
Supplementary Information: 
 
In order to obtain better statistics regarding higher moments of the Maximum Caliber 
observables (Equations 3 and 4 in the manuscript), we decided to perform Brownian dynamics 
simulations of trajectories. That is, we modeled a particle diffusing on a potential landscape as if 
the landscape had been created by optical traps.  
 
The simulations were carried out using an algorithm by Gillespie in "Fluctuation and dissipation 
in Brownian motion," Am. J. Phys., 61: 1077-1083, 1993: a finite-difference method. Briefly, we 
simulated the Langevin equation (1.1) 
 

 ( ) ( ) ( ) ( ) ( )1
22 Bmv t v t k T R t U xγ γ= − + +  (0.1) 

 
where γ is the Stokes drag for a 1 μm particle in water, kB is Boltzmann's constant, and T the 
temperature, 298 K. U(x) is a double-well potential modeled from 2 Gaussian shaped optical 
traps consisting of laser light at 532 nm. The width of the each potential had spring constants 
approximately 1.02x10-7 N/m, as deduced by considering the wavelength of light, numerical 
aperture of the microscope (NA = 1.4), and typical laser powers. R(t) is a fluctuating force that 
obeys Gaussian white noise statistics. v(t) is the velocity of the particle, and m is the mass. The 
Brownian dynamics simulations were computed with a time step sufficiently short to satisfy the 
equipartition theorem (1.2); i.e.,  
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We further verified the accuracy of the Brownian dynamics algorithm by simulating diffusion in 
a single quadratic-shaped potential and comparing the position statistics to analytic results by 
Chandrasekhar, "Stochastic problems in physics and astronomy," Rev. Mod. Phys., 15: 1-89, 
1943. Our position distribution closely matched the predicted result, which serves as an 
additional test of the implementation of the algorithm. 
 
After recording the simulated trajectories (200,000 seconds each), we set the transition between 
two states as the prescribed maximum in the simulations (where the two optical traps meet). 
Similarly, in the experimental data in the main text, the negative logarithm of positions was 
computed and a double-Gaussian potential fit to this histogram. The transition point, in this case, 
was determined as the inter-well maximum for each potential landscape. The criterion for a 
transition is a dwell time in either of the wells for greater or equal than .002 sec; that is, the 
sampling rate of the experiment was set at 1 KHz; thus, in order to get rid of uncorrelated noise 
we simply made sure a particle dwelled for two time points at a minimum. This choice of a 
transition produced a waiting time distribution for transitioning between states that fits an 
exponential type distribution (data not shown), which serves as an alternate way to confirm the 
predictions of Maximum Caliber. I.e., the propagator (Eq. 6) will generate exponential-type 
dynamics. 
 
We then computed the statistics of the simulations and compared them to the predicted statistics 



from Maximum Caliber (equations (3), (4) and (5) in main text). The results are shown in 
Figures S1-S3 for observables that appear in the main text. The measured moments / theoretical 
predictions were compared for all moments (up to 3rd - though not all data is shown), and the 
correlation was always near 1. Note that the absolute scale is not the same as in the experiments 
described in the main text since the potentials used in the simulations were simple models of an 
optical trap, not the actual wells themselves, and the intra-well barrier heights were not the same 
in the experiments. 

 
 
Figure S1. Second moments of Nba and NB. The simulations as described in the Supplemental 
Information were processed identically to optical trapping data. The moments were calculated 
from the data (y-axes) and plotted against the theoretical predictions (x-axes). The correlation 
(red line, linear fit) is better than Figure 2 in the main text. Fit statistics are inset. Simulations, 
naturally, are performed under idealized conditions. The gray shaded region represents the 
estimated error in both the measurement of the moments, and the theoretical predictions.  
 

 
 



Figure S2. Third moments of Nba and NB. Simulated data was processed as described in the main 
text and Supplemental Information. The gray shaded region is the estimated error for both the 
measured data (y-axes) and theoretical predictions (x-axes). Compared to Figure 3 in the main 
text, the correlation (red line, linear fit) is markedly improved. Fit statistics are inset. 

 

 
 
Figure S3. Covariant moment of Nba and NB. The covariance between two observables of the 
simulated data was compared to theoretical predictions by Maximum Caliber. The gray shaded 
region is the estimated error for both the measured data (y-axis) and theoretical predictions (x-
axis). Compared to Figure 3 in the main text, the correlation (red line, linear fit) is markedly 
improved. Fit statistics are inset. 
 
A note on error analysis:  to compute the experimental error, we divided a thousand second 
trajectory into 10 second increments. Thus the error on the mean (for example, Nab) is the 
standard deviation of the distribution of Nab. In order to compute the confidence intervals on 
higher moments, we repeated the experiment 10 times and measured the distribution of the 
higher moments on these 10 trajectories. This was done for each set of potential landscapes. In 
order to compute the error on the theory, we simply propagated the standard deviation of the 
distribution of rate constants obtained by fitting the first moment data to equations (3) and (4) in 
the main text.  
 
We also make the claim that “all the higher cumulants, which would require much longer 
trajectory data, can be predicted from short-trajectory information”. We show this below: 
In Figures S4-S7, we plot the moments for two of the elementary observables (Naa, Nab) as a 
function of length of trajectory. In each graph, we plot both the simulation derived moments 
("sim" or "simulation"), and the moments obtained from the partition function (marked "thr" or 
"theory"). What is immediately apparent is that in all cases, the "thr" moments approach the 
"true" values as least as fast as if not faster than the "sim" moments. The "true" value of the 
moments is assumed to be the moment obtained from the longest trajectory. The reason for the 
enhanced accuracy of the theory is that rates kAB and kBA are obtained from the expected values of 
Naa and Nab only. Thus, whereas the computation of higher moments from simulated data ("sim") 
is subject to fluctuations within the higher moments themselves, higher moments computed from 
the rate constants ("thr") are subject only to first moment fluctuations. Thus it can be said that we 



can predict higher moments from short-trajectory information. This is especially apparent for 
third moments (Fig. S6) and the first cross-moment (covariance) (Fig. S7).  
 

 
 
Figure S4: First moment of Nab and Naa as a function of trajectory length, for Brownian dynamics 
(solid line), and from the dynamical partition function (squares). It is especially apparent from 
the Naa observable, that the Maximum Caliber predictions are more accurate, even for short 
trajectories.  
 

 
 
Figure S5: Second moment of Nab and Naa as a function of trajectory length, for Brownian 
dynamics (solid line), and from the dynamical partition function (squares). Note the amount of 
time it takes for the simulation to converge to the "true" value of the second moment of Nab, 
whereas the Maximum Caliber prediction arrives much faster. 
 



 
 
Figure S6: Third moment of Nab and Naa as a function of trajectory length, for Brownian 
dynamics (solid line), and from the dynamical partition function (squares). Both simulations and 
theory are fairly accurate; this is likely due to the nature of 3rd moment fluctuations themselves - 
i.e., in this system, there are few. 
 

 
 
Figure S7: Cross moment of Nab and Naa as a function of trajectory length, for Brownian 
dynamics (solid line), and from the dynamical partition function (squares). Like the second 
moment (Figure S5), this quantity converges to the "true" value much quicker when predicted by 
Maximum Caliber.  
 


