Structure of the pilus assembly protein TadZ from *Eubacterium rectale*: Implications for polar localization

Qingping Xu^{1,2}, Beat Christen³, Hsiu-Ju Chiu^{1,2}, Lukasz Jaroszewski^{1,4,5}, Heath E. Klock^{1,6}, Mark W. Knuth^{1,6}, Mitchell D. Miller^{1,2}, Marc-André Elsliger^{1,7}, Ashley M. Deacon^{1,2}, Adam Godzik^{1,4,5}, Scott A. Lesley^{1,6,7}, David H. Figurski⁸, Lucy Shapiro^{3*}, and Ian A. Wilson^{1,7**}

¹Joint Center for Structural Genomics, <u>http://www.jcsg.org</u>

²Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA

³Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA ⁴Center for Research in Biological Systems, University of California, San Diego, La Jolla, CA 92093, USA ⁵Program on Bioinformatics and Systems Biology, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA

⁶Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, CA 92121, USA

⁷Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA ⁸Department of Microbiology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA

Table S1. Primers used for cloning and site-directed mutagenesis

Primer	DNA sequence
ErTadZfw	CTGTACTTCCAGGGCATGAAGATTAAGGTTGCATTGCTTG
ErTadZrv	AATTAAGTCGCGTTATTGCAAGATTTCTTCAAAAAATTCCATC
ErTadZ _{E162A} fw	GGAAAAAGGTATTTTATTTAAATATAGCACAGTGTGGCACAACAGATGTTT
ErTadZ _{E162A} rv	AAACATCTGTTGTGCCACACTGTGCTATATTTAAATAAAATACCTTTTTCC
pSpeedETfw	GCACCAGATGGGCATTAAACGAGTAT
pSpeedETrv	GATGCCTGGCAGTTCCCTACTCTCG

Fig. S1. Sequence conservation of ErTadZ. (**A**) Sequence alignment of ErTadZ (PDB code 3fkq) and its most closely related homologs. The secondary structure elements and sequence numbering of ErTadZ are shown on the top. The corresponding secondary structure elements of a canonical RD are indicated in red in parentheses. Strictly conserved residues are highlighted as white text on a red background. Other highly conserved residues are shown in red text in blue boxes. (**B**) Stereo view of the mapping of sequence conservation onto the structure of ErTadZ. The degree of conservation is shown in a color gradient from red (strictly conserved) to white (not conserved). Strictly conserved residues and ATP (near Ser131) are shown as sticks. (**C**) ErTadZ ARD contains a conserved surface patch near Tyr93. The color gradient is the same as in B.

			130		140	150	160
ErTadZ(3fkq) CtTadZ(3ea0) CpaE AaTadZ Soj(2bek) MinD(1g3r)	125 35 256 141 5 1	SVVIF akrVfgF tgrqiaF - tvkiav kvrrial mgriisi	TSPCG ∨SakG ∨gakG ISckG anqkG ∨SgkG	G V G T G d G g G V G a G i G a G V G k G t G k	S T V A A A C , S c i A A n f , S T I A h n f , S I i s s h i , t T t A i n I , t T V t A n I	AIAHÀNM AfAI <mark>sqep</mark> AwsmAekm Aneivssk AayIA <mark>rI-</mark> svAIgd <mark>r</mark> -	G K K V F Y L Ń I E - d i h V I a v d I s I q s a t v I v d I d I k i p V I I a q G K r V I I v d I a - G r K V I a v d g d I
ErTadZ(3fkq) CtTadZ(3ea0) CpaE AaTadZ Soj(2bek) MinD(1g3r)	163 77 298 179 45 42	Q C G T T D V p f G d I D m a f G T a g I g p p q G n a t s t m a n I s I	FQ - A FQ - A Isgn Fn - q ngs - q gIg - v VIgvd	EGNA thsq dplq d raer dpdv	180 T M Ś D V I Y d I a D i s n g v I D a I s - I D I I f g v y h I I q T I h D V I a	190 SLKSRKAN a Sdr Id q pdr Id d kk g - ep g - ean	200 LLLKLESĊIKQ - ksILdtmvqh - pvlmdrmmvr Lsgnvie LEglvhp vEdalym
ErTadZ(3fkq) CtTadZ(3ea0) CpaE AaTadZ Soj(2bek) MinD(1g3r)	204 116 336 201 77 76	SQEG-VS is-psld c-adrlS y-apnld v-dG-fh tQfdnVy	210 Y F S S T I i p S p I F a a p i F n g g I I p a T v I p g a	K V A L I a t f e a s l d I l p d l v v d w e	220 DILEIS- kIVNIE- DdyEfga - fEIt- gatveIa hvLkad-	230 YADIDT pervsd dafee pAatek gaptalre <mark>prk</mark> lpe	240 LIGNIQGMDNY LIhiaasf Y vtqkIrG - aa yn a Irde gY vIksIkd kf
ErTadZ(3fkq) CtTadZ(3ea0) CpaE AaTadZ Soj(2bek) MinD(1g3r)	242 152 372 225 113 113	D E I I V D L D y I I V D f p f v v I D L - f I I y D q D I v I I D a D f I I i D c	P F S L E g a S i d P h v w n P - i y n P p S L s P a g L q	- E K h v g v v a w s r - v k K o p t d a m	260 LKLL wvLeh rvLig dnfigfl naLaa samLs	SKAWRIIV delci sddlvV enynnfvl AegvvV geeall	270 VNDGSQLSNYK VttpSlqSlrr VatpdlaSlrn VverkigSlrl pvqaeyyaleg Vtnpeiscltd
ErTadZ(3fkq) CtTadZ(3ea0) CpaE AaTadZ Soj(2bek) MinD(1g3r)	280 190 410 264 151 151	280 FMRAYES agqllkl akniidl akqflde vagllat tMkvgiv	290 VVLLE ckefE Vkgsr cerir leevr lkkag	Q N D D k p p N s t a g l n	300 Isri dapp sRkp p - r R I I ai	NMIYNKF- eiIINra- rIvINqv- irtfvcis giIvtmy- gfvINry-	310 Ś N K N S E d t N S r i t - g v p g r p E i p d n r l e a a k l m a - d g r t <mark>l l a q q v</mark> - g r s d r d i p -
ErTadZ(3fkq) CtTadZ(3ea0) CpaE AaTadZ Soj(2bek) MinD(1g3r)	316 222 444 301 190 182	MLSN sdeiekv vkdfgea kndietl eaqlrah peaaedv	320 i - S I K - g r p I - g v q I - g s s f g e k v m - e v p	T G G i s k r p s v i d a i f w t v a v	330 A P R Y E H A I P q d E d A q I P f d p k p i P i P R n - v r i P e d - p A	T VR mqesllsg ygqaanng yvkntntk lae <mark>apsf</mark> g iregtleg	340 Q I I E A L T Q s v I k v a p k s q Q m I a e v a p k s k t v I g i n I g r d g k t I a q h a p t s p i p a v k y k p e s k
ErTadZ(3fkq) CtTadZ(3ea0) CpaE AaTadZ Soj(2bek) MinD(1g3r)	345 263 485 337 231 222	KME Isktivd aaegleh kkeinsl gahayrr gakaf <u>v</u> k	350 FFEE walh ar m kv aEEv aEE	LQ gais marve ekla	rsskpke qea	k q s l f s s f	f t k l i k q

Fig. S2. Multiple sequence alignment of the ATPase domains of ErTadZ (PDB code 3fkq), CtTadZ (PDB code 3ea0), CcTadZ (CpaE), AaTadZ, Soj (PDB code 2bek) and MinD (PDB code 1g3r). The alignment was created by merging a structure-based alignment of the sequences of the four known structures with a sequence-based alignment of CtTadZ, AaTadZ and CcTadZ. The secondary structures elements of proteins with known structures are highlighted (red: α -helix, blue: β -strand, and yellow: 3₁₀ helix).

Fig. S3. Analytical size exclusion chromatography of ErTadZ (red line). The molecular weight standards (black line) that were used to estimate the native molecular weight of ErTadZ included thyroglobulin (670 kDa), bovine γ -globulin (158 kDa), chicken ovalbumin (44 kDa), myoglobin (14 kDa) and vitamin B12 (1.35 kDa). For convenience of display, the refractive index signal for ErTadZ was scaled by a factor of 5.

Fig. S4. Comparison of TadZ dimers. (**A**) Stereo view of the superimposition of ErTadZ (red) and Soj (blue), and (**B**) Stereo view of the superimposition of of ErTadZ (red) and CtTadZ (green). (**C**) CtTadZ dimer (green) and Soj dimer (blue) with residues near the domain interfaces highlighted in cyan.

Fig. S5. Multiple sequence alignment of CheY (PDB code 2che) and ARDs of VpsT (PDB code 3klo), KaiA (PDB code 1m2e), FrzS (PDB code 2gkg), ErTadZ (PDB code 3fkg), CcTadZ (CpaE) and AaTadZ. The secondary structure profile of CheY is shown on the top. The secondary structures elements of proteins with known structures are highlighted (red: α -helix, blue: β -strand, and yellow: 3_{10} helix). Functionally critical residues of CheY (letters in boxes) and the two highly conserved residues of CcTadZ (R/Y in bold red) are shown at the bottom. The alignment was created by merging a structure-based alignment of the five sequences with known structures with a sequence-based alignment of ErTadZ, AaTadZ and CcTadZ.