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Terminology and Definitions

Node: In a de Bruijn graph, a node represents a k-mer (string of length k, taken from the
alphabet: A,C,G,T).
In/out-degree: Number of edges pointing in/out of a node.
Supernode: maximal length path through the graph with constraint that only the first/last
nodes in the path may have in/out degree !=1. Given any node, there is a unique supernode
containing it - extend in both directions until one reaches a node with in/out-degree <>1
(i.e. a junction). Since edge/node existence varies between colors, supernodes are color-
dependent.
Bubble: A bubble is a pair of supernodes with the same start and end nodes. This
generalizes straightforwardly to multiallelic sites.
Branch: Each of the supernodes constituting a bubble is called a branch.
Tip: A short path ending in a node with out-degree 0; depending on coverage, kmer, length
of the path and genome complexity, one can infer that this is more likely to be created by a
sequencing error than a coverage-gap due to sampling.
Confounded: A variant is called confounded if overlaps with other parts of the genome (or
with itself) prevent it from forming a clean bubble.
Effective coverage, or expected k-mer coverage: The requirement that reads overlap by
at least k bases before the overlap registers in the de Bruijn graph results in a reduction in
coverage; this results in an “effective” coverage (of k-mers) in the graph. If R is the read-
length and D is the expected per base coverage, the effective coverage is
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Effective read-length: The requirement that reads overlap by at least k bases means that
one can consider a genome of length G as a sequence of kmers (rather than bases), from
which reads of length R-k+1 are sampled.

1. Theoretical predictions for variant discovery power

The following model incorporates a Poisson model of coverage on a de Bruijn graph with a
model for how genome repeat content affects power to detect variants. This model was
used to generate predictions for power for the Bubble-Caller (BC) algorithm as shown in
Figure 2a, and Supplementary Figures 5 and 6.

1.1 Separating the effects of experimental design and and genome-complexity

The probability, P, of detecting a variant allele in a de Bruijn graph with kmer-size k, is the
product of the probability that the allele is present in the graph (which depends on
sequence coverage, read-length, allele-length and kmer-size and error rate), the probability,
G, that the variant containing this allele is not confounded with the true genome graph, and
the probability, E, that the variant containing the allele is not confounded by an error. We
refer to the second probability as the “genome complexity” G, which depends only on the
complexity of the genome graph, the length of the allele, and k. The genome complexity
function acts as an upper bound for sensitivity (power).



1.2 Estimating genome complexity
For the human genome, the genome complexity was estimated from the human reference
genome NCBI36.

1. For SNPs we estimate G directly, by taking the 247 Mb human chromosome 1 (from
reference assembly NCBI36), and creating all 3x247 million = 741 million possible
single nucleotide variants in turn. The path created by each SNP allele is then
compared with the graph of the reference, and if (a) the path forms a new
supernode (i.e. does not overlap with the rest of the genome) and (b) the reference
allele itself forms a single supernode, then the SNP is considered callable. The
genome complexity is calculated as the proportion of possible SNPs which are
callable. This is shown in black in Supplementary Figure 4. In the context of the high
coverage simulation, where a modified copy of chromosome 1 was treated as an
entire genome, the above calculation was repeated replacing NCBI36 with that
chromosome (shown in blue in Supplementary Figure 4).

2. The probability that a 50bp variant is callable can be approximated from the
probability that a randomly chosen 50bp contig from the human reference lies
entirely within one supernode. This is calculated for different values of k (k = 21,
31,41, 55, 65 and 75). To predict power for variants of different sizes we used 50
bp as a mean for small variants (1-100bp), 550 bp for medium sized variants (101
bp - 1 kb) and 5.5kb for large variants (1 kb - 10 kb). These are shown in
Supplementary Figure 5.

Estimates are expected to become progressively worse approximations as the size of
variant increases as they do not take account of known families of repeats such as Alus,
which are over-represented relative to their genome abundance in structural variation. We
note that calculations could be performed for any particular variant type.

1.3 Poisson model incorporating read-length, coverage, kmer-size and sequencing
errors

The sampling of reads from a genome may be considered as queuing problem - reads
“arrive” at a queue in a Poisson process of fixed rate, A=D/R (where D is the sequencing
depth and R the read length) and queue for a fixed time R. In queuing terminology this is an
M / D/ queue. By making a linear transformation, instead of considering a Poisson
process of reads of length R arriving on a genome, in a de Bruijn graph one effectively has
reads of length L=R-k+1 arriving on a “genome” of length G — k + 1 = G. Thus the effective
depth of coverage, or expected k-mer coverage, in a de Bruijn graph is given by
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The following illustrative examples show how choice of k, D, R affect sensitivity. If k=21 and
R=100, then the effective read length in the de Bruijn graph is 80, whereas a SNP causes an
allele of length 22. Thus the entire allele fits inside a single read. By contrast, if k=75 and
R=100, then the effective read-length is 26, but a SNP causes an allele of length 76, and thus
several reads are needed to cover the allele. Thus we expect that if, for a specified k and R,
the allele of interest fits into a single effective read, the probability of covering the whole
allele very rapidly approaches 1 as depth of coverage increases. The mean and variance of
the distribution of contig lengths were derived by Lander and Waterman 1; we derive a good



approximation for the whole probability distribution below; for a general treatment see
Leeuwaarden et al2.

Proposition:
If C is defined as the distance between the (starts of the) first and last reads in a contig, then
the probability distribution function of C is given by

P(C=t)=(- oM )e_MMtI{»O} + e—ALI{Z=0}

where [ is an indicator function. The approximation is an upper bound, and becomes worse
when AZ is small (as k approaches R, or when D is small). The actual contig length is L+C (a
contig is always as long as a read) - note that this results in a distribution which is a point
mass plus an exponential distribution.

Proof:

If N is the number of reads in a contig after the initial one, then N is geometrically
distributed with parameter 1-Exp(- AL). For a fixed N, approximate the waiting time until
the end of the contig (i.e. the waiting time until a gap of length at least L), by the waiting
time until N reads have arrived, which is given by a Gamma distribution. This
approximation breaks down when the probability of a read arriving with a gap larger than L
is non-negligible - i.e. when AZ is small.
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Note, this shows that C is a sum of a Dirac mass, and an exponentially distributed variable.
The result then follows by integration.

A calculation shows that
G|

A
and thus for the region of parameter space of experimental interest, C>>L, except when D is
very low. Note that if £ =1, the above formula reduces to the standard Lander-Waterman

formula for contig length, R(e” — 1)/D.
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Corollary:
The probability P that an allele of length d is present in the de Bruijn graph is approximated
by

P=(-e™)P(C=d)

Proof:

The previous proposition gives the probability distribution of the contig formed by all reads
arriving after any particular read - the first read does not need to be preceded by a gap.
Therefore, without loss of generality, suppose we have an allele of length d, starting at
position L. Conditional on there being any coverage at all on the first node, there are some
number N of reads covering that node, which will have start positions uniformly distributed
on the interval [1,L].

As the depth of coverage increases, so will N, and the start position of the furthest left read
approaches 1 - we are interested in the distribution of the length of the contig starting with
that furthest-left read. In other words, conditional on having non-zero coverage at the
(arbitrary) initial position L, as depth increases the distribution of the length of the contig
of interest approaches the distribution of a contig of length L+C. This contig will contain the
allele (length d) when C>=d, which proves the result.

1.4 Combining Poisson model and genome complexity
Recalling the discussion above, the power to detect an allele of length t>0, is given by

AL

Power = G(t,k)(1-e™)2e™™

where G depends on the species/genome in question. Note that in the de Bruijn graph, an n
base-pair variant forms an allele/path of length k+n.

1.5 Integrating an error model

1.5.1 Reduction in coverage due to errors

The primary effect of sequencing errors is to reduce the arrival rate A by a factor of 1- ke,
where ¢ is the per-base sequencing error rate (and therefore k¢ is the per k-mer error
rate). In the case of the simulations (see below) a simple model of an Illumina er ror-profile
was used: a per-base error rate 0.1% in first 80bp of read, and 5% in the final 20bp. For
convenience below, these two error-rates are termed “fast” and “slow”. This resulted in a
per k-mer error rate dependent on k. For example for k =21, each 100bp read contained
80 21-mers, of which the first 60 21-mers consisted entirely of bases with a slow error rate,
the next 21-mer contained 20 bases with a slow error rate and 1 base with a fast error rate,
and so on. An average per base error rate ¢ was calculated for each k, based on this model,
and used in the predictions for the simulations. In empirical data, the error rate can be
calculated from (well-calibrated) base quality scores.



1.5.2 Effect of error-cleaning, and errors which confound bubbles despite error-
cleaning

In the simulations, graphs were cleaned by clipping tips of length at most k + 1, and then
removing supernodes where every interior node had coverage = a (typically a =1, in the
text referred to as ‘relaxed’, except for ‘stringent’ cleaning, where a = 2). We took these
factors into account to estimate the proportion of sites uncalled due to errors confounding
the bubble.

Tip clipping: if k>R/2, then a single error in a single read cannot make a full bubble, and is
guaranteed to be removed by tip-clipping. Thus in this case, for an error to escape tip-
clipping, it must occur twice, and form a full bubble, requiring it to occur in one read in a
position with more than k -1 correct bases after it, and in a second read in a position with
more than k-1 correct bases before it - the simulations used k 2 21, which is longer than the
section at the end of the read with higher error rate. Therefore, the probability of an error
repeating in such a way as to avoid tip-clipping (conditional on there being two errors, one
fast and one slow) is approximately (80-k+1)/80. Errors which evade tip-clipping by

occurring twice (once fast and once slow) therefore occur atrate € =+/0.001 x 0.05.

Removing low-coverage supernodes: We include a simple term to account for the probability
that a site becomes uncallable because of a repeated error, using the notation dpois(n,r) to

denote the probability that a Poisson distribution of rate r takes value n, and binom(n, p,i)
to denote the probability that a Binomial distribution with parameters n,p takes value i:

E=1-Qk-2) Edpois(i,Deff)Ebinom(i,%s,n)(1 - 2}_1 ))(E dpois(j,Ak)(1 - g)m) 80;_(’5”
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The central bracketed term is the probability that the same error occurs twice at a specific
base and is an error that will confound the site; if the true base is (for example) an A, then
there are three possible error-bases (C,G,T) of which only two will make the bubble
uncallable (the other will match the alternate/other allele; for the sake of example here, we
say the other allele is C), thus giving us an error rate of 2€ /3. The sum over n computes the
probability that two of the n errors that occur are the same, conditional on both of them
being one of the two confounding bases. The factor 2k — 2 in front accounts for errors at all
bases which might affect a k-mer from that site (k-1 bases before and after the variant site).
The final bracket ensures there are no other errors at any other base within that errored k-
mer (i.e. within k-1 bases of the repeated sequencing error). Otherwise the errored
supernode would have coverage 1, and would be removed by error-cleaning. We denote U
for the distance on either side of the error that needs to be kept error-free - given the error
profile we have, errors are much more likely to occur in the final 20 bases of a read, so it
usually is not necessary to keep a full #—1 bases clear; we approximate with © =9 (i.e.
approximately half of the length of the high error-rate region). E is the same for both
homozygous and heterozygous sites; whether reads come from the reference or alternate
allele, there are still only 2 bases which confound the site, and in both cases the total
expected coverage is D . = AL.

The above definition of E was used to plot Figure 2a (main paper), and clearly relied on a
detailed error-model. However this is only needed to predict the behaviour for k<R/2,



where sensitivity drops well below the theoretical maximum (the genome complexity G)
despite there being adequate coverage. Supplementary Figure 6, which shows the results of
error-free simulations (solid lines) and model predictions with no E term (dotted lines)
shows that for low k-mers, the theoretical maximum is attained, and that the model matches
simulation. In simulations with sequencing errors, the drop in sensitivity for low k-mers is
entirely due to repeated errors evading error-cleaning. For k>R/2, the effect of this E term is
much more limited - without it the model overestimates sensitivity slightly (for k=55,
overestimate by less than 5%).

2. Variant Calling Algorithms

2.1 Bubble Caller

The Bubble Caller was implemented as a traversal of the hash table (as a block of memory)
rather than of the graph. Since hash access time is constant, traversal takes time
proportional to the size of the table. Pseudocode for the algorithm follows - note the entire
graph is covered and each node is visited at most twice.

compute_supernode (n, G)
n is a node in a de Bruijn graph, assume color is specified. G is a de Bruijn graph

pathl<-traverse forward from n until reach node with outdegree!=1 or indegree !=1
path2<-traverse backwards from n until reach node with outdegree!=1 or indegree !=1
return union of path1 and path2

Bubble Caller (G)
G is a de Bruijn graph implementation
foreachnodenin G

if outdegree(n) = 2 and not_visited(n) ### if we are at a new bifurcation
mark_as_visited(n) ### mark it, in case we return to it
(<nie1><nzez>) < get_outedges(n,G) ### get the two edges pointing out

### and the two nodes they lead to

path: & compute_supernode (n1,G) ### get supernode in which ni lies

pathz & compute_supernode(nz,G) ### get supernode in which n: lies

length: < get length(pathi)
lengthz < get length(pathz)
mark_as_visited(pathi[0]...pathi[lengthi-1]) ## mark both supernodes visited
mark_as_visited(pathz[0]...pathz[lengthz-1])
## if the two supernodes meet at the
## same node (and in the same
## orientation, as nodes store both
## a k-mer and its reverse complement)
if ((pathi[lengthi] = pathz[lengthz]
AND (orientation(pathi[lengthi])=orientation(pathz[lengthz]) )
bubble_found = true



2.2. Path Divergence Caller Algorithm

The bubble-calling algorithm relies on the detection of clean bubbles where both alleles do
not touch other parts of the graph. However, for complex variants (e.g. novel sequence
insertions, large deletions and inversions), the path of at least one allele is unlikely to
generate a clean contig. Nevertheless, in some cases, most notably where the variant is a
deletion relative to the reference, the path complexity may be restricted to the reference
allele. Itis possible to identify such cases by following the path of the reference through the
joint graph and identifying points where the reference path breaks away from the sample
graph and then returns, requiring that both breakpoints lie on a single supernode in the
sample graph. Since by definition there are no junctions within a supernode, it must
constitute a single uninterrupted (phased) alternate allele (or short haplotype), whose
length is constrained by the repeat content of the genome (i.e. the length distribution of
supernodes). As a result this method can generate haplotypes much longer than the read-
length or the insert size - for example the longest fosmid-validated PD call on NA12878 was
over 9kb long (Supplementary Table 1). The algorithm is outlined in Supplementary Figure
2 - note the asymmetry between the green flanking regions with respect to the breakpoints,
reflecting the fact that we take the entire supernode from the first breakpoint as an allele.
We state the algorithm more precisely below.

Given a de Bruijn graph, a trusted path (e.g. a reference genome) represented as a sequence
of nodes n(i) (i=1,2..), a specified length L of flanking sequence before and after a variant, a
maximum size M of variant to be searched for, and a method for obtaining the supernode
containing any node in the graph, the Path Divergence Caller applies the following
algorithm:

Path_Divergence(L,M)
For (i=1; i<= length(P); i++) ### for each node in the ref. path

{

S<- compute_supernode_in_sample_color(n(i)) ### get the supernode in the sample
### color, which may be null if this
### node is absent in the sample
b<-get first_position_where_reference_and_supernode_differ()

if (S!=NULL AND b>0 AND S(b-L-1+j)=n(i+j) for j=1..L )
## supernode and reference path
## agree for L nodes
## prior to b, where they differ.
## This is one anchor/flank.

## We want to take the whole supernode
## as a potential alternate allele, so
## take the last L nodes of the supernode
## and compare them with blocks of L nodes
## in the reference sliding along until we
## have gone as far as M
for (j=i+L+1 to i+M)

if (S(length(S)-L+k)=n(j+k) for k=1..L)  ### We have a second anchor

variant_found=true;
break out of innermost loop.

}



3. Probabilistic Classification of Graph Structures in a Population

Given a multi-colored de Bruijn graph, with each color representing sequencing data from a
single diploid individual from a single population, we have developed a probabilistic
framework to classify a pair of paths as either alleles of a variant, (monomorphic) repeats or
error, by comparing the likelihood of the sample graphs under three corresponding models.
In the simplest case (and the only case considered here) these paths would be the two
branches of a bubble, but the model does not require this.

There are three key sources of information about the nature of the bubble: the total
coverage of the two sides, the ‘average’ allele-balance (the distribution of coverage between
the two branches) across samples and the ‘variance’ in allele balance across samples.
Bubbles arising from (monomorphic) repeats will have high coverage, typically
intermediate balance and no variation in balance across samples. Bubbles arising from
errors will have normal coverage, but consistently low coverage of the error branch across
samples. Bubbles arising from variants will also have normal coverage, but allele balance
will either be 0, 1 or %2 with probability arising from the population allele frequency and
Hardy-Weinberg equilibrium. Within the context of the model-based classification we can
separate the contribution to the overall likelihood arising from the combined coverage
(modeled as an over-dispersed Poisson distribution) and from allele balance (from a
binomial model). For each bubble type we independently specify priors for genome copy
number (geometric for repeats, point mass at 1 for variant and error) and allele balance
(beta distribution for repeat and error with parameter shared by all samples; as above for
variant). The contributions to the overall likelihood from coverage and allele balance can be
computed independently.

* Under the Variation model, each individual has 0,1 or 2 copies of allele1 (and 2,1 or
0) copies of allele2, with population allele frequency x determined by a neutral
coalescent process and genotype determined by a Binomial(2,x) distribution.

* Under the Repeat model, allele balance, y, is the same for all individuals and drawn
from a symmetric Beta B(2,2) distribution.

* Under the Error model, one allele has very little support compared with the other
in all individuals. The allele balance, y, is the same for all individuals and drawn
from a Beta B(100, 100 €) distribution (asymmetric, sharply peaked at 0, €is the
sequencing error rate).

For each model we compute the likelihood by integrating over the prior distribution.

Models are compared by the use of Bayes Factors. A site is classified as
Variant/Repeat/Error if the log-likelihood of the data under that model is at least 10 greater
than the other models (log,, Bayes Factor at least 10).

4. Genotyping Algorithm, for simple and complex sites
The following algorithm assumes there is a multicolored de Bruijn graph, with one color for
each known allele, one color for the reference genome (with the site in question, named X,
excised), and one color for the sample. For any pair of alleles (paths) y,,y,, alikelihood
function was defined as follows.
1. Ignore any segment of the paths that is present in the reference-minus-X color (less
informative, as repeated elsewhere in genome).



2. Decompose both paths into sections shared between them s, and sections unique
to each u,, and count the number of reads on each section.

3. Count the number of nodes 7 in both the sample graph and the joint graph of all
known alleles of X, but not in either allele y, or y, - under our model these are

sequencing errors.
4. Applying the ideas explained in Supplementary Methods Section 1.3, for each of
these sections, with length [, , the probability of 7, reads arriving within the section

is given by a Poisson distribution with rate DI;/R = Al, =:1, on the shared
(effectively homozygous) segments and #,/2 on the (effectively heterozygous)
sections unique to one or other path.

This leads to an approximate likelihood:
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where S(n) is the probability that n sequencing errors within 2 contigs of length=length( y,)
+ length( y,) overlap the graph of alternate alleles. Note that this probability is much
smaller than the raw sequencing error rate. One needs first to multiply by the probability
that (conditional on having an error) the error overlaps the rest of the genome - this is 1
minus the genome complexity at the relevant k. Secondly, conditional on an error hitting the
genome, we need the probability that it hits our locus, which can be approximated as
length(locus)/length(genome).

4.1 Application to bubbles

This further simplifies when the two alleles are of the same length (eg for a simple SNP). At
a bi-allelic locus, a likelihood ratio test statistic can be used to compare the likelihoods of
the site being homozygous non-reference, or heterozygous; if the two alleles do not
intersect themselves or each other (as, for example, at a bubble), and the alleles are of the
same length (so ¥, = 1,), then the statistic simplifies to

_ P(datalhom) 2""" S(r,)
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5. De Bruijn Graph Software Representation

In Cortex, the de Bruijn graph is encoded implicitly within a hash table. Kmers are
identified with their reverse complements and stored in the same node. For each kmer, one
binary flag (1 bit) is used for each nucleotide to specify whether or not a corresponding
edge is present. This reduces memory use from 8 bytes (1 pointer on a 64 bit architecture)
per kmer, to half a byte. The hash-key is a binary representation of the kmer, and the hash-
value an object representing the node (containing an array of 4-byte integers for coverages,
and an array of 1-byte chars for edges, one for each color in the graph). The precise memory

Va
use per node, M (in bytes) encoding c colors is given by 47/ = 8[3—2l + 5c+ 1. Hash-table look



up time is constant (for a fixed table size). An API separates the details of the hash table
from graph operations. Thus given a k-mer, functions are provided to allow fetching the
corresponding node (and hence coverage, and edges), to traverse the graph in various ways,
and to apply global operations such as cleaning the graph based on coverage and/or
topology. Since hash look-up is constant-time, hash traversal is linear in the size of the hash;
therefore it is possible to traverse the graph in linear time (see the Bubble Caller algorithm
in Supplementary Methods Section 2). The hash table itself can be replaced without
requiring any modification of the graph code. The current implementation uses a publicly
available hash algorithm written by Bob Jenkins (http://burtleburtle.net/bob/c/lookup3.c).

5.1 Performance

There are two performance benefits of this implementation. Firstly, Cortex is the only
assembler capable of simultaneously handling multiple eukaryote genomes. Secondly,
performance (speed) is improved by the associated reduction of cache-thrashing, and by the
fact that there is no costly communication across a network. Furthermore, by introducing a
compact binary file format for de Bruijn graphs, we allow the graph building process to be
parallelised across a compute cluster, in a manner that scales well. To give an illustrative
but fair comparison, some care is needed as other assemblers often have a slow paired-end
step following a single-ended step equivalent to that of Cortex. We assembled a k=31
binary of 26x of human data in 16 hours (and 64Gb of RAM) on a single core, whereas
comparison with published figures suggest this step would take SOAPdenovo 40 hours
(140Gb RAM)3. AllPaths-LG* would presumably be slower as it took 3.5 weeks (512Gb
RAM) to assemble 86.5x of human sequence data.

6. Error-cleaning

Single individual: In addition to standard “tip-clipping” and removal of nodes with
coverage below a threshold, a third form of error-cleaning is implemented, intended to
remove sections of the graph which are more likely to have low-coverage caused by single-
base errors than by random sampling. A single-base error will create a path of length at
most k; therefore given a low-coverage supernode in the graph of length < £#+1, a
likelihood ratio test can be carried out, comparing the likelihood of this happening due to a
sequencing error, and the likelihood of it being due to sampling of reads. The current
implementation removes supernodes where the coverage on all internal nodes is below a
pre-specified constant (‘relaxed’ default=1, ‘stringent’=2). For a reasonable error-profile,
such as an error rate of 3% in the final 20% of a read, and 0.1% in the first 80% of a read
(averaging to an overall error rate of 0.007), with 30x coverage of a genome with 100bp

R-k+1
reads, and k=55, the effective coverage D, = TD =13.8. The likelihood of a contig

of length 55 having coverage everywhere 1 due to sampling is therefore

(13.8 x & ”*) x ¢ =9.6 x 107" . By contrast the likelihood of this being caused by an
erroris 0.007(1-0.007) = 0.007 * 0.993> = 4.8 x10~°. Simulations showed that, for 30x
of 100bp reads and k=55, this approach allowed the Bubble Caller to call 82% of
heterozygous SNPs, whereas removing all nodes of coverage 1 only allowed access to 62% -
a 32% increase in sensitivity.

Population data: Where individual samples have insufficient coverage to apply the above
method, we first pool all samples into a single graph, and clean that graph using the above
method (removing errors at the price of losing low frequency variation - see



Supplementary Methods Section 13 for further discussion of this). Ideally, variants can be
called directly on the pool, and then uncleaned individual graphs used to genotype
individuals at the discovered sites. If the memory requirements for a multicolored graph of
uncleaned individuals are too high, then individual samples can be cleaned by comparison
with the cleaned pool (retaining only kmers that exist in the pool).

7. Single diploid genome simulations

Three altered copies (A,B,C) of the 247Mb human chromosome 1 (from the human
reference genome NCBI36), were created. One of these (A) was to act as reference, and the
other two (B,C) as the two copies in an individual. Variants were created by changing,
deleting or inverting sections from the original chromosome and placing those changes in
either one or two of A,B,C. In this way, homozygous and heterozygous variants were created
in a ratio of 1:2. The following five variant types were included : isolated SNPs, “Clean”
insertions/deletions (simply involving excision or addition of sequence), complex
insertion/deletions (where between 2 and 5 SNPs (number chosen uniformly at random)
were placed in the 20bp preceding a clean insertion/deletion), inversions, and
insertions/deletions of Alu transposons (as annotated by Ensembl). In order to roughly
approximate the expected distribution of variants sizes in a genome, four different size-
intervals were considered, and variant-sizes were chosen uniformly within those intervals.
When counting both the isolated SNPs and those in complex variants, this totaled an
average of 1 SNP per 1.5kb. Finally, 15,068 of the variants were discarded as they had been
randomly placed in regions where the reference chromosome was all N’s. The number of
variants left after discarding those in N’s are below:

Type 1-100bp 101bp - 1kb 1kb - 10kb 1kb-50kb
SNP 112481

Alu 500

Clean indels 18159 1816 14

Complex 9110 907 20
indels

Inversions 9099 185 15

Sets of error-free and error-containing reads of length 100bp (depth 10,20,30,40,50x) were
produced. The following error-profile, designed as a crude approximation of the profile seen
in [llumina sequencing data, was used : in the first 80bp of a read, the per-base error rate
was 0.001, and in the final 20bp of a read, the per-base error rate was 0.05. This is
comparable to the 0.005 mean sequencing error rate we estimate for our NA12878 data in
Section 9 by comparison with HapMap homozygous-reference sites. For each combination
of (k, coverage) Cortex binaries were built both of the reads (applying the error-correction
method described above) and of the A chromosome, which was treated as a reference, and a
two -color graph was generated (precise command-lines to do this with Cortex can be found
in the Cortex User Manual, available at cortexassembler.sourceforge.net).

The Bubble Caller and Path Divergence Caller were first run with minimal constraints (BC:
any bubble branch found in the sample must have at least one node with coverage >1, PD:
anchor size=2 nodes, maximum variant size searched for=50kb) to determine maximum



sensitivity across all the combinations of coverage and kmer. To analyse the effect on FDR of
error-cleaning (comparing the method described above versus removing all nodes of
coverage 1) and constraints (median coverage on branch=2, cannot have both branches in
reference, one branch must lie in reference) combinations of these options were run for
k=55 and coverage=30x. Finally, the sensitivity simulations were re-run with error-free
reads.
Cortex generates variants as sequence (flank, allele, allele, flank). In order to compare with
the true set of variants, we could either compare with the haplotypes/chromosomes from
which the reads were generated, or compare precise sequence around the known variant
sites. Since
a) some of the variants created were complex, and we could not predict in advance
whether Cortex would assemble from the positive or negative strand
b) in any real use-case, if one wanted to assign position to a variant, one would have to
map it to a reference
in all cases, the number of variants assembled precisely correctly (both alleles) was
determined by mapping flank+allele1+flank, and flank+allele2+flank of the calls to each of
the original chromosomes using Stampys.

8. Population simulation

Twenty haplotypes were generated based on human chromosome 22 (length 35Mb),
placing 35,746 SNPs uniformly across the chromosome according to a neutral coalescent
allele frequency spectrum. Sites were treated independently (no recombination or LD).
Unlike the single-individual simulation, which aimed to determine sensitivity to variants of
different complexities and sizes, the goal of this simulation was to study power across the
frequency spectrum, and the value of our population-based filter. Thus, SNP positions
within a k-mer of a pre-existing SNP were rejected. Reads were generated twice from each
haplotype (each time, 5x coverage per haplotype, 100bp reads), firstly using the same error-
model as for the previous simulation, and secondly with no errors. A kmer of 55 was used
for the entire simulation. Binaries were then built as follows

1. A binary was built directly from each of the original haplotype fasta, and then these were
merged to form a pooled binary (representing the case of “infinite coverage”)

2. A binary was built for each individual from the error-free reads, and then these were
merged to form a pool. Finally, an 11-color graph was built containing the pool in color0,
reads from haplotypes 0 and 1 in color 1, reads from haplotypes 2 and 3 in color 2, ..etc.

3. The same process as in step 2 was applied to the errored- reads.

4. An error cleaning process was applied to the graphs built from errored reads, as follows.
Firstly, the pooled graph was cleaned by removing supernodes where all interior nodes has
coverage < athreshold (values 1 and 2 were used). Secondly, all the individual graphs
were cleaned by taking the intersection with the cleaned pool (any node not in the cleaned
pool was removed).

5. Bubbles were called on the pooled graph, using the other colors to annotate the output
with amount of coverage in each of the colors for each of the alleles/branches.

6. Calls were mapped to human chromosome 22 using Stampy to compare with the “true”
variants, and then converted to VCF format.

7. The population filter described in Methods Section 3 was applied as an R script.



9. Case 1: analysis of single high coverage human

9.1. Assembly and variant calling on NA12878

Sequence data from HapMap individual NA12878 (Sequence Read Archive Accession
ERP000603), consisting of 26x of 100bp reads were assembled with Cortex (k=55), with on-
the-fly removal of PCR duplicates (if both reads of a mate pair each started with a kmer that
had previously been a read-start, they were both discarded), and breaking reads at bases of
quality<=5. This took 14 hours on one core and used 144Gb of RAM. The quality-filtering of
reads reduced coverage to 24.5%, and dropped the mean read length to 90bp. Error-cleaning
was then applied, taking 10 hours, and producing a Cortex binary graph file. The human
reference genome (NCBI36) fasta file was then read into Cortex, and a k=55 binary graph
produced. These two graphs were then loaded into a multicolor graph, and variants were
called with the Bubble Caller. A minimum flanking region of one node was required (55
base-pairs); the 5-prime flanks of the calls had min/mean/max length 55/450/1055bp. The
Path Divergence Caller was also run, setting maximum variant-size of 100kb. The 5-prime
flanks of these calls had min/mean/max length 56/480/16273 bp. The following filters
were then applied to both BC and PD callsets.
1. For each call, the 5prime flank (as called by Cortex) was taken and if longer than 1kb
the excess was trimmed. These flanks were mapped to the reference (NCBI36) and
the call discarded unless the mapping quality was at least 30.
2. Calls with median coverage on either branch less than 2 were discarded.
3. Calls where all nodes on the reference allele occur more than once in the reference
were discarded.
4. Calls where the mapper placed the flank somewhere where the subsequent bases
did not match the reference allele were discarded.
Time taken for variant calling was approximately 24 hours, the performance bottleneck
being writing output to the filesystem.

The above parameters (a read-length of 90 (average length of quality filtered reads), a k-
mer size of 55) and an error rate of 0.5% (estimated from coverage of reference allele of

R-k+1
HapMap2 homozygous non-reference sites) give an effective coverage (1 - S)TD, of

7.1/3.6 at homozygous/heterozygous sites. Applying our model (formula in section 1.4),
allowing for genome complexity at k=55, these give predicted sensitivities of 87%/62% for
SNPs. By comparison, the BC callset for NA12878 contains 87%/67% of the
homozygous/heterozygous sites called by the 1000 Genomes on that individual.

9.2.Validation of NA12878 variant discovery

In order to validate all the variant types called by Cortex, and to make a fair comparison
with the 1000 Genomes callset, both callsets were compared with full sequence from 82
fosmid clones (Genbank id: 29893)6 covering 3.3Mb in total.

If the fosmids were randomly sampled from the genome, then of those variant calls within a
section of the genome corresponding to one of the fosmids, 50% of true heterozygotes
would be expected to have the alternate allele in the fosmid, and 100% of true
homozygotes. However, it is known (Jeff Kidd, personal communication) that the fosmids
were in fact selected from a library for Sanger sequencing on the basis of having evidence of
existence of structural variation.

The following procedure was applied to both callsets:



1. Map the fosmids in 1kb chunks to reference, creating a mask over the genome.

2. For all calls flank+reference-allele+flank, and flank-alternate_allele-flank were
mapped to the fosmids. A flank of 50bp was required, and if necessary, calls were
clustered to enable this. For clustered 1000genomes calls (where most SNPs were
phased (by a separate process) and no indels were phased), all possible alternate
haplotypes were enumerated consistent with the specified genotypes.

3. For all calls within the mask, count occurrences where the alternate allele (or any of
the alternate haplotypes, in the case of clustered 1000 Genomes calls) mapped
perfectly to the fosmid, but the reference-allele did not.

4. For all calls within the mask, count occurrences where the reference allele mapped
perfectly to the fosmid, but the alternate-allele did not.

5. Examine all other cases.

Main results can be found in Table 1 of the main paper. We note that selection for
structural-variation containing fosmids has led to correlation selection for other types of
variant in that consistently 70%, rather than the expected 50%, of variant alleles at sites
called as heterozygous are present in the fosmid data. We also find cases where neither the
reference nor alternative alleles are observed or else both alleles are observed in the fosmid
data (see below).

9.3 Breakdown of Cortex complex variants in the fosmid mask:

In the main paper, Cortex calls were broken down into SNP, indel, and Complex. We further
classify Complex calls according to whether they are collections of SNPs alone, or clusters of
SNPs and indels. The validation results for complex calls are broken down in Supplementary
Table 1. The 1000 Genomes callset is excluded from this table as the callset did not include
these types of call.

Calls where it was not true that one of the reference/alternate alleles mapped perfectly, but
the other did not, were analysed as follows. Calls were broken into the following cases:
putative CNV (both reference and alternate alleles seen perfectly matched, in a fosmid), “Ref
observed (with errors)”, meaning the reference allele mapped to the fosmid with <=2
mismatches which might be ascribed to fosmid sequence errors, but the alternate allele
mapped with more mismatches, “Alt observed (with errors)”, as the last case but with the
roles of reference ad alternate alleles reversed , “Ref observed with breakpoint insertion”,
where the reference allele maps perfectly to the fosmid except for a small (<20bp) amount
of inserted sequence at the breakpoint, and “Alt observed with breakpoint insertion”. The
results are shown in Supplementary Table 2, for both Cortex and the 1000 Genomes
callsets. We saw evidence for the existence of copy number variants in both 1000 Genomes
and Cortex callsets, and also that a further 40 Cortex calls (not included in the main
validation figures in Table 1) are likely to be correct and do not match due to single-base
errors in the fosmids.



9.4.Validation of Cortex genotyping

The genotyping likelihood described in Supplementary Methods section 9 below, and in the
main paper, can be used to compare the three possible genotypes at a biallelic site.
Supplementary Tables 3-6 show that at HapMap2 sites called by Cortex, Cortex called non-
reference genotypes where HapMap called homozygous reference less than 0.1% of the
time, dropping to 0.03% at high confidence sites. The calls for NA12878 were genotyped by
comparing homozygous non-reference and heterozygous genotypes. Each call was given a
genotype confidence. For a homozygous call, this was the ratio of the likelihood of the data
given the site was a true homozygote, divided by the likelihood of the data given the site
was a true heterozygote. For a heterozygous call, it was the reciprocal of this. Stratifying
calls by this Bayes Factor allowed further control of False Discovery Rate, at the cost of
sensitivity. A high confidence set of calls was made by requiring a log(Bayes Factor) greater
than 4, and by removing calls which had a homopolymer of length >3 at the junction of
S5prime flank and either allele. VCFTools (vcftools.sourceforge.net) was used to compare
genotypes with the HapMap?2 calls for the same individual. Supplementary Tables 4 and 6
show that at Hapmap?2 sites also called by the Bubble Caller/Path Divergence Caller,
genotype concordance can be increased to over 99%/97% by stratifying by genotype
concordance.

9.5.Complex variants

The two alleles of all Cortex variant calls were aligned to each other using the Needleman-
Wunsch algorithm (using the Algorithm::Needleman-Wunsch perl module from cpan.org) in
order to determine if the call consisted of a collection of SNPs and indels, or was best
described as one larger event. For each callset, two VCF files of variants were produced. One
listed the variants as called by Cortex (.raw.vcf), which therefore had some long phased
collections of SNPS and indels as single alleles. The other decomposed all calls as far as
possible (.decomp.vcf), allowing better comparison with other callsets. Those which were
not simple insertions or deletions, and were not phased collections of SNPs, were termed
Complex.

9.6.Complex variants displayed in Figure 3b of main paper

Two complex variants were depicted in Figure 3b of the main paper. The first was called by
the Path Divergence Caller, id: na12878_chr2_var_28881 which matches perfectly fosmid
with clone id: ABC12-47840300E24. The second variant was called by the Bubble Caller, id:
nal2878_cortex_bubble_het_var_1242923, and perfectly matches fosmid id: AC205937.3.
The precise alleles can be found in the .raw VCFs also released with this paper.

10. Case 2: Pooled Assembly of individuals from the 1000 Genomes Project low
coverage pilot.

10.1 Assembly

All lllumina sequence data from the 1000 Genomes Low Coverage Pilot was obtained (164
individuals across 3 populations: CEU (49 individuals, of which 21 were males, 2.7x per



person,), YRI (57 individuals, of which 22 were males, 3.8x per person) and CHB/JPT (58
individuals, of which 25 were males, 2.2x per person) - this consisted of 1.9Terabases of
sequence. The analysis was restricted to one sequencing technology to allow better
estimates of allele frequency/copy number. A kmer-size of 29 was used. With 36bp reads,

36-29+1

this gives an effective coverage for a singleton of TD, which is 0.3 for CEU, 0.4 for

YRI and 0.2 for CHB/JPT. Thus this analysis has low power for low frequency variants, and
we expect not to see singletons or doubletons. Although dropping the kmer would have
increased this sensitivity, it would have come at a cost in graph complexity (see
Supplementary Figure 4). The sequencing data from 1000 Genomes Pilot 1 is approximately
18 months older than that used elsewhere in this paper, and was of noticeably lower
quality. A higher level of sequencing errors per individual led to a higher memory demand,
and therefore correspondingly harder levels of filtering were required. The assembly was
done in the same manner for all populations, as follows:

1. Assemble each individual using a quality filter threshold of 10 (reads were cut at a base of
quality below 10, and both halves treated separately).

2. The individuals were split into two groups, and these merged into two pools. Each pool
was cleaned by removing all nodes of coverage 1, and then the two pools merged to form a
population graph.

3. The human reference genome NCBI36 was built as a binary.

4. A multicolor graph consisting of the reference (color 0), CEU (color 1), YRI (color 2) and
CHB/JPT (color 3) was built.

These processes were run on 256Gb RAM server. Individual assemblies were run in parallel,
3 processes at a time, each process requiring 75Gb of RAM. Maximum memory use was
during the merging of pools, which required 240Gb of RAM before cleaning. The final
multicolored graph requires 165Gb RAM, and is stored as a binary file, 88Gb in size, and is
released with this paper.

10.2 BLAST annotation

All contigs were BLAST-ed against all known sequence (using the NCBI nr database), and
contaminants (non-primate sequence) removed. All remaining sequence matched either a
primate BAC/fosmid/clone, or the HuRef assembly. These 24,277 contigs alone were
previously released in this form by the 1000 Genomes Project, as part of the pilot paper.

10.2 Further filtering and annotation

Novel contigs were annotated based on BLAST for several categories (HLA, cDNA/mRNA,
olfactory, KIR). Contigs were also labeled as autosome, X or Y depending on closest BLAST
match. Additional HLA annotation was done by downloading all IMGT HLA alleles (from
ftp://ftp.ebi.ac.uk/pub/databases/imgt/mhc/hla/) and mapping novel contigs to them
using Stampy. Any novel contigs mapped with mapping quality = 30 were labeled HLA.

By measuring the length of the sequences to which these contigs matched, we calculated
that those annotated as genic (HLA, KIR, mRNA, cDNA) had median distance from a gene of
less than 2kb. Contigs with IGH annotations (either from BLAST or the IMGT) were filtered
out, as these are likely due to somatic rearrangements (1000 Genomes sequencing was
done from B-cells). After filtering, 21,281 contigs remained.



10.3. Calibration of model using HapMap
The formula described in section 1:

D, =(- ks)R'Tk”D

described the expected depth of coverage at a single node (kmer) in the graph, due to
coverage from a single locus in the genome with depth D; each extra copy of this sequence
in the genome increases the expected coverage in the graph by D ;. In the context of a
pooled population, if a contig of length [ base-pairs exists N times in the population, and
each chromosome in the population is sequenced to depth d, then we recast the formula as:

Dgff=l'2+1(1—ks)zvd

Since R.,k,l,d are known, and D,; can be estimated as the observed coverage on the contig,

this allows one to estimate the copy number of a contig ( N) from its coverage in the graph,
provided the sequencing error rate € is known. We therefore estimated a per-population
error rate by comparison of HapMap SNPs with the graph, as follows:

1. We downloaded, for populations CEU, JPT,CHB,YRI, and chromosomes 1, X & Y:
http://hapmap.ncbi.nlm.nih.gov/downloads/frequencies/latest phasell ncbi b36/f
wd strand/non-redundant/allele freqs chrN POP r24 nr.b36 fwd.txt.gz

2. Using these HapMap sites (with frequency information) and the human reference
(NCBI36) we created a FASTA file for each chromosome-population pair, consisting
of each SNP and 28bp (kmer size = 29) either side of it. These contigs represent the
branches of the bubble created by a SNP. We aligned these to the four-colored
cortex binary containing the reference and the merged populations, and printed the
observed coverage on each allele for each population.

3. We excluded those HapMap SNPs where either branch included a kmer which
occurred more than once in the reference, and those where the alt allele existed
elsewhere in the reference, as these would bias our sequencing error estimates.

4. We then plotted (for ~269,000 SNPs on chr1) the HapMap population frequency
versus the coverage for both alleles in each population in the de Bruijn graph. For
each population, € was estimated to make the best fit between the straight-line from
(0,0) to (1, D,;) and a rigid linear fit done in R using rlm() from Venables and
Ripley's MASS library. This gives estimates of €=1.3/2.1/1.6 for CEU, YRI and
CHB/]JPT respectively. Having fixed the sequencing error rate, the equation above
gives copy-number estimates per population (which, if divided by the number of
chromosomes in the population, correspond to allele frequency estimates) for the
HapMap SNPs; these estimates are noisy but nevertheless unbiased.

10.4 High differentiation contigs

The following contigs all match a 9K2-like olfactory receptor gene transcript, and are
present only in YRI:

supernode_564612 (length: 829bp, frequencies CEU 0, YRI 0.21, CHB/JPT 0),
supernode_1168224 (length: 148bp, frequencies CEU 0, YRI 0.22, CHB/JPT 0),
supernode_1386395 (length: 235bp, frequencies CEU 0, YRI 0.18, CHB/JPT 0).



11. Case 3: Using population information to classify bubble structures

11.1 Assembly of 10 chimpanzees
Sequence data from ten Western chimpanzees, (identifiers PtAc, PtFr, PtGi, PtLa, PtLi, PtPe,
PtRg, PtRn, PtSu, PtYo) was obtained from the PanMap project
(http://panmap.uchicago.edu/). There was approximately 6x depth for each individual at
the time of analysis, with 50bp Illumina reads. A kmer-size of 31 was chosen to take
advantage of the fact that the graph complexity was expected to reduce significantly
between 21 and 31 (see Supplementary Figure 4 to see this plotted for human, which we
expect to be similar). At kmer 31, a singleton SNP would be expected to have coverage
R—k+1D (50-31+1)x3
R

removing singletons.

=1.2. Pushing the kmer higher would risk completely

A 12-color multicolor graph was then assembled and variant calls made as follows

1. A graph was built from each sample, with no quality-filtering or PCR duplicate removal.
2. These graphs were merged into a population pool graph, which was cleaned by tip-
clipping and then removing supernodes with all interior nodes of coverage 1.

3. The individual graphs were then cleaned by comparison with the pool.

4. The Chimpanzee reference genome PanTro2 was built as a graph.

5. A single multicolor graph was built from the reference (color 0), the pool (color 1) and
then each of the samples.

6. Variants were called on the pooled color (ie Cortex only “looked at” the pool color, and
did not use the reference in any way), and then the other colors were used simply to
annotate the variant calls.

There were 3,583,205 variants called, of which 2,961,307 were SNPs and 34,667 were
complex. Analysis for this paper was restricted to the SNPs.

Finally, the effects of the population filter (remove any call where likelihood of Variation
model less than 10 times greater than that of the Error and Repeat models) and reference
filters (remove bubbles where both branches are present in the reference) were compared.

12.Case 4 - Genotyping simple and complex variants

12.1.HLA-B data preparation for genotyping

The full set of 1429 known alleles of HLA-B were downloaded (as FASTA files) from the
IMGT database’. These alleles consist not of full sequence for the entire gene, but just for the
two most polymorphic exons, and furthermore were of different lengths. These alleles were
therefore all mapped to the reference chromosome 6, and the position P of the furthest 5’
base, and Q of the furthest 3’ base were found. In order to create a set of paths that all
started and ended at the same place, “extended alleles” were created, which all started at P
and ended at @, with padding sequence added from the reference sequence if necessary.
These extended alleles were approximately 86kb long.



Sequence data for HapMap individuals NA19240 and NA12878 was used, as their HLA type
had been experimentally determined already with PCR-SSOP protocols8. The data for
NA19240 was generated as part of the 1000 Genomes Project, and that for NA12878 was
produced at Oxford by the Wellcome Trust Sequencing Core. The data for NA19240
consisted of 33x coverage, split into 25x of [llumina reads and 8.1x of 454 reads, and was
built into a kmer=29 binary. The data for NA12878 consisted of 20x of 100bp Illumina
reads; by subsampling from the fastq for NA12878, graphs were built with 2x,4x,...20x
coverage, using kmer=55.

A joint graph was built, with the reference genome (with HLA-B excised) in one color, the
sample in the next color, and one color for each of the HLA-B alleles. (In the case of
NA12878, the binary graph corresponding to each of the subsampling-levels was loaded
into a color of its own.)

For each genotype (which consisted of two paths, one for each allele) the likelihood of
seeing the sample graph was calculated as in the Methods Section 4. As described there, the
probability $(7) that sequencing errors could generate 7 nodes outside the desired
genotype is modeled as a Poisson process with rate equal to sequencing error, times (1-
genome complexity), times length(HLA-B)/length(genome).

For NA19240, we used kmer 31, genome complexity G{31) =0.75, and so
rate = (1- G(3 1)) cneM@llele) g 55, 86000 4 10
length(genome) 3000000000

Furthermore, we used a cleaned graph for NA19240 (nodes of coverage 1 had been
removed), so any error that occurred had to have occurred twice. Therefore we expect the
rate to be between 7x10™®* and 7 x107'’. We repeated the following process for several &
within this range and all gave the same maximum likelihood genotype.

For NA12878, we used kmer 55, genome complexity G{(55) =0.87, and an uncleaned graph,
SO

rate = £(1- G(55)) cneth@llele) o 5 86000, i0-oe
length(genome) 3000000000

Thus we expected a rate of approximately 10~ would be appropriate; however since we
found the likelihood was extremely flat, we increased the penalty on errors, dropping this

rate further to 4.3 x107'°.

The calculation was parallelised over 150 compute CPUs, each process requiring 3Gb/12Gb
of RAM (for NA19240 alone/for 10 different subsamplings of NA12878 simultaneously),
and total elapsed time for the computation being approximately 6 hours.

The genotype that maximized the likelihood for NA19240 was B*35:01:01/B*57:03:01,
which agrees to 4 digits with the experimental typing. The likelihood ratio in comparison
with the next most likely genotype (B*35:01:01/B*57:02) was ~ 10%.

The genotype that maximized the likelihood for NA12878 varied with coverage; 16x of
coverage was required for the maximum likelihood genotype to agree to 2-digits with the
lab-based estimate of type. At 20x, B¥*08:03/B*56:01:01 was the maximum likelihood
genotype, but B¥*08:13, B*08:15, B*08:36 and B*08:47 were all close candidates for the first



allele, all less than 1 unit of log likelihood below. The lab-calculated type, B*56:01/B*08:01
is marked with a dotted line in Figure 5 of the main paper.

13. Making appropriate choice of k, read-length and depth for experimental design.
The methods described in this paper allow one to predict discovery power of variants of a
given length based on genome complexity, read-length, kmer-size, error-rate, and depth of
coverage. Assuming that one has already estimated the genome complexity for the species
in question (see Supplementary Methods Section 1.2), this determines an upper bound for
sensitivity of the Bubble Caller dependent on kmer, irrespective of coverage and read-
length. Given this, one can tailor an experiment to the type of variant discovery desired. We
give some examples of putative experimental goals.

13.1 Aim: to find as many SNPs and small indels as possible in a single diploid genome

1. Examine the genome complexity curve for different k. For the species in question,
there may be some threshold below which power drops dramatically. E.g. in human,
there is a significant drop between k=31 and k=21. Having chosen a minimal
acceptable k, this implies a minimal acceptable read-length (which must be longer
than k). Further, power is affected by effective depth of coverage in the graph,

D(R -k +1)/R - thus there is incentive to increase read-length well beyond k.

2. Figure 2a of the main paper shows that if k is less than half the read-length,
sequencing errors cause more problems than if k>R/2. This is simply because for
k<R/2, a single error in a single read can form a full bubble in the graph, whereas for
longer k, an error must form a tip, unless it occurs more than once. Thus ideally one
would prefer a read-length not more than double the kmer-length.

3. Apply the power formula from Supplementary Methods Section 1.4 to determine the
cost-benefit of different levels of coverage

13.2 Aim: to find large structural variants in a single diploid genome

The procedure is as for SNPs, but one sees there is a clear benefit to longer reads, both in
the effect on the genome complexity (see Supplementary Figure 4 which uses the genome
complexity for chromosome 1 as if it were a whole genome), and because the Bubble Caller
power drops exponentially with variant length (for fixed coverage) - see the formula in
Supplementary Methods section 1.4.



13.3 Aim: to explore diversity in a new species for which there is no reference
genome, from sequencing of a population

The main consideration here is that the neutral frequency spectrum leads us to expect the
majority of variation will be low frequency. It is therefore important to design the
experiment in such a way that removal of errors does not Kill all low frequency variation.
This is most simply seen with two contrasted examples.

13.3.1 Example: 100 diploid individuals sequenced to 4x each.

At a given position in the genome, we expect 400x depth of coverage. With a sequencing
error rate of 0.01, this means we expect 4 errors at each position in the genome; since there
are 3 (2) possible errors at a monomorphic (biallelic) site, we expect at all positions in the
genome, one error per position will have reinforced itself by occurring twice.

If we were to choose a read-length of 100bp and a kmer-size of 65, then we would have
expected depth of coverage at a singleton of

R_k+1D=100_65+1x2=0.7.
R 100

Thus singletons, and in fact all variants with minor allele count <3, will have lower coverage
in the graph than errors. If we clean errors by removing supernodes with coverage
everywhere less than 3, would should lose the vast majority of errors, but we will also lose
alleles with MAF<=5/200=2.5%.

We could ameliorate the effect by dropping k to 51 (just above half the read-length),
increasing the expected coverage at a singleton to:

R-k+1 100-51+1
D= X
R 100

Firstly - this means many singletons will be lost due to sampling alone. Secondly, cleaning
supernodes with coverage less than 3, loses alleles with MAF<=2/100=2%.

2=1

13.3.2 Example: 50 diploid individuals sequenced to 8x each.

At a given position in the genome, we still expect 400x depth of coverage. With a sequencing
error rate of 0.01, this means we expect 4 errors at each position in the genome. As above,
since there are 3 (2) possible errors at a monomorphic (biallelic) site, we expect at all
positions in the genome, errors will have reinforced themselves by occurring more twice.
However now, the expected coverage at a singleton, given read-length 100 and kmer 51 is:

R-k+1 ~ 100-51+1
R 100

So now we have parity between singletons and the worst errors, so cleaning supernodes
with coverage 1 will lose variants with MAF<1/50=2%.

x4 =2

[t is not necessary to be able to remove all sequencing errors (we believe the population
filter is very effective at identifying errors) - the idea is simply to clean enough off to allow
variant discovery to work. Thus ideally we would do two rounds of variant-calling: firstly
after removing supernodes of coverage 1, and then after removing supernodes of coverage



2, and taking the union of these calls forward for filtering by the population filter and then
genotyping.

14.Cortex details and data availability

The Cortex algorithms described in this paper are implemented in an executable called
cortex_var; the version used for this paper, along with a User Manual and demonstration
examples can be obtained from
https://sourceforge.net/projects/cortexassembler/files/cortex var/publication archive/2
011 10/cortex var release for paper 201110.tgz.

Up-to-date versions of Cortex can be obtained from http://cortexassembler.sourceforge.net.
The variant calls made on NA12878 (in VCF format), the population graph assembled from
164 individuals in the 1000 Genomes low coverage pilot, along with novel contigs and copy
number estimates, can be found at

ftp.1000genomes.ebi.ac.uk:/voll /ftp /pilot data/paper data sets/companion papers/corte
x_de novo assembly/.
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Supplementary figure 1

Examples of typical structures in de Bruijn graphs arising from genetic variation. (a) shows a simple SNP, first
as sequence, then broken down into successive 4-mers, and finally converted into a line-representation of the
graph. This example conforms to the generic case, where a SNP forms a bubble of length k. In regions of low
complexity, it is possible for a SNP to form a bubble of length <k, or even more than one bubble, as shown in
(b). If variants are clustered closely they form a single compound bubble, as shown in (c), where two SNPs and
a deletion combine to form one bubble. Finally, in (d), an example is given of a polymorphism that overlaps
with another part of the genome (at k-mer GCTC), thus forming a confounded bubble.
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Supplementary figure 2

Key steps in the Path Divergence caller algorithm. The sample de Bruijn graph is
shown in black. As the reference-path (red) is followed, we identify the point a, where
the reference breaks away from the sample, and a 5-prime flank (yellow) is noted.
Since the sample graph has an unbroken supernode as far as b, this sequence is all
taken as the alternate allele, and therefore the desired 3prime flank is marked (in
green). The reference path is then followed until it returns to hit the green flank, at
which point we have determined the reference allele. The algorithm is not affected by
the reference allele touching other parts of the sample or reference graphs (black
dotted).
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Supplementary figure 3

Errors and error-cleaning. (a) A single error that occurs once in the middle of a read is able to form
a complete bubble (provided k is less than half the read-length), whereas an error at the start or
end of a read must form a tip. (b) The effect on a graph of different error-cleaning strategies; true
sequence is marked in blue, errors in red, and low coverage (=1) marked with dotted lines. In the
graph as it stands, there are two callable bubbles: (i) is a true variant, whereas (ii) is due to a
repeated error at a monomorphic site (coverage is higher at monomorphic sites, and repeated
errors more likely). If we remove tips, very little is affected except for the tip marked (iii). If we were
to remove all nodes with coverage 1, then we would remove the false branch (iv) at the price of
creating a gap in the middle of the real allele at (iv), and in a real contig at (v), and the false bubble
(i) remains. However, if we remove entire supernodes if all nodes within have coverage 1
(“relaxed” cleaning), then the true allele at (iv) is preserved (for moderate coverage, it is very
unlikely there would be low coverage on the whole allele) while the false one is deleted, and the
low coverage segment at (v) is preserved. This still leaves the error at (ii) and the supernode at
(vi) which confounds a true bubble by connecting with another part of the genome. If the maxi-
mum coverage on the error supernodes (ii) and (iv) is 2, then “stringent” cleaning (removing
supernodes with coverage everywhere <2) eliminates these errors and makes visible the variant
bubble at (vi).
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Supplementary figure 4

Genome complexity (fraction of cases where a variant generates an unconfounded
bubble) for SNPs in the human genome (black) and in the context of chromosome 1
only (blue; used for simulations). At k=21, 51% of possible SNPs are callable, rising to
92% at k=75. In contrast, for chromosome 1 (treated as a genome in its own right), for
k=21, 69% of possible SNPs form unconfounded bubbles. As k increases the complexi-
ties of chromosome 1 and the whole human genome approach each other.
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Supplementary figure 5

Comparison of predicted sensitivity and simulation results for homozygous and
heterozygous variants of different sizes (Small: 1-100bp, Medium: 100bp-1kb,
Large: 1001bp-50kb). Estimation of genome complexity for longer variants is more
difficult than for SNPs, but nevertheless, the predictions (dotted lines) do approxi-
mate the simulation results. For SNP (blue) and small (1-100bp) indels (red) the
correspondence is close, and improves with kmer, as the effect of long-range inter-
actions between errors is reduced, and the estimate of genome complexity is better.
Simulations have 30x 100 bp reads and include errors as described in the Methods.
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Supplementary figure 6

Comparison of predicted and actual power to detect SNPs in simulations with-
out errors. For low k-mer sizes, simulations and predictions both show that sen-
sitivity attains the theoretical maximum (black), corresponding to the genome
complexity function . As k increases, so does the theoretical maximum, but
effective coverage drops, driving a reduction in sensitivity. Increasing sequence
coverage can compensate for high k-mer values, and pushes sensitivity up to
the theoretical maximum, for all k-mer values. This figure contrasts strongly
with Figure 2 where for k-mer size below half the read-length, increasing cover-
age leads to reduced sensitivity; a result driven by sequencing errors. The
curves in this figure represent a theoretical maximum achievable for error-
correction algorithms.



Supplementary Tables

Supplementary Table 1. Breakdown of complex variants in Cortex calls on NA12878

Complex call Ref Alt Estimated Size of observed alt. alleles
type observed observed FDR (median/max/std dev)
BC phased SNPs 3 82 3.5% 30/106/22

(hom)

BC phased SNPs | 37 93 -

(het)

PD phased SNPs | 3 113 2.6% 287/4712/801

(hom)

PD phased SNPs | O 0 -

(het)

BC SNPs+indels 0 27 0% 25/96/22

(hom)

BC SNPs+indels 5 28 -

(het)

PD SNPs+indels 0 58 0% 1126/9040/1614
(hom)

PD SNPs+indels 0 0 -

(het)

Supplementary Table 2. Breakdown of calls where fosmids show evidence of CNVs, or
fosmid-errors, in 1000Genomes and Cortex calls

Variant Putative CNV Ref observed Alt observed Ref observed Alt observed
Type (1000g/Cortex) | (with errors) (with errors) with with
(1000g/Cortex) | (1000g/Cortex) | breakpoint breakpoint

insertion insertion
(1000g/Cortex) | (1000g/Cortex)

SNP 35/0 0/10 0/31 0/1 0/5

Indel 25/66 0/2 0/0 0/0 0/0

Phased 0/0 0/0 0/4 0/0 0/1

SNPs

Clustered | 0/0 0/0 0/5 0/0 0/1

SNP and

indels




Supplementary Table 3: Genotype concordance of Bubble Caller main NA12878 callset

with Hapmap2

Bubble Caller R/A

Bubble Caller A/A

HM2 R/R 0.5% 0.1%
HM2 R/A 99.1% 9.9%
HM2 A/A 0.4% 90.0%
Total calls 501953 637734

Supplementary Table 4: Genotype concordance of Bubble Caller high confidence

NA12878 callset with Hapmap2

Bubble Caller (HC)

Bubble Caller (HC)

R/A A/A
HM2 R/R 0.5% 0.04%
HM2 R/A 99.0% 1.2%
HM2 A/A 0.5% 98.7%
Total calls 460687 411898

Supplementary Table 5: Genotype concordance of Path Divergence caller main

NA12878 callset with Hapmap2

Path Divergence R/A

Path Divergence A/A

HM2 R/R 0.4% 0.09%
HM2 R/A 96.7% 23.1%
HM2 A/A 2.9% 76.8%
Total calls 694 151723

Supplementary Table 6: Genotype concordance of Path Divergence caller high confidence

NA12878 callset with Hapmap2

Path Divergence (HC)
R/A

Path Divergence (HC)
A/A

HM2 R/R 0.4% 0.02%
HM2 R/A 93.2% 2.2%

HM2 A/A 6.4% 97.8%
Total calls 249 74169




Supplementary Table 7: Proportion of HapMap2 sites with at least one alternate allele called
by Bubble Caller

BC BC (high
confidence)
HM?2 (het) 69.9% 49.7%
HM2 (hom-alt) | 86.5% 49.9%




