

Supporting Information

© Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2011

Identification of Inhibitors of the *Leishmania* cdc2-Related Protein Kinase CRK3

Laura A. T. Cleghorn,^[a] Andrew Woodland,^[a] Iain T. Collie,^[a] Leah S. Torrie,^[a] Neil Norcross,^[a] Torsten Luksch,^[a] Chido Mpamhanga,^[a] Roderick G. Walker,^[b] Jeremy C. Mottram,^[b] Ruth Brenk,^[a] Julie A. Frearson,^[a] Ian H. Gilbert,^[a] and Paul G. Wyatt^{*[a]}

cmdc_201100344_sm_miscellaneous_information.pdf

Suppoting Information

Table of contents.

- **Table S1:** Sequence identity between CDK2 and CRK3s from kinetoplastid parasites.
- Figure S1. Average potency from IMAP-FP platform for 24 of the screening hits identified.
- Table S2. Leishmania CRK3:CYC6 and HsCDK2:CDK2 activity for series 3.
- Table S3. Leishmania CRK3:CYC6 and HsCDK2/cyclinA activity for series 5.
- **Table S4**: Kinase selectivity data for compound series 3.
- **Table S5**: Kinase selectivity data for compound series 5.
- **Table S6**: Kinase selectivity data for compound series 7.
- Table S7: Metabolic turnover of 20 and 25

Table S1. Sequence identity between CDK2 and CRK3s from kinetoplastid parasites (all sequences are compared to *T. brucei* CRK3)

SWISS_PROT Entry Name	Protein Name	Organism	Sequence Identity
Q38BA2_9TRYP	Cell division related protein kinase 2, putative (EC 2.7.1.37).	Trypanosoma brucei	100.0
Q94796_TRYCR	Cdc2-related protein kinase 3	Trypanosoma cruzi	82.0
O15851_LEIME	Cdc2-related kinase 3	Leishmania mexicana	78.0
O96526_LEIMA	Cdc2-related kinase 3	<i>Leishmania</i> major	78.0
CDK2_HUMAN	Cell division protein kinase 2 (EC 2.7.11.22) (p33 protein kinase)	Homo sapiens	58.0

Figure S1. Average potency, expressed as pIC_{50} , as determined by IMAP-FP platform correlated to the potency value determined in the radiometric assay platform for 24 of the screening hits identified. Correlation coefficient (R2) is 0.86.

TableS2.LeishmaniaCRK3:CYC6andHsCDK2:CDK2activityforseries3pyrazolopyrimidines

R ¹	R^2	Leishmania CRK3:CYC6 %I at 30µMª	Leishmania CRK3:CYC6 IC ₅₀ (μM) ^b	Hs CDK2/CYCA IC ₅₀ (μM) ^c
Н	3,4,5-trimethoxyphenyl	0	-	-
3,4,-dimethoxyphenyl	3,4,5-trimethoxyphenyl	72	6	-
3-chlorophenyl	3,4,5-trimethoxyphenyl	25	-	-
3-carboxamidophenyl	4-morpholinophenyl	93	0.26	0.43
3,4,5- trimethoxyphenyl	<i>N,N</i> - dimethylaminoethyl	3	-	-
3-pyridyl	4-morpholinophenyl	-	0.54	-
3-methylphenyl	4-morpholinophenyl	-	2.6	>100
Br	4-morpholinophenyl	-	10	-

[a] Percentage inhibition of *Leishmania* CRK3:CYC6 activity at 30 μ M [b] Concentration required to inhibit CRK3:CYC6 activity by 50%: data represents the average of 2 or more experiments. [c] Concentration required to inhibit *Hs*CDK2/CYCA activity by 50%: data represents the average of 2 or more experiments.

Table S3 . Leishmania CRK3:CYC6 activity and selectivity compared toHsCDK2/cyclinA for pyrazoles				
$R_1 \xrightarrow{N}_N \xrightarrow{N}_O R_2$				
		Leishmania	Hs	
R ₁	R ₂	CRK3:CYC6	CDK2:cyclinA	
		IC ₅₀ (μM)	IC ₅₀ (μM)	
Cyclopropyl	Cyclobutyl	2.1	0.089	
2,6-Difluorophenyl	Cyclobutyl	1.3	1.9	
3-pyridyl	Cyclobutyl	20	6.6	
Benzyl	Cyclobutyl	11	1.1	
Benzyl	Methyl	64	4.0	
Benzyl	Phenyl	9.2	3.0	
3-pyridyl	Phenyl	23	100	
2,6-Difluorophenyl	Phenyl	3.0	100	
2,6-Difluorophenyl	Methyl	9.0	3.4	
Cyclopropyl	Phenyl	1.7	0.15	
4-Chlorophenyl	Cyclohexyl	0.33	100	
4-Chlorophenyl	3-Phenol	1.1	5.4	
4-Chlorophenyl	2-Thiophene	1.2	3.5	
4-Chlorophenyl	4-Methoxyphenol	33	nd ^[c]	
4-Chlorophenyl	Cyclopropyl	1.5	nd ^[c]	
4-Chlorophenyl	3-Fluorophenyl	100	nd ^[c]	
4-Chlorophenyl	2-Methylphenyl	100	nd ^[c]	
^[a] Concentration required to inhibit <i>Leishmania</i> CRK3:CYC6 activity by 50%: data represents the average of 2 or more experiments. ^[b] Concentration required to inhibit <i>Hs</i> CDK2/cyclinA activity by 50%: data represents the average of 2 experiments. ^[c] nd = not determined				

Table S4: Kinase selectivity data for compound series 3. Compounds were incubated against 76 recombinant human kinases at a concentration of 10 μ M. The percentage activity of each kinase is shown. Where highlighted in red the enzymes have < 10 % or > 100 % activity; when highlighted in orange > 10 % but < 29 %; when highlighted in yellow > 30 % but < 49 %.

	$\langle $		0.
	10μ Μ	10µN	Л
MKK1		25	41
ERK1		93	90
ERK2		87	96
JNK1		80	76
JNK2		74	64
p38a MAPK		78	79
P38b MAPK		77	70
p38g MAPK		57	74
p38s MAPK		72	88
ERK8		5	8
RSK1		17	38
RSK2		37	52
PDK1		36	63
РКВа		67	84
PKBb		41	55
SGK1		86	61
S6K1		18	49
РКА		53	62
ROCK 2		57	55
PRK2		41	86

РКСа	20	33
PKC zeta	27	61
PKD1	136	160
MSK1	18	44
MNK1	23	86
MNK2	25	54
МАРКАР-К2	93	95
PRAK	70	70
САМККЬ	42	42
CAMK1	54	68
SmMLCK	45	55
РНК	4	6
CHK1	59	29
CHK2	28	26
GSK3b	21	21
CDK2-Cyclin A	3	42
PLK1	51	53
PLK1 (Okadaic Acid)	49	53
АМРК	18	32
MARK3	17	64
BRSK2	33	40
MELK	28	10
CK1	59	46
CK2	12	20
DYRK1A	2	14
DYRK2	7	5
DYRK3	9	10
NEK2a	80	75
NEK6	177	133
IKKb	47	47

PIM1	27	18
PIM2	16	28
PIM3	4	9
SRPK1	48	61
MST2	15	44
EFK2	103	102
HIPK2	4	3
PAK4	66	50
PAK5	59	61
PAK6	76	71
Src	4	8
Lck	7	10
CSK	15	48
FGF-R1	11	5
IRR	4	12
EPH A2	65	69
MST4	73	77
SYK	80	66
YES1	9	12
IKKe	26	46
TBK1	17	58
IGF1-R	47	44
VEG-FR	15	8
ВТК	9	38
IR-HIS	65	78
EDU D2		22

Table S5: Kinase selectivity data for compound series 5. C Compounds were incubated against 76 recombinant human kinases at a concentration of 10 μ M. The percentage activity of each kinase is shown. Where highlighted in red the enzymes have < 10 % or > 100 % activity; when highlighted in orange > 10 % but < 29 %; when highlighted in yellow > 30 % but < 49 %.

Compound 11

10µM		
MKK1	68	
ERK1	86	
ERK2	91	
JNK1	98	
JNK2	87	
p38a MAPK	84	
P38b MAPK	66	
p38g MAPK	79	
p38s MAPK	83	
ERK8	33	
RSK1	76	
RSK2	69	
PDK1	99	
РКВа	89	
PKBb	75	
SGK1	86	

S6K1	97
РКА	84
ROCK 2	88
PRK2	101
РКСа	103
PKC zeta	73
PKD1	184
MSK1	83
MNK1	82
MNK2	81
МАРКАР-К2	97
PRAK	76
САМККЬ	72
CAMK1	154
SmMLCK	89
РНК	75
CHK1	79
СНК2	92
GSK3b	27
CDK2-Cyclin A	71
PLK1	86
PLK1 (Okadaic Acid)	90
АМРК	86
MARK3	78
BRSK2	82
MELK	84
CK1	87
CK2	103
DYRK1A	65
DYRK2	84

DYRK3	87
NEK2a	90
NEK6	171
IKKb	100
PIM1	87
PIM2	81
PIM3	97
SRPK1	75
MST2	93
EFK2	105
HIPK2	89
PAK4	56
PAK5	67
РАК6	84
Src	105
Lck	73
CSK	81
FGF-R1	114
IRR	30
EPH A2	105
MST4	68
SYK	94
YES1	89
IKKe	72
TBK1	72
IGF1-R	99
VEG-FR	75
ВТК	81
IR-HIS	86
EPH-B3	82

11

|

Table S6: Kinase selectivity data for compound series 7. Compounds were incubated against 76 recombinant human kinases at a concentration of 10 μ M. The percentage activity of each kinase is shown. Where highlighted in red the enzymes have < 10 % or > 100 % activity; when highlighted in orange > 10 % but < 29 %; when highlighted in yellow > 30 % but < 49 %.

	Compound 38	Compound 39	Compound 32
	10µM	10μ Μ	10μ Μ
MKK1	47	43	59
ERK1	97	92	92
ERK2	93	90	86
JNK1	101	102	101
JNK2	83	82	94
p38a MAPK	104	95	95
P38b MAPK	91	87	79
p38g MAPK	102	93	88
p38s MAPK	86	75	74
ERK8	86	83	72
RSK1	62	70	68
RSK2	66	56	62
PDK1	96	103	96
РКВа	93	86	98
PKBb	67	66	59
SGK1	103	100	96
S6K1	95	107	105
РКА	84	82	82
ROCK 2	95	86	92

PRK2	84	103	79
РКСа	87	97	95
PKC zeta	88	87	76
PKD1	92	110	80
MSK1	71	56	68
MNK1	80	84	79
MNK2	68	79	50
МАРКАР-К2	95	93	102
PRAK	65	60	63
САМККЬ	85	89	45
CAMK1	74	83	75
SmMLCK	92	88	85
РНК	72	69	50
CHK1	76	70	77
СНК2	99	93	76
GSK3b	70	73	78
CDK2-Cyclin A	105	98	90
PLK1	90	83	78
PLK1 (Okadaic Acid)	56	52	62
АМРК	93	97	98
MARK3	86	88	90
BRSK2	71	67	76
MELK	65	69	62
CK1	82	86	92
CK2	101	106	104
DYRK1A	59	36	15
DYRK2	62	48	11
DYRK3	59	33	4
NEK2a	89	83	77
NEK6	84	83	81

IKKb	95	97	93
PIM1	90	99	78
PIM2	103	100	91
PIM3	91	84	78
SRPK1	64	53	65
MST2	100	94	94
EFK2	107	107	102
HIPK2	114	102	86
PAK4	111	101	94
PAK5	88	74	68
РАК6	84	82	83
Src	98	93	89
Lck	71	80	79
CSK	84	81	68
FGF-R1	124	88	96
IRR	50	27	14
EPH A2	87	93	84
MST4	82	84	71
SYK	94	95	87
YES1	89	94	101
ІККе	100	108	104
TBK1	102	99	86
IGF1-R	78	94	104
VEG-FR	57	74	55
ВТК	63	59	61
IR-HIS	80	78	77
EPH-B3	90	78	82

Table S6 cont: Kinase Selectivity Data compound series 7 Compounds were incubated against 76 recombinant human kinases at a concentration of 10 μ M. The percentage activity of each kinase is shown. Where highlighted in red the enzymes have < 10 % or > 100 % activity; when highlighted in orange > 10 % but < 29 %; when highlighted in yellow > 30 % but < 49 %.

	Compound 66	Compound 25		
	10µM	10μ Μ		
MKK1	67	74		
ERK1	93	96		
ERK2	99	75		
JNK1	100	101		
JNK2	86	82		
p38a MAPK	96	86		
P38b MAPK	78	82		
p38g MAPK	109	92		
p38s MAPK	81	78		
ERK8	89	77		
RSK1	85	67		
RSK2	80	76		
PDK1	97	101		
РКВа	85	99		
PKBb	78	75		
SGK1	95	105		
S6K1	112	86		
РКА	84	87		
ROCK 2	95	98		

PRK2	92	98
РКСа	138	110
PKC zeta	87	85
PKD1	84	89
MSK1	72	68
MNK1	104	82
MNK2	85	67
МАРКАР-К2	101	105
PRAK	74	75
САМККЬ	68	47
CAMK1	77	78
SmMLCK	79	83
РНК	71	56
CHK1	84	79
CHK2	76	95
GSK3b	71	71
CDK2-Cyclin A	106	101
PLK1	88	81
PLK1 (Okadaic Acid)	70	83
АМРК	102	99
MARK3	98	91
BRSK2	83	64
MELK	73	71
CK1	76	87
CK2	99	106
DYRK1A	59	10
DYRK2	45	24
DYRK3	13	19
NEK2a	90	95
NEK6	81	88

IKKb	103	90
PIM1	61	99
PIM2	108	100
PIM3	93	99
SRPK1	68	75
MST2	94	107
EFK2	106	105
HIPK2	108	96
PAK4	91	96
PAK5	71	82
РАК6	93	76
Src	88	88
Lck	90	77
CSK	87	94
FGF-R1	123	111
IRR	36	11
EPH A2	95	94
MST4	86	79
SYK	106	94
YES1	101	92
IKKe	95	86
TBK1	115	101
IGF1-R	112	97
VEG-FR	56	53
ВТК	58	71
IR-HIS	78	115
EPH-B3	97	93
		1

Table S7: Metabolic turnover of 20 and 25							
Compd	Structure	Human % turnover at 40 min	Mouse % turnover at 30 min	PPB FU (%)	LogD	<i>T.brucei</i> EC ₅₀ μΜ	СDК2 IC ₅₀ µМ
25		100	100	87	3.86	6.6	19
20		33	31	83	2.24	0.9	69
Assessed for stability in human and mouse liver microsomes, protein binding in mouse plasma and LogD determination. All assays were performed using the standard BioFocus DPI protocols.							

Additional Experimental Section

N-(5-(4-Chlorophenyl)-1H-pyrazol-3-yl)acetamide (2). Prepared following the same procedure as **8** to afford **2** (2mg, 2%) as a white solid. ¹H NMR (d⁶ DMSO, 500 MHz) δ 12.88 (1H, s, NH), 10.45 (1H, s, NH), 7.75-7.73 (2H, m, ArH), 7.52-7.50 (2H, m, ArH), 2.02 (3H, s, CH3); LCMS (ES) M+H (100%).

N-(5-(4-Chlorophenyl)-1*H***-pyrazol-3-yl)cyclobutanecarboxamide** (7). Prepared following the same procedure as **8** to afford **7** (18 mg, 12%) as a white solid. ¹H NMR (d⁶ DMSO, 500 MHz) δ 12.87 (1H, s, NH), 10.31 (1H, s, NH), 7.75-7.74 (2H, m, ArH), 7.52-7.50 (2H, m, ArH), 6.93 (1H, s, ArH), 3.25 (1H, qn, *J* = 8.4Hz, CH), 2.25-2.17 (2H, m, CH), 2.11-2.07 (2H, m, CH), 1.98-1.90 (1H, m, CH), 1.83-1.79 (1H, m, CH); LCMS (ES) M+H, (100%).

N-(5-(4-Chlorophenyl)-1*H***-pyrazol-3-yl)-2-phenylacetamide (9)**. Prepared following the same procedure as **8** to afford **9** (20mg, 13%) as a white solid. ¹H NMR (d⁶ DMSO, 500 MHz) δ 7.73-7.72 (2H, m, ArH), 7.49-7.47 (2H, m, ArH), 7.34 (4H, broad s, ArH), 7.24 (1H, broad s, ArH), 6.80 (1H, s, ArH), 3.62 (2H, s, CH2); LCMS (ES) M+H, (100%).

N-(5-(4-Chlorophenyl)-1*H***-pyrazol-3-yl)nicotinamide (10)**. Prepared following the same procedure as **8** to afford **10** (28mg, 19%) as a light pink solid. ¹H NMR (d⁶ DMSO, 500 MHz) δ 13.10 (1H, s, NH), 11.17 (1H, s, NH), 9.16-9.15 (1H, m, ArH), 8.76 (1H, s, ArH), 8.37-8.35 (1H, m, ArH), 7.81-7.80 (2H, m, ArH), 7.56-7.54 (3H, m, ArH), 7.11 (1H, s, ArH); LCMS (ES) M+H, (97%).

N-(6-(4-Hydroxy-3-methoxyphenyl)

[1,2,4]triazolo[1,5a]pyridinyl)cyclohexanecarboxamide (14). Prepared according to general procedure A. ¹H NMR (500 MHz, DMSO): 10.67 (1H, s, NH), 9.25 (1H, s, OH), 9.16 (1H, s, ArH), 7.96 (1H, d, ArH, *J* = 8.9 Hz), 7.68-7.70 (1H, m, ArH), 7.35 (1H, s, ArH), 7.19-7.20 (1H, m, ArH), 6.87-6.89 (1H, m, ArH), 3.89 (3H, s, CH₃), 1.74-1.81 (4H, m, CH), 1.64-1.66 (1H, m, CH), 1.38-1.42 (2H, m, CH), 1.23-1.28 (3H, m, CH). LCMS [ES+]: *m/z* 367 [M+H]⁺.

N-(6-Phenyl-[1,2,4]triazolo[1,5-a]pyridinyl)cyclohexanecarboxamide (22). Prepared according to general procedure B from [1,2,4]triazolo[1,5-a]pyridin-2-amine on a 0.12 mmol scale to afford the product as a colourless solid (20 mg, 54 %). ¹H NMR (500 MHz, DMSO) 10.73 (1H, s, NH), 9.22 (1H, bs, ArH), 8.00 (1H, dd, ArH, J = 9.2 and 1.8 Hz), 7.81 (2H, dd, ArH, J = 8.5 and 1.3 Hz), 7.76 (1H, dd, ArH, J = 9.3 and 0.6 Hz), 7.53 (2H, t, ArH, J = 7.4 Hz), 7.44 (1H, t, ArH, J = 7.4 Hz), 2.51-2.53 (1H, m, cyclohexyl-H), 1.83 (2H, bd, cyclohexyl-H, J = 12.7 Hz), 1.77 (2H, bd, cyclohexyl-H, J = 12.7 Hz), 1.66 (1H, bd, J = 11.6 Hz), 1.42 (2H, dq, cyclohexyl-H, J = 12.4 and 2.7 Hz), 1.19-1.32 (3H, m, Cyclohexyl-H). LCMS [ES+]: m/z 321 [M+H]⁺.

N-(6-(4-Hydroxyphenyl)-[1,2,4]triazolo[1,5-a]pyridinyl))cyclohexanecarboxamide (23). Prepared according to general procedure A on 0.62 mmol scale to afford the product as a colourless solid (63 mg, 30 %). ¹H NMR (500 MHz, DMSO): 10.69 (1H, s, NH), 9.73 (1H, s, OH), 9.07 (1H, bs, ArH), 7.91 (1H, dd, ArH, J = 9.3 and 1.8 Hz), 7.70 (1H, bd, ArH, J = 9.3 Hz), 7.62 (2H, dd, ArH, J = 6.6 and 2.0 Hz), 6.89 (2H, dd, ArH, J = 6.6 and 2.0 Hz), 2.51-2.53 (1H, m, cyclohexyl-H), 1.83 (2H, bd, Cyclohexyl-H, J = 12.9 Hz), 1.76 (2H, bd, cyclohexyl-H, J = 12.5 Hz), 1.66 (1H, bd, cyclohexyl-H, J = 11.2 Hz), 1.41 (2H, bq, Cyclohexyl-H, J = 12.1 Hz), 1.17-1.32 (3H, m, Cyclohexyl-H). LCMS [ES+]: m/z 337 [M+H]⁺.

N-(6-(3-Methoxyphenyl)-[1,2,4]triazolo[1,5-a]pyridinyl)cyclohexanecarboxamide (24). Prepared according to general procedure A on a 0.44 mmol scale to afford the product as a colourless solid (84 mg, 52 %). ¹H NMR (500 MHz, DMSO): 10.73 (1H, s, NH), 9.26 (1H, bs, 2-H), 8.01 (1H, dd, ArH, J = 9.1, 1.8 Hz), 7.75 (1H, bd, ArH, J = 9.3 Hz), 7.44 (1H, t, ArH, J = 5.3 Hz), 7.37-7.38 (2H, m, ArH), 3.87 (3H, s, OCH₃), 7.00 (1H, dt, ArH, J = 7.2 and 1.6 Hz), 2.51-2.53 (1H, m, cyclohexyl-H), 1.83 (2H, bd, cyclohexyl-H, J = 13.0 Hz), 1.77 (2H, bd, cyclohexyl-H, J = 12.8 Hz), 1.66 (1H, bd, J = 11.6 Hz), 1.42 (2H, bq, cyclohexyl-H, J = 12.0 Hz), 1.16-1.32 (3H, m, cyclohexyl-H). LCMS [ES+]: *m/z* 351 [M+H]⁺.

N-(6-(3-Chlorophenyl) [1,2,4]triazolo[1,5a]pyridinyl)cyclohexanecarboxamide (26). Prepared according to general procedure A on a 0.15 mmol scale. Purification by column chromatography eluting with ether afforded the product as a colourless solid (21 mg, 38 %). ¹H NMR (500 MHz, CDCl₃): 8.74 (1H, s, ArH), 8.16 (1H, bs, NH), 7.72 (1H, dd, ArH, J = 9.1 and 1.8 Hz), 7.64 (1H, d, ArH, J = 9.1 Hz), 7.54 (1H, s, ArH), 7.40-7.44 (2H, m, ArH), 2.01 (2H, d, cyclohexyl-H, J = 11.4 Hz), 1.85 (2H, dt, cyclohexyl-H, J = 9.9 and 3.0 Hz), 1.71 (1H, d, cyclohexyl-H, J = 10.5 Hz), 1.26-1.39 (4H, m, cyclohexyl-H), 0.88-0.77 (2H, m, cyclohexyl-H). LCMS [ES+]: m/z 245 [M+H]⁺ T_R = 2.9 min.

N-(6-(1-Napthyl) [1,2,4]triazolo[1,5a]pyridinyl)cyclohexanecarboxamide (27). Prepared according to general procedure A on a 0.15 mmol scale. Purification by column chromatography eluting with ether afforded the product as a colourless solid (30 mg, 53 %). ¹H NMR (500 MHz, CDCl₃): 8.81 (1H, s, ArH), 8.19 (1H, bs, NH), 7.95 (1H, s, ArH), 7.91 (1H, d, ArH, J = 8.6 Hz), 7.81-7.86 (3H, m, ArH), 7.63 (1H, d, ArH, J = 7.9 Hz), 7.60

(1H, dd, ArH, J = 7.3 and 1.9 Hz), 7.60 (1H, dd, ArH, J = 7.3 and 1.9 Hz), 7.45-7.51 (2H, m, ArH), 1.96 (2H, bd, cyclohex-H, J = 13.0 Hz), 1.78 (2H, dt, cyclohex-H, J = 13.0 and 3.3 Hz), 1.64 (1H, m, cyclohex-H, J = 10.6 Hz), 1.52-1.58 (1H, m, cyclohex-H), 1.18-1.34 (5H, m, cyclohex-H). LCMS [ES+]: m/z 371 [M+H]⁺ T_R = 3.8 min.

N-(6-(4-Indole) [1,2,4]triazolo[1,5a]pyridinyl)cyclohexanecarboxamide (28). Prepared according to general procedure A on a 0.46 mmol scale. Purification by column chromatography eluting with ether afforded the product as a colourless solid (66 mg, 33 %). 1H NMR (500 MHz, DMSO δ): 10.74 (1H, s, NH), 11.42 (1H, s, NH), 9.02 (1H, s, ArH), 7.92 (1H, dd, ArH, J = 9.1 and 1.7 Hz), 7.80 (1H, d, ArH, J = 9.1 Hz), 7.51-7.50 (2H, m, ArH), 7.27-7.26 (2H, m, ArH), 6.62 (1H, s, ArH), 2.53-2.51 (1H, m, CH), 1.85 (2H, d, CH, J = 12.6 Hz), 1.68 (1H, d, CH, J = 12.0 Hz), 1.47-1.41 (2H, m, CH), 1.34-1.21 (3H, m, CH). LCMS [ES+]: m/z 360 [M+H]⁺ T_R = 3.3-3.5 min.

N-(6-(4-N-Methylindole) [1,2,4]triazolo[1,5a]pyridinyl)cyclohexanecarboxamide (29). Prepared according to general procedure A on a 0.46 mmol scale. Purification by column chromatography eluting with ether afforded the product as a colourless solid (73 mg, 35 %).1H NMR (500 MHz, DMSO δ): 10.72 (1H, s, NH), 9.00 (1H, s, ArH), 7.95 (1H, dd, ArH, J = 9.1 and 1.7 Hz), 7.79 (1H, d, ArH, J = 9.1 Hz), 7.54 (1H, d, ArH, J = 8.0 Hz), 7.48 (1H, d, ArH, J = 3.1 Hz), 7.31 (1H, dd, ArH, J = 7.9 and 7.4 Hz), 7.25 (1H, d, ArH, J = 6.7 Hz), 6.59 (1H, d, ArH, J = 3.1 Hz), 3.87 (3H, s, CH₃), 2.53-2.51 (1H, m, CH), 1.84-1.82 (2H, m, CH), 1.77-1.75 (2H, m, CH), 1.67-1.65 (1H, m, CH), 1.45-1.38 (2H, m, CH), 1.31-1.11 (3H, m, CH). LCMS [ES+]: m/z 374 [M+H]⁺ T_R = 3.5-3.7 min.

N-(7-(3-Morpholinophenyl) [1,2,4]triazolo[1,5a]pyridinyl)cyclohexanecarboxamide (30). Prepared according to general procedure A on a 0.46 mmol scale. Purification by column chromatography eluting with ether afforded the product as a colourless solid (68 mg, 36 %). 1H NMR (500 MHz, DMSO δ): 10.70 (1H, s, NH), 9.23 (1H, s, ArH), 7.99 (1H, d, ArH, J = 8.7 Hz), 7.72 (1H, d, ArH, J = 8.5 Hz), 7.37-7.32 (2H, m, ArH), 7.21 (1H, d, ArH, J = 6.4 Hz), 7.00 (1H, d, ArH, J = 7.7 Hz), 3.77 (4H, s, 2 x CH₂), 3.23 (4H, s, 2 x CH₂), 1.83-1.75 (4H, m, CH), 1.66-1.64 (1H, m, CH), 1.45-1.38 (2H, m, CH), 1.28-1.18 (3H, m, CH). LCMS [ES+]: m/z 406 [M+H]⁺ T_R = 3.4-3.6 min.

N-(7-(2,6-Dimethylphenyl) [1,2,4]triazolo[1,5a]pyridinyl)cyclohexanecarboxamide (31). Prepared according to general procedure A on a 0.46 mmol scale. Purification by column chromatography eluting with ether afforded the product as a colourless solid (23 mg, 43 %). 1H NMR (500 MHz, CDCI3): 8.57 (1H, bs, NH), 8.39 (1H, s, ArH), 7.65 (1H, d, ArH, J = 9.0 Hz), 7.34 (1H, dd, ArH, J = 9.0 and 1.6 Hz), 7.25 (1H, d, ArH, J = 7.6 Hz), 7.16 (1H, d, ArH, J = 7.6 Hz), 2.07 (6H, s, 2 x CH₃), 2.01 (2H, d, cyclohexyl-H, J = 13.0 Hz), 1.83-1.86 (2H, m, cyclohexyl-H), 1.69-1.71 (1H, m, cyclohexyl-H), 1.56-1.61 (2H, m, cyclohexyl-H), 1.25-1.35 (4H, m, cyclohexyl-H). LCMS [ES+]: m/z 349 [M+H]⁺ T_R = 3.7 min.

N-(7-(2,5-Dimethylphenyl) [1,2,4]triazolo[1,5a]pyridinyl)cyclohexanecarboxamide (32). Prepared according to general procedure A on a 0.46 mmol scale. Purification by column chromatography eluting with ether afforded the product as a colourless solid (55 mg, 34 %). 1H NMR (500 MHz, DMSO δ): 10.70 (1H, s, NH), 8.86 (1H, s, ArH), 7.72 (1H, d, ArH, J = 9.0 Hz), 7.64 (1H, dd, ArH, J = 9.0 and 1.7 Hz), 7.25 (1H, d, ArH, J = 8.4 Hz), 7.17-7.18 (2H, m, ArH), 2.53-2.51 (1H, m, CH), 2.34 (3H, s, CH₃), 2.25 (3H, s, CH₃), 1.83 (2H, d, CH, J = 13.0 Hz), 1.77 (2H, d, CH, J = 12.0 Hz), 1.66 (1H, d, CH, J = 11.5 Hz), 1.45-1.38 (2H, m, CH), 1.32-1.19 (3H, m, CH). LCMS [ES+]: m/z 349 [M+H]⁺ T_R = 4.6-4.7 min.

N-(6-(4-Methoxy-3-methylphenyl)

[1,2,4]triazolo[1,5a]pyridinyl)cyclohexanecarboxamide (34). Prepared according to general procedure A on a 0.46 mmol scale. Purification by column chromatography eluting with ether afforded the product as a colourless solid (67 mg, 33 %). 1H NMR (500 MHz, DMSO δ):10.69 (1H, s, NH), 9.12 (1H, s, ArH), 7.96 (1H, dd, ArH, J = 9.2 and 1.8 Hz), 7.72 (1H, d, ArH, J = 9.2 Hz), 7.63-7.61 (2H, m, ArH), 7.07 (1H, d, ArH, J = 8.7 Hz), 3.85 (3H, s, OCH₃), 2.53-2.51 (1H, m, CH), 2.25 (3H, s, CH₃), 1.84-1.81 (2H, m, CH), 1.75-1.78 (2H, m, CH), 1.68-1.65 (1H, m, CH), 1.42-1.41 (2H, m, CH), 1.29-1.22 (3H, m, CH). LCMS [ES+]: m/z 365 [M+H]⁺ T_R = 3.6-3.8 min.

6-m-Tolyl-[1,2,4]triazolo[1,5-a]pyridine-3-amine (35). Prepared according to general procedure A on a 2.95 mmol scale. Purification by column chromatography eluting with ether afforded the product as a cream solid (660 mg, 100 %). ¹H NMR (500 MHz, CDCl₃): 8.48 (1H, d, ArH, J = 0.7 Hz), 8.10 (1H, d, ArH, J = 9.2 Hz), 7.80 (1H, dt, ArH, J = 9.2 and 1.7 Hz), 7.40 (1H, t, ArH, J = 7.6 Hz), 7.32-7.35 (2H, m, ArH), 7.25-7.28 (1H, m, ArH), 5.62 (2H, bs, NH₂), 2.44 (3H, s, CH₃). LCMS [ES+]: m/z 225 [M+H]⁺ T_R = 3.0 min.

N-(Cyclohexylmethyl)-6-m-tolyl-[1,2,4]triazolo[1,5-a]pyridine-2-amine (36). 27 (50 mg, 0.22 mmol), NaCNBH₃ (1M soln in THF, 0.33 mmol) and cyclohexanecarbaldehyde (37 mg, 0.33 mmol) were heated in a microwave reactor for 10 min at 180 °C, the reaction quenched with H₂O, the THF removed in-vacuo and the residue portioned between EtOAc and H₂O. The organic layer was dried over MgSO₄, filtered and the solvent removed *in-vacuo*. Purification with column chromatography eluting with ether afforded the desired product as a colourless oil (27 mg, 36 %). ¹H NMR (500 MHz, CDCl₃): 8.54 (1H, dd, ArH, *J* = 1.8 and 0.7 Hz), 7.63 (1H, dd, ArH, *J* = 9.1 and 1.9 Hz), 7.44 (1H, dd, ArH, *J* = 9.1 and 0.7 Hz), 7.37-7.40 (3H, m, ArH), 7.23 (1H, d, ArH, *J* = 6.8 Hz), 4.56 (1H, t, CH, *J* = 6.2 Hz), 3.30 (2H, t, CH₂, *J* = 6.5 Hz), 2.45 (3H, s, CH₃), 1.85-1.87 (2H, m, cyclohexyl-H), 1.73-1.78 (2H, m, cyclohexyl-H), 1.64-1.72 (2H, m, cyclohexyl-H), 1.16-1.19 (2H, m, cyclohexyl-H), 1.00-1.08 (2H, m, cyclohexyl-H). LCMS [ES+]: *m/z* 321 [M+H]⁺ T_R = 3.9 min.

N-(6-m-Tolyl-[1,2,4]triazolo[1,5-a]pyridinyl)acetamide (37). Prepared according to general procedure B on a 0.45 mmol scale. Purification by column chromatography eluting with ether afforded the product as a white solid (40 mg, 33 %). ¹H NMR (500 MHz, DMSO): 10.83 (1H, s, NH), 9.21 (1H, s, ArH), 7.99 (1H, dd, ArH, J = 9.2 and 1.8 Hz), 7.75 (1H, d, ArH, J = 9.1 Hz), 7.64 (1H, s, ArH), 7.63-7.56 (1H, m, ArH), 7.41-7.38 (1H, m, ArH), 7.24 (1H, d, ArH, J = 7.4 Hz), 2.40 (3H, s, CH₃), 2.16 (3H, s, CH₃). LCMS [ES+]: *m/z* 267 [M+H]⁺ T_R = 2.9-3.2 min.

N-(6-m-Tolyl-[1,2,4]triazolo[1,5-a]pyridinyl)tetrahydrofuran-2-carboxamide (38). Prepared according to general procedure B on a 0.45 mmol scale. Purification by column chromatography eluting with ether afforded the product as a clear oil (20 mg, 13 %). ¹H NMR (500 MHz, DMSO): 10.51 (1H, s, NH), 9.22 (1H, s, ArH), 8.01 (1H, dd, ArH, J = 9.2 and 1.8 Hz), 7.78 (1H, dd, ArH, J = 9.2 and 0.7 Hz), 7.64 (1H, s, ArH), 7.60 (1H, d, ArH, J = 8.1 Hz), 7.40 (1H, t, ArH, J = 7.6 Hz), 7.25 (1H, d, ArH, J = 7.5 Hz), 4.52 (1H, s, CH), 4.02-3.98 (1H, m, CH), 3.85-3.81 (1H, m, CH), 2.40 (3H, s, CH₃), 2.27-2.20 (1H, m, CH), 2.01-1.84 (3H, m, 3 x CH). LCMS [ES+]: m/z 323 [M+H]⁺ T_R = 4.9-5.1 min.

N-(6-m-Tolyl-[1,2,4]triazolo[1,5-a]pyridinyl)tetrahydro-2H-pyran-4-carboxamide (39). Prepared according to general procedure B on a 0.45 mmol scale. Purification by column chromatography eluting with ether afforded the product as a white solid (91 mg, 60 %). ¹H NMR (500 MHz, DMSO): 10.99 (1H, s, NH), 9.18 (1H, s, ArH), 7.99 (1H, dd, ArH, J = 9.2 and 1.8 Hz), 7.75 (1H, d, ArH, J = 8.7 Hz), 7.63 (1H, s, ArH), 7.59 (1H, d, ArH, J = 8.3 Hz),

7.40 (1H, t, ArH, J = 7.6 Hz), 7.25 (1H, d, ArH, J = 7.5 Hz), 3.09-3.07 (1H, m, CH), 2.92-2.89 (1H, m, CH), 2.77-2.73 (1H, m, CH), 2.65-2.64 (1H, m, CH), 2.62-2.52 (1H, m, CH), 2.40 (3H, s, CH3), 1.92 (1H, m, NH), 1.67-1.59 (2H, m, CH), 1.47-1.45 (1H, m, CH), 1.24 (1H, s, CH). LCMS [ES+]: m/z 337 [M+H]⁺ T_R = 3.1-3.4 min.

N-(6-m-Tolyl-[1,2,4]triazolo[1,5-a]pyridinyl)piperidine-3-carboxamide (40). Prepared according to general procedure B on a 0.44 mmol scale. Purification by column chromatography eluting with ether afforded the t-BOC protected product as a cream solid (18 mg, 10 %). Deprotection with TFA:DCM (0.5:1 mL) afforded the desired product (4 mg, 28 %). ¹H NMR (500 MHz, DMSO): 10.99 (1H, bs, NH), 9.18 (1H, s, ArH), 7.99 (1H, dd, ArH, J = 9.2 and 1.8 Hz), 7.75 (1H, d, ArH, J = 8.7 Hz), 7.63 (1H, s, ArH), 7.59 (1H, d, ArH, J = 8.7 Hz), 7.40 (1H, t, ArH, J = 7.6 Hz), 7.25 (1H, d, ArH, J = 7.6 Hz), 3.09-3.07 (1H, m, CH), 2.92-2.89 (1H, m, CH), 2.77-2.73 (1H, m, CH), 2.62-2.52 (1H, m, CH), 1.93-1.91 (1H, m, CH), 1.67-1.59 (2H, m, CH), 1.44 (1H, m, CH), 1.24 (1H, bs, CH). LCMS [ES+]: m/z 336 [M+H]⁺ T_R = 3.2-3.4 min.

N-(6-m-Tolyl-[1,2,4]triazolo[1,5-a]pyridinyl)benzamide (41). Prepared according to general procedure A on a 0.15 mmol scale. Purification by column chromatography eluting with ether afforded the product as a colourless solid (25 mg, 51 %). 1H NMR (500 MHz, CDCl₃): 9.39 (1H, s, NH), 8.81 (1H, s, ArH), 8.03 (3H, d, ArH, J = 7.4 Hz), 7.77 (1H, dd, ArH, J = 9.2 and 1.8 Hz), 7.61(1H, t, ArH, J = 7.4 Hz), 7.53 (2H, t, ArH, J = 7.4 Hz), 7.48 (1H, d, ArH, J = 9.2 Hz), 7.37-7.42 (2H, m, ArH), 2.52 (3H, s, CH₃). LCMS [ES+]: *m/z* 329 [M+H]⁺ T_R = 4.5-4.6 min.

N-(6-m-Tolyl-[1,2,4]triazolo[1,5-a]pyridinyl)cyclobutanecarboxamide (42). Prepared according to general procedure A on a 0.15 mmol scale from 27, purification by column chromatography eluting with ether afforded the product as a colourless solid (20 mg, 44 %). ¹H NMR (500 MHz, CDCl₃): 8.75 (1H, bs, NH), 8.11 (1H, bs, ArH), 7.76 (1H, dd, ArH, *J* = 9.2 and 1.8 Hz), 7.63 (1H, d, ArH, *J* = 9.2 Hz), 7.32-7.41 (1H, m, ArH), 7.22 (1H, d, ArH, *J* = 6.5 Hz), 2.46 (3H, s, CH₃), 2.05 (2H, m, cyclobutyl-H), 1.83 (2H, m, cyclobutyl-H), 1.30-1.45 (3H, m, cyclobutyl-H). LCMS [ES+]: *m*/*z* 307 [M+H]⁺ T_R = 3.6 min.

N-(6-m-Tolyl-[1,2,4]triazolo[1,5-a]pyridinyl)cyclopentanecarboxamide (43). 3-Cyclopentanecarbonyl chloride (29 µL, 0.22 mmol) was added to a stirred solution of 27 (50 mg, 0.22 mmol), pyridine (anhydrous, 0.4 mL) and DMAP (2 mg, 0.02 mmol) at 0 °C. The reaction mixture was stirred at rt for 16 h diluted with DCM and washed with 15 % NaOH solution (2 x 10 mL), dried over MgSO₄, filtered and the solvent removed *in-vacuo*. Column chromatography eluting with ether afforded the desired product (14 mg, 20 %). ¹H NMR (500 MHz, CDCl₃): 8.55 (1H, s, ArH), 8.15 (1H, bs, ArH), 7.76 (1H, dd, ArH, *J* = 9.2 and 1.8 Hz), 7.62 (1H, d, ArH, *J* = 9.2 Hz), 7.36-7.40 (3H, m, ArH), 7.23-7.25 (1H, m, ArH), 2.84 (1H, bs, CH), 2.44 (3H, s, CH₃), 1.93-2.00 (4H, m, cyclopentyl-H), 1.77-1.85 (2H, m, cyclopentyl-H), 1.68-1.68 (2H, m, cyclopentyl-H). LCMS [ES+]: *m/z* 321 [M+H]⁺ T_R = 3.5-3.6 min.

2-Cyclohexyl-*N***-(6-m-tolyl-[1,2,4]triazolo[1,5-a]pyridinyl)acetamide** (45). Prepared following general procedure B on a 0.44 mmol scale to afford the desired product (24 mg, 16 %). ¹H NMR (500 MHz, CDCl₃): 10.76 (1H, bs, NH), 9.19 (1H, s, ArH), 7.98 (1H, d, ArH, J = 8.6 Hz), 7.74 (1H, d, ArH, J = 9.7 Hz), 7.63 (1H, s, ArH), 7.58 (1H, d, ArH, J = 8.2 Hz), 7.40 (1H, t, ArH, J = 7.0 Hz), 7.24 (1H, d, ArH, J = 8.2 Hz), 2.40 (3H, s, CH₃), 2.30 (1H, bs, CH), 1.63-1.72 (5H, cyclohexyl-H), 1.13-1.24 (4H, m, cyclohexyl), 0.94-0.99 (2H, m, cyclohexyl-H). LCMS [ES+]: m/z 349 [M+H]⁺ T_R = 3.7-3.8 min.

3-Cyclopentyl-*N***-(6-m-tolyl-[1,2,4]triazolo[1,5-a]pyridinyl)propanamide (46)**. Prepared following general procedure B on a 0.44 mmol scale to afford the desired product (92 mg, 59 %). ¹H NMR (500 MHz, CDCl₃): 10.54 (1H, bs, NH), 8.95 (1H, s, ArH), 7.74 (1H, d, ArH, J = 9.0 Hz), 7.51 (1H, d, ArH, J = 9.0 Hz), 7.40 (1H, s, ArH), 7.35 (1H, d, ArH, J = 7.3 Hz), 7.16 (1H, t, ArH, J = 7.3 Hz), 7.00 (1H, d, ArH, J = 7.3 Hz), 2.16 (3H, s, CH₃), 1.52 (3H, bs, cyclohexyl-H), 1.37 (4H, bs, cyclohexyl-H), 1.25 (2H, bs, cyclohexyl-H), 0.87 (2H, bs, cyclohexyl-H). LCMS [ES+]: m/z 349 [M+H]⁺ T_R = 3.5 min.

6-(3,5-Dimethylphenyl)-[1,2,4]triazolo[1,5-a]pyridin-3-amine (20b). 6-Bromo-[1,2,4]triazolo[1,5-a]pyridine-2-amine (0.63 g, 2.96 mmol) was suspended in DMF (5 mL) and K₂CO₃ (2M, 5 mL), Pd(PPh₃)₄ (0.1 g 0.09 mmol) and 3,5-dimethylboronic acid (0.75 g, 0.5 mmol) were heated at 160 °C for 5 min in μ W reactor. The reaction was diluted with EtOAc washed with LiCl (5 % aq., 20 mL), NaOH (15 %, 20 mL) and H₂O (3 x 30 mL), dried over MgSO₄, filtered and the solvent removed *in-vacuo*. Column chromatography eluting with EtOAc afforded the desired product (136 mg, 24 %). 1H NMR (500 MHz, CDCl₃): 8.48 (1H, dd, ArH, *J* = 1.8 and 0.8 Hz), 7.64 (1H, dd, ArH, *J* = 9.1 and 1.8 Hz), 7.46 (1H, dd, ArH, *J* = 9.1 and 0.8 Hz), 7.16 (2H, s, ArH), 7.05 (1H, s, ArH), 4.47 (2H, bs, NH₂), 2.40 (6H, s, 2 x CH₃). LCMS [ES+]: *m/z* 239 [M+H]⁺ T_R = 3.1-3.3 min.

N-(6-(3,5-Dimethylphenyl)-[1,2,4]triazolo[1,5-a]pyridinyl)-3-phenylpropanamide (47). Prepared following general procedure F on a 0.21 mmol scale. Column chromatography eluting with ether afforded the desired product (61 mg, 82 %). 1H NMR (500 MHz, CDCl₃): 8.72 (1H, bs, NH), 8.41 (1H, bs, ArH), 7.74 (1H, dd, ArH, J = 9.2 and 1.8 Hz), 7.61 (1H, d, ArH, J = 9.2 Hz), 7.27 – 7.30 (3H, m, ArH), 7.20-7.24 (2H, m, ArH), 7.18 (1H, s, ArH), 7.08 (1H, s, ArH), 3.12 (2H, t, CH₂, J = 7.7 Hz), 2.41 (6H, s, 2 x CH₃), 1.58 (2H, s, CH₂). LCMS [ES+]: m/z 371 [M+H]⁺ T_R = 3.5-3.6 min.

N-(6-(3,5-Dimethylphenyl)-[1,2,4]triazolo[1,5-a]pyridinyl)cycloheptanecarboxamide (48). Prepared following general procedure F on a 0.21 mmol scale. Column chromatography eluting with ether afforded the desired product (36 mg, 50 %). 1H NMR (500 MHz, CDCl3): 9.16 (1H, bs, NH₂), 8.75 (1H, s, ArH), 7.77 (1H, dd, ArH, J = 9.1 and 1.8 Hz), 7.61 (1H, d, ArH, J = 9.1 Hz), 7.16 (2H, s, ArH), 7.07 (1H, s, ArH), 2.40 (6H, s, 2 x CH₃). 2.00-2.07 (2H, m, cycloheptyl-H), 1.84-1.97 (5H, m, cycloheptyl-H), 1.48-1.62 (7H,

m, cycloheptyl-H). LCMS [ES+]: m/z 363 [M+H]⁺ T_R = 2.9 min. General procedure for the preparation of ureas 50, 52-61

1-(5,5-Dimethyl-3-oxocyclohex-1-en-1-yl)-3-phenylurea (50): 3-Amino-5,5dimethylcyclohexeneone (100 mg, 0.72 mmol) was dissolved in 1,4-dioxane (3 ml) then phenylisocyanate (0.93 ml, 0.86 mmol) was added in one portion at room temperature. The reaction mixture was heated to 90 °C with stirring for 16 h then cooled to room temperature. The resulting precipitate was collected, washed with 1,4-dioxane (5 ml) and

diethyl ether (5 x 5 ml) and dried under vacuum to give **50** as a white solid (107 mg, 58 % yield). ¹H NMR (DMSO, 500 MHz) δ =8.91 (1H, s, NH), 8.66 (1H, s, NH), 7.44-7.41 (2H, m, ArH), 7.32-7.29 (2H, m, ArH), 7.04-7.01 (1H, m, ArH), 6.45 (1H, s, CH), 2.33 (2H, s, CH₂), 2.11 (2H, s, CH₂) and 1.02 (6H, s, Me). LCMS 97% (M+H, 259)

1-(CyclohexyImethyl)-3-(5,5-dimethyl-3-oxocyclohex-1-en-1-yl)urea (53): Prepared following general procedure A to afford **53** as a white solid (61 mg, 31% yield). ¹H NMR (DMSO, 500 MHz) δ = 8.40 (1H, s, NH), 6.48 (1H, t, J=5.8*Hz*, NH), 6.39 (1H, s, CH), 2.90 (2H, t, J=6.3*Hz*, CH), 2.24 (2H, s, CH₂), 2.05 (2H, s, CH₂), 1.70-1.66 (5H, m, CH), 1.38-1.34 (1H, m, CH), 1.23-1.08 (3H, m, CH), 0.99 (6H, s, Me), and 0.91-0.83 (2H, m, CH). LCMS 98% (M+H, 279).

1-(5,5-Dimethyl-3-oxocyclohex-1-en-1-yl)-3-(2-methoxyphenyl)urea (55): Prepared following general procedure A to afford **55** as a white solid (114 mg, 55% yield). ¹H NMR (DMSO, 500 MHz) δ =9.24 (1H, s, NH), 8.51 (1H, s, NH), 8.04 (1H, dd, J=1.5 and 8.0*Hz*, ArH), 7.05-6.98 (2H, m, ArH), 6.93-6.89 (1H, m, ArH), 6.50 (1H, s, CH), 3.87 (3H, s, Me), 2.32 (2H, s, CH₂), 2.11 (2H, s, CH₂) and 1.03 (6H, s, Me). LCMS 100% (M+H, 289).

1-(5,5-Dimethyl-3-oxocyclohex-1-en-1-yl)-3-(4-methoxyphenyl)urea (57): Prepared following general procedure A to afford **57** as a white solid (113 mg, 50% yield). ¹H NMR (DMSO, 500 MHz) δ =8.71 (1H, s, NH), 8.58 (1H, s, NH), 7.33 (2H, d, J=8.7*Hz*, ArH), 6.89 (2H, d, J=8.7*Hz*, ArH), 6.43 (1H, s, CH), 3.72 (3H, s, Me), 2.32 (2H, s, CH₂), 2.10 (2H, s, CH₂) and 1.02 (6H, s, Me). LCMS 100% (M+H, 289).

1-(4-(Benzyloxy)phenyl)-3-(5,5-dimethyl-3-oxocyclohex-1-en-1-yl)urea (58): Prepared following general procedure A to afford **58** as a white solid (166 mg, 60% yield). ¹H NMR (DMSO, 500 MHz) δ =8.73 (1H, s, NH), 8.60 (1H, s, NH), 7.46-7.38 (7H, m, ArH), 7.35-7.31 (2H, m, ArH), 6.43 (1H, s, CH), 5.07 (2H, s, CH₂), 2.32 (2H, s, CH₂), 2.10 (2H, s, CH₂) and 1.02 (6H, s, Me). LCMS 96% (M+H, 365).

Methyl 4-(3-(5,5-dimethyl-3-oxocyclohex-1-en-1-yl)ureido)benzoate (59): Prepared following general procedure A to afford **59** as a white solid (101 mg, 44% yield). ¹H NMR (DMSO, 500 MHz) δ =9.31 (1H, s, NH), 8.77 (1H, s, NH), 7.91 (2H, d, J=8.8*Hz*, ArH), 7.57 (2H, d, J=8.8*Hz*, ArH), 6.45 (1H, s, CH), 3.82 (3H, s, Me), 2.35 (2H, s, CH₂), 2.12 (2H, s, CH₂) and 1.02 (6H, s, Me). LCMS 100% (M+H, 316).

1-(5,5-Dimethyl-3-oxocyclohex-1-en-1-yl)-3-(4-hydroxyphenyl)urea (60): Compound **12** (50 mg, 0.14 mmol) was dissolved in MeOH (8 ml) and water (2 ml) then $Pd(OH)_2$ (10 mg of 20% w/w on carbon) was added in one portion. The mixture was evacuated the back filled with Argon the process repeated then the flask evacuated and filled with hydrogen. The reaction was stirred vigorously for 20 hours then evacuated and back filled with nitrogen twice before opening the reaction to air. The reaction mixture was filtered through celite washing with MeOH (2 × 10 ml) then concentrated under vacuum. Triturating with hot Et_2O gave **60** as a white solid (11 mg, 0.40 mmol, 29% yield). ¹H NMR (DMSO, 500 MHz) δ =9.19 (1H, s), 8.61 (1H, s), 8.57 (1H, s), 7.20 (2H, d, J=8.7*Hz*, ArH), 6.70 (2H, d, J=8.7*Hz*, ArH), 6.42 (1H, s, CH), 2.31 (2H, s, CH₂), 2.09 (2H, s, CH₂) and 1.02 (6H, s, Me). LCMS 100% (M+H, 275).

1-(3-Oxocyclohex-1-en-1-yl)-3-phenylurea (61): Prepared following general procedure A to afford **61** as a white solid (147 mg, 71% yield). ¹H NMR (DMSO, 500 MHz) δ =8.98 (1H, s, NH), 8.74 (1H, s, NH), 7.43-7.41 (2H, m, ArH), 7.32-7.29 (2H, m, ArH), 7.04-7.01 (1H, m, ArH), 6.46 (1H, s, CH), 2.44 (2H, t, J=6.0*Hz*, CH₂), 2.23-2.20 (2H, m, CH₂) and 1.93-1.88 (2H, m, CH₂). LCMS 100% (M+H, 231).