1.00	1.34	1.36	1.22	1.73	0.91	1.09	0.89
EPP	0.82	0.91	0.75	1.00	0.97	0.94	1.14	0.65	0.79	0.56
GEH	0.81	0.91	0.74	1.03	1.00	0.94	1.29	0.51	0.77	0.59
ILM	0.86	0.97	0.82	1.07	1.07	1.00	1.28	0.71	0.80	0.71
NCI	0.65	0.81	0.59	0.89	0.79	0.79	1.02	0.46	0.49	0.41
GEX	1.31	1.29	1.10	1.53	1.96	1.40	2.20	NA	1.40	1.01
QGN	1.14	1.15	0.92	1.27	1.30	1.25	2.08	0.72	NA	0.78
ТАО	1.32	1.29	1.13	1.79	1.69	1.41	2.44	0.99	1.29	NA

Table S13. Average Slope (B) of the Fitted Line

We fitted orthogonal regression lines of log Ratio (B/A) values between each possible pairing of site-platform (eg, AG1 1 vs ILM 3) using only those transcripts detected (>=3 replicates) in each site-platform, and averaged the estimates of slope from the regression results for the platform pairings indicated. If the value in a cell is less than 1, then the signal of detected transcripts for the platform indicated in the column (Platform on Y-axis) is generally compressed versus the platform indicated in the row (Platform on X-axis). One can see that almost all microarray platforms are generally compressed relative to the alternative platforms, although there are exceptions.

I. Apparent Power Analysis

We used a graphical method based on a modification of the two-sided t-test power analysis in an effort to illustrate the effect of the within-group variation caused by differences in inter-site reproducibility and intrinsic platform-dependent factors, such as the effect size between two groups for every probe on the microarray. The tool is useful for quality assessment, but the results should not be confused with previous microarray power analysis methods where all the parameters are designated with the exception of standard deviation [Hwang, D., *et al. Bioinformatics* **18**, 1184-1193, 2002; Page, G.P. *et al. BMC Bioinformatics* **7**, 84, 2006; Seo, J., *et al. Bioinformatics* **22**, 808-814, 2006; Tibshirani, R. *BMC Bioinformatics* **7**, 106, 2006].

Using our modification of the power analysis, apparent power was calculated for two separate group comparisons at each site: sample A replicates vs. sample B replicates as well as sample C replicates vs. sample D replicates. For our analysis, we used the measured average difference between groups (*i.e.*, A vs. B replicates, or C vs. D replicates) and calculated the estimated pooled standard deviation (s_{pooled}) for each gene based on the signal intensities generated for each of the two experimental groups being compared for each site. The results are expressed as the percentage of genes on the y-axis with a calculated power equal to or greater than a given power on the x-axis, shown in the figure below.

For each comparison, the power analyses for all test sites using the same microarray platform are grouped to display the extremes of test site performance. As expected, the comparisons of the A vs. B replicates demonstrated greater average power than the comparisons of the C vs. D replicates, because the titrated samples can show at most a 3-fold change in gene abundance. Cumulatively each platform has similar power across the 12,091 set of common genes, but for each platform there was at least one site that showed a substantial loss of power due to increased technical noise. For example, Applied Biosystems test site 2 had a lower labeling efficiency in sample type A (Tong, W. *et al. Nat Biotechnol* 24(9), 2006) which impacted its performance in the power analysis relative to the other platforms for the A vs. B comparison. An increase in power was observed at Illumina site 1 compared to sites 2 and 3. This site 1 also consistently had the lowest CV distribution (Fig. 1) while not being any more compressed in signal (Fig. 5a) than the other two Illumina sites These relative differences illustrate the importance of a detailed review of laboratory performance in microarray facilities.

Apparent Power Analysis Methods. The power analysis is based on data from the 12,091 common genes set. No filtering related to gene detection was performed. Three probes were removed from the analysis because data were missing in three or more of the groups. Microarray data were normalized using the manufacturer's suggested method and log₂ transformed. After log₂ transformation, the signal for all microarrays approximated a normal distribution (data not shown). We implemented a novel power analysis based on Warnes & Liu's method (www.bioconductor.org/repository/devel/vignette/ssize.pdf) with four key modifications: 1) the average difference between groups was explicitly calculated for each probe; 2) a pooled estimate of σ (s_{pooled}) was used; 3) experimentally derived power was plotted; and 4) the method was generalized so it could be used for all microarray platforms. The key component of this analysis is the generation of a cumulative plot of the proportion of genes achieving a desired power for a given sample size (n = 5), multiple test corrected α (0.05/*n*) using the Bonferonni method, and a probe-by-probe s_{pooled} for each site and measure difference between groups at each site.

Table 514. Number of Genes with Tower ≥ 0.0						
Microarray Platform	A vs. B Comparison			C vs. D Comparison		
	Site 1	Site 2	Site 3	Site 1	Site 2	Site 3
Applied Biosystems	3782	1916	3261	1560	1031	666
Affymetrix	5821	5710	5959	2448	2731	1931
Agilent (one color)	3733	4184	4239	1535	531	1578
GE Healthcare	3044	4192	3934	455	1521	1553
Illumina	5367	4339	3331	2593	1656	1359

Table S14. Number of Genes with Power ≥ 0.8

Figure S1. Apparent Power Analysis.

The power analysis used the standard formula for the power of two-group t-test with pooled σ . The mean difference between groups of sample type A replicates vs. sample type B replicates (**top**) as well as sample type C replicates vs. sample type D replicates (**bottom**) were computed for each gene and the σ at each location was calculated independently and plotted by location. The x-axis is the calculated power and the y-axis is the percent of genes that have that power or greater. The number of genes with power ≥ 0.8 for each test site is reported in Supplemental **Table S14**. Only genes from the 12,091 common set were included in the analysis. Results for each platform are displayed in separate plots per comparison. The power lines for each test site are colored as indicated. As described in the text, data from some platforms were omitted from these calculations due to quality issues. The platforms and sample types are labeled according to the nomenclature presented in **Table 1**.

J. Reproducibility of Lists of Differentially Expressed Genes – POG Results

Gene Ranking (Selection) Rules: Six gene ranking (selection) methods were examined: (1) Fold-change ranking; (2) Fold-change with *P* cutoff of 0.05; (3) Fold-change ranking with *P* cutoff of 0.01; (4) *P* ranking; (5) *P* ranking with fold-change cutoff of 2.0; (6) *P* ranking with fold-change cutoff of 1.4. When a cutoff value (*e.g.*, P < 0.05) is imposed with a particular ranking metric (*e.g.*, fold-change), frequently the lists of candidate genes that meet the cutoff value will not be the same for the two test sites as a result of differences in inter-site variations. Such differences are part of the gene selection process and have been carried over to the gene ranking/selection stage. *P* values are derived from simple t-tests using log2 intensity data assuming equal variance.

POG (Percentage of Overlapping Genes): The POG (percentage of overlapping genes) is a measure of the reproducibility of lists of differentially expressed genes (Shi, L. *et al.* Cross-platform comparability of microarray technology: intra-platform consistency and appropriate data analysis procedures are essential. *BMC Bioinformatics* **6**(Suppl 2), S12, 2005). The POG graph (**Fig. S2**) can be viewed as a combination of many Venn diagrams based on various thresholds of fold-change and/or *P* which are arbitrary. The number of genes considered as differentially expressed is denoted as 2L, where L is both the number of genes up- and down-regulated. The number of genes available for ranking and selection in one direction, L, varies from 1 to 6000 (with a step of one) or when there are no more genes in one regulation direction, corresponding to 2L varying from 2 to 12,000. Directionality of gene regulation is considered in POG calculations; genes selected by two test sites but with different regulation directionalities are considered as discordant. The formula for calculating POG is:

POG = 100*(DD+UU)/2L

where DD and UU are the number of commonly down- or up-regulated genes, respectively, from the two lists, and L is the number of genes selected from the up- or down-regulation directionality. To overcome the confusion of different numbers for the denominator, in our POG calculations we deliberately selected an equal number of up-regulated and down-regulated genes, L.

Figure S2 shows that the reproducibility of differentially expressed genes is dramatically impacted by several factors: gene ranking/selection methods, the inherent differences between the samples being compared, and the choice of thresholds (corresponding to the number of genes selected as differentially expressed). Given the same data set, the reproducibility of microarray results can be dramatically impacted by the choice of different gene selection methods. Data from Affymetrix's test sites were used to create **Figure S2**, but similar results have observed in inter-site comparisons of data from other platforms or in cross-platform comparisons. Furthermore, similar results were obtained when a rat toxicogenomics data set was analyzed (Guo, L. *et al. Nat. Biotechnol.* **24**(9), 2006).

Figure S2. Reproducibility of lists of differentially expressed genes – POG results. (a) Sample A versus Sample B (Site 1 vs. Site 2, Site 1 vs. Site 3, and Site 2 vs. Site 3); (b) Sample C versus Sample D (Site 1 vs. Site 2); and (c) Sample C versus Sample D with additional methods compared (Site 1 vs. Site 2). Each panel represents the concordance results (POG) for comparing Affymetrix's test sites. The x-axis represents the number of genes selected as differentially expressed (corresponding to different thresholds), and the y-axis is the percentage (%) of genes common to the two gene lists derived from two test sites at a given number of selected genes. For the Wilcoxon rank-sum tests (panel c), there were many ties, *i.e.*, many genes exhibited the same level of statistical significance because of the small sample sizes (five replicates for each group). The tied genes from each test site were broken (ranked) by random ordering. Concordance between genes selected completely at random is shown in red and reaches only 50% when all candidate genes are declared as differentially expressed due to directionality disagreement. The POG results by SAM (pink line), although greatly improved over that of simple t-test statistic (purple line), approached, but did not exceed, the level of POG based on fold-change ranking (green line).