Supporting information

Identification of Novel α4β2-Nicotinic Acetylcholine Receptor (nAChR) Agonists Based on an Isoxazole Ether Scaffold that Demonstrate Antidepressant-like Activity

Li-Fang Yu,[†] Werner Tückmantel,[§] J. Brek Eaton,[‡] Barbara Caldarone, [§] Allison Fedolak, [§] Taleen Hanania, [§] Dani Brunner, ^{#,§} Ronald J. Lukas,[‡] Alan P. Kozikowski ^{*,†}

[†]Drug Discovery Program, Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612, United States

[‡]Division of Neurobiology, Barrow Neurological Institute, 350 West Thomas Road, Phoenix, Arizona 85013, United States

§PsychoGenics, Inc., 765 Old Saw Mill River Road, Tarrytown, New York 10591, United States

*Dept. of Psychiatry, Columbia University, NYSPI, 1051 Riverside Drive, New York 10032, United States

Phone: +1-312-996-7577; fax: +1-312-996-7107; e-mail: kozikowa@uic.edu.

List of Contents

Broad Screening at Other Neurotransmitter Receptors and Transporters S2

Preliminary *in vitro* ADME-Tox S2

Broad Screening at Other Neurotransmitter Receptors and Transporters

Table 1. Primary binding competition efficacies (%) of compound **43** at various neurotransmitter receptors and transporters^a

Target	Serotonergic Receptors								
_	5-HT _{1A}	5-HT _{1B}	5-HT _{1D}	5-HT _{1E}	5-HT _{2A}	5-HT _{2B}	5-HT _{2C}	5-HT ₃	5-HT _{5A}
Inhibition	16.4	5.8	1.3	1.3	3.5	9.8	1.2	0.6	4.8
Target	Serotonergic Receptors		GABA Dopaminergic Receptors						$BZPR^c$
_	$5-HT_6$	5-HT ₇	$GABA_A$	D_1	D_2	D_3	D_4	D_5	
Inhibition	- 4.9 ^b	14.3	30.1	14.6	14.7	-0.8	13.1	10.8	44.7
Tarast	Adrenergic Receptors								
Target	α_{1A}	α_{1B}	α_{1D}	α_{2A}	$\alpha_{2\mathrm{B}}$	$lpha_{2\mathrm{C}}$	β_1	β_2	β_3
Inhibition	-8.4	-0.3	-0.5	15.5	31.1	30.2	6.5	-1.3	21.9
Target	Histaminergic Receptors Muscarinic Receptors					ors			
	H_1	H_2	H_3	H_4	M_1	M_2	M_3	M_4	M_5
Inhibition	-9.7	20.1	14.7	-2.5	-3.7	4.2	-9.5	-9.4	-2.3
Target	Opioid Receptors ^d T ₁			Transpo	Fransporters ^e			Sigma Receptors	
	DOR	KOR	MOR	DAT	NET	SERT	σ1	σ2	_
Inhibition	16.2	4.5	21.8	48.5	5.2	-6.1	19.7	24.6	<u> </u>

^a The default concentration for primary binding experiments is 10 μM (n = 4). For details see Experimental Section. ^b Negative inhibition represents a stimulation of binding. ^c BZPR: Benzodiazepine Receptors (rat brain site). ^d DOR: Delta Opioid Receptor; KOR: Kappa Opioid Receptor; MOR: Mu Opioid Receptor. ^e DAT: Dopamine Transporter; NET: Norepinephrine Transporter; SERT: Serotonin Transporter.

Preliminary in vitro ADME-Tox Profile

Table 2. Effect of compound 43 on in vitro CYP activity in human liver microsomes ^a

Inhibitor Cor		1A2		2B6		2C9		2C19	
Test Article	μ M	(Phenacetin)		(Bupropion)		(Diclofenac)		(Mephenytoin)	
	·	Mean	SD	Mean	SD	Mean	SD	Mean	SD
Furafylline	10	42.9	1.4	98.0	5.8	101.8	3.2	93.5	1.0
ThioTEPA	10	85.6	2.0	34.4	1.1	93.2	9.5	97.9	3.1
Sulfaphenazole	3	90.2	1.1	93.6	2.2	13.2	0.7	92.5	8.8
Tranylcypromine	10	74.1	2.9	20.3	1.3	76.2	5.0	71.5	2.6
Quinidine	2	105.3	4.6	100.9	3.5	93.2	4.4	95.5	0.3
Ketoconazole	5	71.1	1.5	36.2	0.5	68.4	1.2	71.1	4.6
Compound 43	1	96.1	2.3	96.3	2.1	90.6	4.5	99.8	0.6
Compound 43	10	101.4	10.4	103.0	8.0	100.3	8.8	104.6	8.4
Inhibitor	Conc	20) 6	3A	4	3A	4		
Test Article	μ M	(Bufu	ralol)	(Testost	erone)	(Midaz	olam)		
	·	Mean	SD	Mean	SD	Mean	SD	_	
Furafylline	10	95.1	6.3	98.8	2.9	101.9	2.2	_	
ThioTEPA	10	86.5	1.6	88.6	3.7	89.7	1.3	_	
Sulfaphenazole	3	84.2	2.0	101.7	1.8	100.8	3.7	=	
Tranylcypromine	10	77.7	8.7	93.4	1.5	97.4	2.3	=	

Quinidine	2	22.3	1.0	97.6	3.1	98.1	2.5
Ketoconazole	5	71.1	0.3	12	0.1	2.4	0.2
Compound 43	1	89.9	1.0	100.8	3.8	101.4	2.0
Compound 43	10	102.3	8.7	100.8	3.8	103.3	1.9

^a Values represent mean of triplicate determinations \pm SD

Table 3. In vitro metabolic stability of compound 43 and midazolam using human and mouse liver microsomes

Charina	Time,	Mean % Remaining vs $T = 0 \min^{a,b}$						
Species	min	1 μM compound 43	10 μM compound 43	10 μM Midazolam				
HUMAN	15	79.4	80.4	42.9				
HUMAN	30	62.3	74.2	26.6				
	60	53.4	67.2	9.5				
HI ^c HUMAN	60	99.3	102.6	100.0				
	15	94.0	90.6	20.2				
MOUSE	30	86.6	82.6	3.0				
	60	67.5	73.7	0.0				
HI ^c MOUSE	60	102.1	98.9	108.0				

In vitro binding studies, broad-range screening, and hERG inhibition were carried out by the National Institute of Mental Health's Psychoactive Drug Screening Program, contract # HHSN-271-2008-00025-C (NIMH PDSP). For experimental details please refer to the PDSP web site http://pdsp.med.unc.edu/

^a % remaining at T=0 is 100% ^b Samples were assayed in duplicate.

^c HI = Heat Inactivated