Reynolds et al. Supplementary Information

Supplementary Figures

Supplementary Figure 1. ChIP for NuRD component proteins.

ChIP-qPCR for putative NuRD targets for proteins other than Mi2 β which are unique to NuRD (Mbd3, MTA2) or which are not uniquely found in NuRD (HDAC1). qPCR is shown relative to level in IgG control either at regions close to TSS for individual genes, or across a single target locus, *Htra1*. Distance from TSS is shown in base pairs.

Supplementary Figure 2. Distribution of histone modifications. (A) At the whole gene level. Distance is shown in base pairs for upstream, 3kb Metagene, and downstream regions. (B) At transcription termination sites. Profiles, normalized to input, are of upregulated, bivalent genes for α H3K27me3 and α H3K27ac ChIP samples (solid line) relative to that for all RefSeq genes in each sample (dotted line).

Supplementary Figure 3. Distribution of histone modifications for genes bound by Mi2 β . Profiles, normalized to input for genes bound by Mi2 β at transcription termination site (TSS) for α H3K27me3 and α H3K27ac ChIP samples. Profiles shown are for genes bound by Mi2 β (solid line) relative to that for all Ref-Seq genes in each sample (dotted line).

Supplementary Figure 4. NuRD and PRC2 complexes do not co-immunoprecipitate in ES cells. (A) Immunoprecipitation of Mi2β or IgG control probed for presence of Jarid2, MTA2 and Mi2β. (B) Avi-tagged Mbd3 pulled down using streptavidin beads, probed for presence of PRC2 component Ezh2 or known NuRD interactor Sall4. Pulldowns were performed in the presence or absence of nucleases as indicated. (C) Immunoprecipitation of either MTA2 or Jarid2, probed for the presence of Suz12 or MTA2. All precipitations were carried out using nuclear extracts from wild type ES cells.

Supplementary Figure 5. Effect of TSA treatment on transcription over time.

Quantitative RT-PCR from cells grown in TSA for varying times, or from *Mbd3^{-/-}* cells shown relative to wild type expression levels in the absence of TSA. Error bars indicate sem.

Supplementary Figure 6. Distribution of histone modifications for genes at which PRC2 occupancy is dependent on NuRD. Profiles, normalized to input at transcription start site (TSS) for α H3K27me3 and α H3K27ac ChIP samples at those genes bound by Suz12 in wt cells but not in *Mbd3*^{-/-}and which are also bound by Mi2 β (solid line) relative to that for all Ref-Seq genes in each sample (dotted line).

Supplementary Table 1. Results of microarray analysis comparing *Mbd3^{-/-}* to wild type cell lines.

Supplementary Table 2. Summary of genomic regions bound by Mi2 β in wild type ES cells.

Supplementary Table 3. Summary of ChIP-Seq data for H3K27 modifications in wild type and *Mbd3^{-/-}* ES cells.

Supplementary Table 4. Comparison of gene expression patterns in Mbd3-null and

PRC-null ES cells.

Supplementary Table S5. Summary of genomic regions bound by Suz12 in wild type

and *Mbd3^{-/-}* ES cells.

Supplementary Table 6a. Primers For Expression Analysis

Gene	Forward	Reverse
β Actin	GTGGGCCGCTCTAGACACCA	CGGTTGGCCTTAGGGTTCAGGGGGG
Htral	ACTTCGGAACTCCGATATGG	CGTGGGACTCTGTCAAGAAC
Klf2	CTAAAGGCGCATCTGCGTA	TAGTGGCGGGTAAGCTCGT
Klf4	CGGGAAGGGAGAAGACACT	GAGTTCCTCACGCCAACG
Klf5	CCGGAGACGATCTGAAACAC	CAGATACTTCTCCATTTCACATCTTG
Lefty2	GCAGGTCCAGGTACATCTCC	ACACGCTGGACCTCAAGGAC
Mcm6	GAGAAACACGCTGGTTGTGA	AAGGTCTTCAAGGCTCGACA
Pp1A	CACGGGGGCCTGTCTCCAGA	GTCAGGCACGTCTGTGGGCC
Ppp2r2c	TTCCCGCTGGAAGATAACC	CGCGGAAAATTAACCACAGC
Smad7	TCTCCCCCTCCTCCTTACTC	TCCAGAAGAAGTTGGGAATC
Sohlh2	TTCTGATTTGTCCTGGCAGC	TATTCCATGACTGCTGCAGG
Sox9	CCACGGAACAGACTCACATCTCTC	CTGCTCAGTTCACCGATGTCCACG
Т	TGCTTCCCTGAGACCCAGTT	GATCACTTCTTTCCTTTGCATCAAG
Tbx3	GAACCTACCTGTTCCCGGAAA	CCATTGCCAGTGTCTCGAAAAC

Supplementary Table 6b. Primers For Chromatin IP Analysis

Gene	Forward	Reverse	Distance of mid- point

			from TSS
RActin	GCCTAGTAACCGAGACAT	AGAAAGCGAGATTGAGG	<u>(0p)</u> 3250
ρΑιιπ	TGA	AAG	-3230
Cdx2	AAGCCTGCCTTTCTGGACT	TACGAGCTTCCTCCTTCCA	-280
	Т	А	
Htral	AGCAGCACCCTTGATCCTA	GGGATGCCAGACAGAAA	-2040
	А	GAA	
Htral	TGGCGAGGTGCATGGGGA	AGTCCCAGCGCTCGGGCA	-696
	ACT	AA	
Htral	TCCCAGCGCTCGGGCAAA	TCTGCCTCCGGGGTGACA	-646
	TC	GT	
Htral	ACTTGAAACTAGGTCTGG	GGCACTTAACAGAGGGAA	-236
	GC	AC	
Htral	GGTTTCCCTCTGTTAAGTG	GGCTCAGTTTCTCATTCTA	-109
110/001	C	GG	107
Htral	GTCACCGCCGCTAGGCCA	GGGTCTTGGGGACAGCGG	65
1101001	ATG	GT	05
Htral	GCGCTCCTTCCTTGGCGT	TGGGATCGCAGTGCTCGG	250
111101	т	GA	250
Htral		TGCTTCTCTGCACCTCCGC	708
111101	CC	Δ	700
Htral	GGGTGTTCTAGGCATCCA	GATGCTTGGCGCAGAAAT	795
111101	GT	AG	175
Htral	GAGGGGCCCACTGGGGAT	TGTCGCCACCACGTC	1356
1111 01	GAA	CA	1550
Htral	GGCCCCAGTGGCCCCTAA		2733
1111111	GT	СТ	2133
Htral			36/3
1111/01	С		5045
KIF?	GCCCTTCACCCTCCCCA		265
КijŹ	GA	CC	-203
V1£1			570
<i>Кij</i> +	CICALCELACCIACU	CC	-370
K1f5	GTCGGAGGCGGGACCTCG	GTCGGAGGCGGGACCTCG	66
Куз	TG	TG	-00
Lafty?			4500
Lejiyz	GG	GG	-4,500
Mem6	CTTATCGGAGGCACCTATA		003
(Peng et al,	GTGAT	GACAC	993
2009)	UIUAI	UACAC	
$P_{nn}\gamma_r\gamma_c$	CCGCGATATCCTCGCGCTC	AGCGGTCACCTCCGGAAC	-186
1 PP2120	C	CA	100
Smad7	C GGTGGCAGTAACTGGGAG	CGTCTAGACACCCTGTCG	_397
Smuu7	G	CT	571
	U		

Sohlh2	CCATTGGTTCTCAAGTCAG	GGCGGTTTCTTTAATTCAG	-328
	С	GAT	
Sox9	TATTAGAGACCCTGAGCT	CTGGACTGAAACTGGTAA	24
1	GGAAGT	AGTTGT	
Т	GGGAGTGGGGACTGCCCG	GTGCCAGGGAATGACGGG	-3265
	AA	CC	
Т	GCGGAGGCTCAGGCACGA	CTGGGCACTGCTGGCTGC	-2117
	AG	TT	
Т	GGTCGGGGGTTGGGCGCAA	AGCCAACCTCTGGGGTGG	-1399
	ATG	GATG	
Т	CAGTCCATGGGGGCGAGGG	GGCGTCTCCCGGGTCTCC	-629
	GA	TT	
Т	CTGCGCCCGACGCTTTCCT	CTCCCGCAAGGCGCGACA	-234
	ТА	AG	
Т	TCTCGGTGCTCCTTTGGCG	CGCTGAGCAGGTGGTCCA	64
	AAT	CTC	
Т	CCTACCTGCCGTTCTTGGT	GTGGGCCTGGAGGAGAGC	278
	CACA	GA	
Т	CACCGAACGCGAACTGCG	ACAAAGTCGGCCGGTTGG	312
	AG	GAA	
T	CTTTGTTTCTTCCCGCTGA	GCAAACCTGGTCATTCCA	474
	G	GT	
Т	CTGGCTCTGGCCATAGGTG	GTGCAGAGTAGCCAGTGT	1311
	AGC	CCCCT	
Т	GCCCGCAACGCATGATCA	GGGACTCCCTTCCGAAAC	1796
	С	CTCAC	
Т	ACGGGAAAGTCCTGGCAA	GCCCCAGGGGACTGATGA	2113
	AGGCT	CACA	
Tbx3	AGGCACCCAGAGATAAGT	GAGCTGCCGCTCTGGGCT	-817
	GTGATG	TG	

Supplementary Table 7

Antibodies

Antibody	Source	Reference
α Μί2β	Abcam	ab70469
a MTA2	Santa Cruz	sc-9447
a Mbd3	Santa Cruz	sc-9402
a Suz12	Cell Signalling	3737s
α Ezh2	Active Motif	39104
α Eed	Millipore	09-774

$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	α Jarid2	Novus Biologicals	NB100-2214
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	α H3K4me3	Millipore	04-745
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	α H3K9ac	Millipore	06-942
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	α H3K9me3	Abcam	ab8898
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	α H3K14ac	L. O'Neill, University of	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Birmingham, UK.	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	α H3K36ac	Millipore	07-540
$\begin{array}{cccc} & Birmingham, UK. \\ \alpha \ H4K5ac & L. \ O'Neill, University of \\ Birmingham, UK. \\ \alpha \ H3K27ac & Abcam & ab4729-25 \\ \alpha \ H3K27me3 & Millipore & 07-449 \\ \alpha \ H3 & Abcam & ab1791 \\ \alpha \ tubulin & Santa \ Cruz & sc-5286 \\ \alpha \ ER\alpha & Santa \ Cruz & Sc-543 \\ Rabbit \ IgG \ from \ serum & Sigma & I8140 \\ Mouse \ IgG \ from \ serum & Sigma & I8765 \\ \end{array}$	α H4K16ac	L. O'Neill, University of	
α H4K5acL. O'Neill, University of Birmingham, UK. α H3K27acAbcamab4729-25 α H3K27me3Millipore07-449 α H3Abcamab1791 α tubulinSanta Cruzsc-5286 α ER α Santa CruzSc-543Rabbit IgG from serumSigmaI8140Mouse IgG from serumSigmaI8765		Birmingham, UK.	
Birmingham, UK. α H3K27acAbcamab4729-25 α H3K27me3Millipore07-449 α H3Abcamab1791 α tubulinSanta Cruzsc-5286 α ER α Santa CruzSc-543Rabbit IgG from serumSigmaI8140Mouse IgG from serumSigmaI8765	α H4K5ac	L. O'Neill, University of	
α H3K27acAbcamab4729-25 α H3K27me3Millipore07-449 α H3Abcamab1791 α tubulinSanta Cruzsc-5286 α ER α Santa CruzSc-543Rabbit IgG from serumSigmaI8140Mouse IgG from serumSigmaI8765		Birmingham, UK.	
α H3K27me3Millipore07-449 α H3Abcamab1791 α tubulinSanta Cruzsc-5286 α ER α Santa CruzSc-543Rabbit IgG from serumSigmaI8140Mouse IgG from serumSigmaI8765	α H3K27ac	Abcam	ab4729-25
α H3Abcamab1791 α tubulinSanta Cruzsc-5286 α ER α Santa CruzSc-543Rabbit IgG from serumSigmaI8140Mouse IgG from serumSigmaI8765	α H3K27me3	Millipore	07-449
α tubulinSanta Cruzsc-5286α ERαSanta CruzSc-543Rabbit IgG from serumSigmaI8140Mouse IgG from serumSigmaI8765	α H3	Abcam	ab1791
α ERαSanta CruzSc-543Rabbit IgG from serumSigmaI8140Mouse IgG from serumSigmaI8765	α tubulin	Santa Cruz	sc-5286
Rabbit IgG from serumSigmaI8140Mouse IgG from serumSigmaI8765	$\alpha ER\alpha$	Santa Cruz	Sc-543
Mouse IgG from serumSigma18765	Rabbit IgG from serum	Sigma	I8140
	Mouse IgG from serum	Sigma	18765

Supplementary References

Leeb M, Pasini D, Novatchkova M, Jaritz M, Helin K, Wutz A (2010) Polycomb complexes act redundantly to repress genomic repeats and genes. *Genes & development* **24:** 265-276

Peng JC, Valouev A, Swigut T, Zhang J, Zhao Y, Sidow A, Wysocka J (2009) Jarid2/Jumonji coordinates control of PRC2 enzymatic activity and target gene occupancy in pluripotent cells. *Cell* **139:** 1290-1302

all genes

Ezh2

С

α-Ezh2 121 • 64 •

Α

