The identity of the exchangeable sulfur-containing ligand at the Mo(V) center of R160Q human sulfite oxidase.

Eric L. Klein,[†] Arnold M. Raitsimring,[†] Andrei V. Astashkin,[†]AshaRajapakshe,[†]Kayunta Johnson-Winters,[†] Anna R. Arnold,[†] Alexey Potapov,[§]Daniella Goldfarb,[§] John H. Enemark^{†,*}

[†]Department of Chemistry and Biochemistry, 1306 E University Blvd, University of Arizona, Tucson, Arizona 85721-0041

[§]Department of Chemical Physics, Weizmann Institute of Science, Rehovot, 76100, Israel Email: jenemark@email.arizona.edu

Supporting Information

Generation of the phosphate form of R160Q from Species 1.

The preparation and spectroscopy of Species 1 prepared at pH = ~6.4 is described in the manuscript. Species 1 was also prepared in ¹⁷O-enriched buffer at pH = ~5.4. The ESE detected spectrum of this sample (Figure S1) is identical in appearance to the previously reported EPR spectrum.¹ Phosphate buffer, which was prepared by dissolving natural abundance phosphate in ¹⁷O-enriched water (>90 atom % Aldrich 609862), was then incrementally added to this sample so that the final phosphate concentration was about 700 mM. This concentration is about 10 times greater than that used by Bray, *et al.*, to completely transform the low pH form (*lpH*) of chicken SO (cSO) into the phosphate-inhibited form (*P*_i).² The field sweep ESE-detected spectrum of the sample obtained in the presence of 700 mM phosphate is also presented in Figure S1. Analysis of the initial and final spectra revealed the generation of a new enzyme form. The *g*-values of this new form (1.952, 1.968, 2.00) are different from those of *P*_i (1.965, 1.973, 1.995). Unfortunately, the inefficient conversion of Species 1 into this new form (~20%) and the overlap of the EPR spectra of these samples complicated our attempts to quantitatively investigate the substitution of the sulfur-containing ligand by phosphate. To overcome these problems, it was necessary to investigate the samples at a slightly higher pH (~6.4, as described in the manuscript). The resulting spectra of the phosphate forms prepared at pH = 5.4 and 6.4 are nearly identical (Figure S2).

Figure S1. Transformation of the ESE-detected EPR spectrum of Species 1 by addition of phosphate. Panel "a" Traces 1 and 2 are the initial spectrum and the spectrum obtained in the presence of 700 mM phosphate, respectively. Brackets show the field regions in the spectra where the effects of phosphate are clearest. The arrow indicates the low-field shoulder position of Species 1 at which the intensity of trace 1 was adjusted for subtraction from trace 2, as shown in panel "b". Panel "b", trace 3 shows the EPR spectrum of the new form of R160Q generated by phosphate addition. This was obtained by subtracting trace 1 from 2, where trace 2 is the same as trace 2 in panel "a" and trace 1 is the amplitude-adjusted spectrum of Species 1. Experimental conditions: $v_{mw} = 30.216$ GHz; Temperature = 20K; two-pulse ESE pulse durations = 20 ns.

Figure S2. The EPR spectra of the new form obtained by addition of phosphate to Species 1. Trace 1 is the same as trace 3 of Figure S1, panel "b". Trace 2 is the spectrum presented in Figure 2 in the manuscript. These are shown together here for comparison. Trace 2 has been shifted by \sim 40 G to offset the difference of mw frequencies at which these spectra were recorded.

Figure S3. K_a -band HYSCORE spectra of Species 1P obtained at the g_y (panel "a") and g_x (panel "b") EPR positions (indicated by the arrows in Figure S2). Experimental conditions: mw frequency = 30.216 GHz; Temperature = 20K; mw pulses = 12, 12, 22, and 12 ns. The spectra represent the sum of the spectra obtained at time intervals between the first two mw pulses of 150, 180, and 210 ns.

Preparation of the standard *lpH* form of R160Q by CaCl₂ addition.

An additional experimental effort was made to chemically distinguish either sulfate or sulfite as the identity of the sulfur-containing ligand of Species 1. The rational of this approach is described in the manuscript. Two cations (Ag^+ and Ca^{2+}) were considered for these experiments based on the solubilities of their sulfate and sulfite salts in water. Although the K_{sp} values of Ag_2SO_3 and Ag_2SO_4 differ by ten orders of magnitude,³ this metal was eliminated as a candidate for our initial attempts (with limited enzyme available) since its redox activity could lead to ambiguous results or other complications (Ag^0 , Ag^+ , and Ag^{2+} are potentially accessible). Ca^{2+} is redox inert in water, and the K_{sp} values of $CaSO_4$ and $CaSO_3$ (9.1 x 10⁻⁶ M and 6.8 x 10⁻⁸ M, respectively) still differ sufficiently for our purposes.

For these experiments it is necessary to maintain a rather low pH (ideally pH \leq 6) to prevent any transformation of Species 1 into Species 2. Simultaneously, it is also necessary that the pH be high enough (preferably pH \geq 7) to avoid shifting the equilibrium of SO₃²⁻ toward HSO₃⁻ (a very soluble product). The optimal conditions for carrying out such experiments most effectively, although possible to find, would require large amounts of enzyme to identify the effects of multiple independent variables (including buffer pH, enzyme concentration, cation concentration, anion concentration, and total ion strength) on each other and on the results. Due to our limited amount of purified enzyme, however, we were only able to investigate the effects of buffered *vs.* unbuffered CaCl₂ solutions of various concentrations. In one of these trials, a substantial change in the initial EPR spectrum was observed. In that case, the sample was prepared at an initial pH of 5.8. This was then titrated by an unbuffered, 200 mM aqueous CaCl₂ solution (at pH = ~9) to a final CaCl₂ concentration of about 50 mM. The initial and final CW-EPR spectra are shown in Figure S4. The initial spectrum is primarily from Species 1,

but Species 2 is also present in a very small amount. The addition of $CaCl_2$ resulted in the unexpected generation of a new species that was not Species 2. Since Species 1 remains in significant quantities, however, the amplitude-adjusted initial spectrum was subtracted from the final spectrum to isolate the EPR spectrum of this the new form (Figure S4, panel "b"). To adjust the amplitude of the initial spectrum, the unobstructed and clearly visible high-field signal at g_x (marked by an arrow) was used. This kind of a spectrum has never been observed for R160Q previously. The splitting at the g_z position (~9 G) is characteristic for EPR spectra of standard *lpH* forms, however, and is due to proton hyperfine coupling from coordinated hydroxo.^{4, 5} For comparison, the CW-EPR spectrum of the *lpH* form of cSO is presented in Figure S4, panel "c".

Figure S4. (a) The CW-EPR spectra of the initial R160Q sample (trace 1) and Species 2 (trace 2) obtained in separate preparations. The arrows at bottom spectrum point to the spectral features of Species 2 that are present in the initial spectrum in detectable (but negligible) amounts. The dashed arrow indicates the position of the DPPH *g*-marker (g = 2.0036). (b) The CW-EPR spectra recorded before (trace 1) and after (trace 2) the titration with CaCl₂. The arrow indicates the part of the spectra that was matched in amplitude for subtraction. As is evident from trace 2, the titration produced no additional amount of Species 2. (c) The upper trace is the CW-EPR spectrum of the *lpH* form of cSO. The lower trace (solid line) is the resulting difference spectrum from panel "b". The dotted line shows the simulation of this trace (simulation parameters: $g = \{2.004; 1.974; 1.966\}$; $T = \{5; 7; -12\}$ MHz; $a_{iso} = 25$ MHz). Experimental conditions: all spectra are adjusted to a mw frequency of 9.454 MHz; Temperature = 77K.

The magnetic resonance parameters that describe the spectrum of the new enzyme form are derived from the simulation of the spectrum. These are $g = \{2.004; 1.974; 1.966\}$, T = $\{5; 7; -12\}$ MHz, and $a_{iso} = 25$ MHz. These parameters are very close to those of lpH cSO, which are $g = \{2.0037, 1.972, 1.9658\}, a_{iso} = 26$ MHz, and $\mathbf{T}_{1} = 5^{4,5}$ and to the parameters of *lpH* forms from other sources.⁶ These parameters provide clear evidence that Species 1 is transformed to a standard *lpH* form by CaCl₂. Although the details of this transformation are not yet understood, no other methods to produce the *lpH* form of R160Q are known. For example, the one-electron reduction of R160Q at low pH (from its Mo(VI) resting state) by Ti(III) generates only Species 2, while the same procedure for the blocked form of Arabidopsis thaliana SO (At-SO) generates the standard *lpH* form.⁷ Also, the presence of high Cl⁻ concentrations (~500 mM), which normally transforms other *blocked* forms to the *lpH* form, has no effect on Species 1.⁷ One possible explanation for the conversion of Species 1 to the lpH form by CaCl₂ is the removal of the sulfite ligand from Mo(V) (and the solution) through the formation of CaSO₃. In this case, the open coordination site of Mo(V) could become accessible to water (or hydroxide). Alternatively, it is also possible that CaCl₂ could initially increase the solution pH sufficiently to transform Species 1 into Species 2, which may then release the sulfur-containing ligand, ultimately forming CaSO₃. To determine which of these (or other) possibilities is correct, or what the specific effect(s) on the active site structure may be, would be far beyond the scope of this paper.

Spectral simulations

Since the set of experimental spectra is incomplete (*i.e.* there is a lack of data at the g_z position), there are many possible combinations of hfi and nqi parameters that could be used to simulate them. To simulate the spectra at the g_y and g_x positions collected at K_a- and W-bands, certain constrains must be imposed. As we have learned from our numerous previous simulations, the magnitudes of the isotropic and anisotropic hfi must be close to estimates made from the direct analysis of the experimental data, despite the possible broad variation of the hfi tensor axis within the g-frame. For example, Figure S5 shows a comparison of the experimental W- and K_a-band spectra (black lines) with one of the simulations (colored lines). For this particular simulation, we set a_{iso} to -9 MHz and the extremely rhombic tensor of the anisotropic hfi to $\mathbf{T} = \{1; 9; -10\}$. The elements of this tensor correlate with elements of the axial hfi tensor for which $T_{\parallel} = -9$ MHz, as evaluated in the manuscript.

Figure S5. Experimental (black) and simulated (colored) W-(panels a and b) and K_a-band (panel c) HYSCORE contour plots of Species 1. (a) and (b) were collected at the g_y and g_x positions, indicated by the arrows in Figure S6. The simulated contours of the Mo(V)-coordinated ¹⁷O (of the sulfite ligand) are shown as red lines in (a) and (b), and the simulated contours of the remote ¹⁷O nuclei of sulfite are shown in blue in (a). Simulation parameters for the Mo(V)-coordinated ¹⁷O: $a_{iso} = -9$ MHz; a_{iso} distribution width = 3 MHz; $T_{11}=1$ MHz; $T_{22}=-9$ MHz; $\vartheta(hfi) = 90^\circ$; $\varphi(hfi) = 90^\circ$; $\psi(hfi) = 60^\circ$; $e^2Qq/h = 6.8$ MHz; $\eta = 0.5$; $\vartheta(nqi) = 90^\circ$; $\varphi(nqi) = 0^\circ$; $\psi(nqi) = 90^\circ$. Simulation parameters for the remote ¹⁷O nuclei of sulfite: $a_{iso} = 5.5$ MHz; a_{iso} distribution width = 1 MHz; $T_{11} = -1$ MHz; $T_{22} = -1$ MHz; $\vartheta(hfi) = 10^\circ$; $\varphi(hfi) = 5^\circ$; $\psi(hfi) = 0^\circ$; $e^2Qq/h = 4.8$ MHz; $\eta = 0.5$; $\vartheta(nqi) = 5^\circ$; $\varphi(nqi) = 5^\circ$; $\varphi(nqi) = 0^\circ$; $\psi(nqi) = 0^\circ$. All of the simulations were performed using the SimBud software,⁸ to which we refer for the definitions of all of the above parameters.

Figure S6. The W-band, two-pulse ESE field sweep spectrum of Species 1. The arrows show the approximate positions of g_x , g_y , and g_z (1.9513, 1.9701 and 2.0062, respectively). Experimental conditions: microwave frequency = 94.89675 GHz; Temperature = 20K; pulse durations = 25 ns; pH = 5.8.

Optimized sulfate- and sulfite-bound model coordinates and DFT-calculated magnetic resonance parameters.

The DFT model preparations and property calculations were performed as described in the Materials and Methods section using the ORCA computational package.⁹ The calculated magnetic resonance parameters for the sulfate-coordinated model (model 1) and one of the sulfite-coordinated models (model 2) are provided in

Tables 1 and S1, and the magnetic resonance parameters for all of the models are provided in Table S1 (below). For comparison, the parameters of the relevant enzymes are also provided in each table.

(1) SO-SO₄ (259 atoms):

С	27.974530	101.424337	27.378348
С	29.141937	101.527265	26.391898
0	29.073711	101.013873	25.266692
С	27.558518	99.967311	27.617460
С	28.553699	99.111392	28.411863
С	29.844431	98.730669	27.668299
N	30.453083	97.538948	28.272931
С	31.533626	97.476022	29.050897
N	32.314634	98.544053	29.302419
N	31.875754	96.277858	29.585959
N	30.273890	102.167159	26.821088
С	31.497505	102.062592	26.048733
С	32.449345	101.022432	26.631186
0	32.595890	100.916240	27.869868
N	33.113864	100.290789	25.723976
С	34.233072	99.425179	26.067949
С	34.524103	98.378680	24.967906
С	33.736177	97.108373	25.038806
N	32.384033	96.952739	24.734742
С	34.170307	95.857751	25.410394
С	32.028224	95.664708	24.923604
N	33.102682	94.986363	25.332838
С	22.904770	95.470018	27.085096
С	22.590919	94.131442	27.749159
0	21.621773	93.989525	28.497891
С	23.506303	96.482063	28.064685
S	25.217925	96.092257	28.694797
N	23.474892	93.117951	27.486610
С	23.291081	91.785670	28.053404
С	23.505107	91.716125	29.572179
0	23.054335	90.768424	30.224363
С	24.170428	90.769371	27.321204
N	24.229799	92.719149	30.127711
С	24.308299	92.845661	31.566890
С	23.520941	92.186405	36.721380
С	24.858921	92.575611	36.068912
С	25.978056	91.586263	36.416035
С	27.298044	91.832504	35.678185
N	27.218716	91.499215	34.245520
С	27.466189	92.294895	33.184367
N	27.646458	93.612337	33.311819
N	27.560439	91.737046	31.961753
С	31.090589	92.720596	34.904552
С	30.578736	93.998415	35.550737
0	30.451659	94.118766	36.771247
N	30.226821	95.013793	34.695306
С	29.646688	96.246109	35.221358
С	28.416107	95.936294	36.066844
0	27.526575	95.133756	35.702045
С	29.328082	97.256408	34.108580
С	30.561989	97.916242	33.456187
C	30.097800	98.790603	32.283111
С	31.388419	98.741497	34.453691

N	28.333583	96.642528	37.205093
С	27.286534	96.454139	38.194853
С	25.985249	97.231727	37.910950
0	25.543788	98.060776	38.706831
N	25.382778	96.898776	36.740596
С	24.171376	97.570929	36.297467
С	23.727347	97.077735	34.907511
С	24.689515	97.333705	33.779672
С	25.428576	96.385243	33.102360
С	24.996972	98.593973	33.144707
N	26.179873	96.977797	32.101491
С	25.920899	98.334060	32.093864
С	24.552509	99.914625	33.357209
C	26.390539	99.353975	31.259061
С	25.025907	100.931424	32.533341
C	25,937475	100.651247	31,492407
C	31.877676	87.150217	25.704645
C	30.437532	87.069702	25,187981
0	30,168729	86.663420	24.051270
C	32,451696	88.578152	25.793482
C C	32 081824	89 392654	27 039114
0	31 296716	88 852099	27 905269
0	32 563507	00.551/18	27.182707
N N	29 / 88180	87 175218	26 081621
C	28 089753	87 626807	25 698886
C C	20.009755	88 766107	23.678487
C C	27.039191	00.068760	24.070407
C C	20.470373	90.000709	25.110030
C C	20.123313	90.000410	20.332303
		90.003700	24.559257
	20.1/9/02	91.790274	20.013001
C C	30.149003 20.917761	91.022/24	24.021949
	29.01//01	92.302293	20.009304
0	30.330002	93.433/34	20.525320
	29.433303	00.910021	33.757420
	29.509450	00.099429	32.223029
0	30.975414	80.540362	31./14590
C N	31.900911	8/./15415	31.694/08
N	31.005207	88./1043/	30.691080
C N	31.108292	89.90/415	30.895/40
N	31.1/3059	90.540963	32.130/46
N	30.001801	90.633893	29.854149
C	24.390154	88.3/193/	31.88801/
C	25.070034	88.114603	30.525204
C	26.266852	89.043354	30.311610
C	25.4/5630	86.641651	30.3/3803
S	28.520878	94.513268	29.632424
0	2/.6012/3	93.324168	29.592074
0	28.396041	95.318981	30.912284
0	30.008771	94.084106	29.428043
0	28.258101	95.459663	28.383699
N	30.279469	99.423025	19.648968
С	31.433105	100.045923	19.717443
N	32.003113	100.543295	18.575238
N	32.126671	100.173424	20.890404
С	31.674560	99.636298	22.117054
0	32.420348	99.770840	23.122753
N	29.847808	98.435053	23.248855
C	28.772036	97.442940	22.979695
С	27.826995	97.866517	21.830276
N	28.587087	98.255415	20.682324

С	30.414014	98.995136	22.057771
С	29.776397	98.911609	20.808619
С	27.914308	97.195065	24.197508
S	28.588948	96.161782	25.477143
С	26.659107	97.691197	24.293038
S	25.637818	97.308040	25.697790
C	26.033654	98.575799	23.225756
0	27.016558	98,968387	22.245473
с С	25.419475	99.866468	23.757001
Mo	26 60/101	95.525006	26 885310
0	33 622853	02 /18761	25 708740
0	21 529260	92.410701	21 56//20
0	26 050460	93.413001	26 104006
U 11	20.000400	94.004033	20.194090
п 11	27.131290	101.972001	20.929///
H 	28.214/45	101.924979	28.331283
H 	26.603349	99.969670	28.16294/
H	27.355525	99.489022	26.648061
Н	28.820375	99.603588	29.361650
H	28.040257	98.172993	28.676545
Н	29.615613	98.474545	26.624300
Н	30.572491	99.548098	27.668414
Н	29.850996	96.703210	28.236196
Н	33.183615	98.386091	29.800694
Н	32.282410	99.431191	28.763516
Н	31.200230	95.495562	29.535716
Н	32.503352	96.272336	30.382215
Н	30.347518	102.452183	27.794120
Н	31.214886	101.819916	25.016516
Н	32.026508	103.029794	26.047248
Н	32.826671	100.329032	24.730789
Н	35.135699	100.044398	26.205373
Н	34.034237	98.933078	27.030030
н	34.398148	98.846245	23.979626
н	35.582295	98.093973	25.053647
н	31 733637	97 669326	24 357272
и п	35 15/557	95 52/5/0	25 71/582
п п	31 02203/	95.265580	23.714302
и и	22 170290	93.203300	24.020132
п т	21 042044	93.922372 05.976510	25.519372
н 11	21.942044	95.070510	20.737005
H	23.555530	95.352278	26.207092
H 	23.56/435	97.477351	27.603054
H 	22.886910	96.558126	28.969268
H	24.285283	93.295876	26.888594
H	22.231899	91.510186	27.928614
H	24.021059	89.773762	27.757045
Н	23.905587	90.726434	26.255703
Н	25.233664	91.037369	27.404899
Н	24.501615	93.514266	29.548261
Н	24.638478	91.899722	32.017033
Н	25.021967	93.639503	31.812879
Н	23.328479	93.099672	32.003189
Н	23.608695	92.148561	37.817773
Н	22.730439	92.909235	36.475946
Н	23.185184	91.196552	36.377578
Н	24.730019	92.614705	34.974000
Н	25.158611	93.586589	36.387307
Н	26.192452	91.631714	37.496596
Н	25.639058	90.552742	36.221655
Н	27.601585	92.881047	35.784651
Н	28.098075	91.218365	36.122521

Н	26.992084	90.532098	34.028087
Н	27.603284	94.117127	34.218139
Н	27.895289	94.163524	32.481074
Н	27.336433	90.754443	31.829397
н	27.508196	92.324381	31.111203
н	31,951526	92.360148	35,481953
 H	30.303362	91.955451	34.965574
н	31 370782	92 870094	33 855029
и П	30 315057	9/ 88819/	33 689662
и п	30 302031	06 602230	35 002600
п	20.392031	90.092339	33.902090
п	20.712013	90.700330	24 520601
H T	20.095905	98.050208	34.539601
H 	31.210568	9/.115695	33.053101
H	29.553604	98.193185	31.53/392
H	29.417858	99.583046	32.632345
H	30.950714	99.274971	31.785136
H	31.814861	98.130301	35.262747
H	32.230606	99.235833	33.946889
Н	30.771530	99.531386	34.911583
Н	29.123792	97.228135	37.458646
H	27.065217	95.377558	38.263563
Н	27.658554	96.797252	39.165845
Н	25.841470	96.223830	36.123969
Н	23.366491	97.391908	37.028309
Н	24.346395	98.658688	36.284943
н	23,515001	95,997259	34,964150
н	22.761696	97.562446	34.688026
н	25 469028	95 311250	33 255042
ц	26 762559	96 475120	31 /30839
и п	23 830103	100 130800	34 152564
11	23.039103	00 121522	20 445017
п	2/.0/0010	101 056606	20.445917
п 11	24.005275	101.950090	32.00/114
H	20.283009	101.405227	30.853082
H 	32.4//3/9	86.563/31	24.996193
Н	31.951219	86.669966	26.692197
Н	33.553229	88.534948	25.768887
Н	32.156925	89.171579	24.912768
H	29.841514	87.946558	26.921761
H	27.737139	86.678793	25.264691
H	27.518679	87.803580	26.621568
Н	28.247261	88.455353	23.707031
Н	26.748178	88.876654	24.554875
Н	27.324638	90.220778	26.934723
Н	29.772058	90.248763	23.398614
Н	28.478080	92.222876	27.770820
н	30.960261	92.267408	24.242465
н	30.293910	93.619199	27.466462
н	29.673272	85,934127	34,185776
н	30,104126	87.656203	34,227546
ц	28 /05832	87 167779	34 060874
и ц	28 856369	86 163/0/	31 822556
ц ц	20.050505	87 868210	31 700005
11	23.201333	0/.000240 05 725002	JI./30003
п 11	JI.4U/034	00.107000	32.333015
H	30.910897	80.13/609	30.691154
H	32.016801	88.185640	32.688054
Н	32.981465	87.351069	31.469450
Н	31.585503	88.438984	29.690992
H	31.781708	90.133657	32.832777
H	31.133640	91.568689	32.131070
Н	30.802510	90.172677	28.919668

Н	30.502858	91.636311	29.905340
н	23.534535	87.696490	32.033416
Н	25.098202	88.188673	32.716952
Н	24.010708	89.401044	31.940337
Н	24.323400	88.352884	29.749767
Н	27.033917	88.864807	31.090472
Н	26.758618	88.868584	29.342790
Н	25.948153	90.096063	30.337962
Н	26.206083	86.352329	31.148251
Н	24.605494	85.976853	30.477159
Н	25.933623	86.443949	29.392444
Н	31.390365	100.542241	17.764836
Н	32.649191	101.323643	18.633986
Н	33.052582	100.598616	20.920177
Н	29.485855	99.179575	23.863086
Н	29.255301	96.499307	22.672381
Н	27.182721	97.009673	21.555892
Н	28.117810	98.351016	19.784610
Н	25.249297	97.980736	22.710813
Н	24.611162	99.647554	24.466813
Н	26.189319	100.468131	24.258704
Н	25.004585	100.443756	22.919924
Н	33.186422	91.673210	26.259555
Η	34.113539	91.970319	25.000442
Н	32.407973	93.305994	31.141119
Н	30.925764	93.694152	30.822181

origin	28.446148691	94.912523803	28.894120295
gx	28.150858310	95.594840763	28.616071159
дХ	27.940262511	94.942548973	29.505055501
gz	28.981822966	95.317006460	29.317807699

Euler rotation of the hyperfine tensor to the *g*-tensor:

Atom	Alpha 	Beta [degrees	Gamma]	Ax	Ay [MHz]	Az	
122Mo	-21.9	60.5	35.2	142.77	47.98	51.00	
1250	0.2	68.4	-11.4	-0.45	0.92	9.30	
1020	4.8	62.8	20.4	-3.50	-20.78	-4.39	
98S	16.1	69.9	9.6	2.94	2.81	4.26	
1000	29.4	54.5	31.2	-0.06	-0.04	-3.58	
990	-2.7	51.7	-78.4	0.03	-0.34	0.38	
1010	38.4	39.1	47.7	0.01	0.29	-0.26	

Euler rotation of the Electric Field Gradient (EFG) tensor to the *g*-tensor:

Atom	Alpha 	Beta [degrees	Gamma]	EFGx	EFGy [a.u.**-3	EFGz]	
122Mo	8_8	54 0	5 4	1 17	_1 28	0 11	
122110	-0.0	54.0	J.7	I • I /	-1.20	0.11	
1250	-25.9	71.9	-21.3	-0.19	-0.00	0.19	
1020	12.9	71.5	28.9	-0.64	-1.15	1.78	
98S	-15.0	72.4	19.8	-0.30	-0.04	0.34	
1000	4.7	41.2	-84.3	1.74	-0.77	-0.97	
990	7.5	54.6	24.8	1.72	-0.97	-0.75	
1010	27.3	63.3	-52.2	-0.95	-0.83	1.78	

Figure S7. The *g*-tensor orientation and total spin density of **1** (contoured at 0.01 e/bohr³).

(2) SO-SO₃ (258 atoms):

С	27.974511	101.423733	27.377982
С	29.142034	101.526724	26.391676
0	29.074677	101.011478	25.267366
С	27.519425	99.973551	27.585619
С	28.485110	99.080304	28.374345
С	29.773149	98.679297	27.637512
N	30.353594	97.480538	28.254518
С	31.417539	97.409365	29.051323
N	32.213673	98.467317	29.308243
N	31.728632	96.210487	29.604609
N	30.271809	102.173139	26.817845
С	31.497604	102.062223	26.048793
С	32.436345	101.007287	26.628866
0	32.566900	100.882507	27.866689
N	33.115253	100.290132	25.718818
С	34.233372	99.425022	26.068428
С	34.523231	98.365432	24.981067
С	33.722166	97.104127	25.060214
N	32.370514	96.965680	24.745967
С	34.134838	95.851328	25.452144
С	31.992261	95.686752	24.949054
N	33.052803	94.997196	25.378301
С	22.890665	95.474335	27.124814
С	22.593442	94.132577	27.786559
0	21.648566	93.983699	28.565437
С	23.515393	96.478670	28.098694
S	25.223878	96.055466	28.712393
N	23.466870	93.118286	27.490007

С	23.291721	91.784724	28.052721
С	23.553340	91.702767	29.563794
0	23.125462	90.748354	30.218061
С	24.128893	90.760715	27.281701
N	24,293633	92.705524	30,120249
C	24 308415	92 844893	31 566305
C C	24.500415	02 195722	26 720715
	23.320439	92.103/22	30.720713
		92.575013	30.000404
C ~	25.974794	91.575850	30.39/040
С	27.297161	91.828858	35.664870
N	27.222158	91.511469	34.226992
С	27.421469	92.336662	33.182023
N	27.581338	93.650221	33.312870
N	27.498190	91.795533	31.939007
С	31.090295	92.720446	34.904825
С	30.568316	93.993876	35.551774
0	30.425931	94.108471	36.771568
N	30.224761	95.011627	34.696062
C	29,646081	96.245857	35,221349
C	28.418841	95.934802	36.070468
0	27 526810	05 13338/	35 706762
C C	20 21/22/	93.133304	34 104422
	29.514554	97.240002	34.104422
0	30.538080	97.906390	33.432041
C	30.053583	98.787445	32.272189
С	31.38/243	98.724071	34.416621
N	28.336154	96.640717	37.208109
С	27.285537	96.453788	38.194541
С	25.981408	97.222052	37.899621
0	25.528641	98.043591	38.697259
N	25.385554	96.893855	36.723579
С	24.170532	97.570284	36.296731
С	23.675999	97.087584	34.926285
С	24.613928	97.348143	33.782975
С	25.331617	96.387670	33.100672
С	24.944511	98.610595	33.162734
N	26.091102	96.966016	32.101146
C	25 862205	98 326794	32 103254
c	24 552706	00 0/0728	33 368/67
C C	24.332790	00 222077	21 250675
		100 045042	JI.ZJ007J
	25.003703	100.945942	32.539830
C ~	25.959308	100.63/464	31.490841
С	31.878970	87.149868	25./051/4
С	30.440747	87.080181	25.180485
0	30.174509	86.698264	24.035519
С	32.449934	88.577685	25.812819
С	32.065368	89.382485	27.061209
0	31.282186	88.831114	27.922392
0	32.533656	90.545957	27.209262
N	29.489096	87.469235	26.079372
С	28.091011	87.626165	25.698925
С	27.828999	88.807723	24.733016
Ċ	28,456343	90.098492	25,205931
C.	28.164684	90.623848	26.472320
c	20.112625	90 773063	20.472320
c	22.413033	01 750001	24.433414
C C	20.0100/3	91./JU901 01.000055	
L a	30.0/2860	AT . ANAQ22	24.908845
C O	29./9/9/4	92.391240	20.194315
0	30.504546	93.4/844/	20.053400
C	29.433601	86.918511	33.757648
С	29.569949	86.899086	32.225875

С	30.982848	86.569195	31.715087
С	31.950950	87.763571	31.703583
N	31.578596	88.755969	30.695490
С	31.172547	90.017365	30.892876
N	31.208178	90.605015	32.119852
N	30.658271	90.683441	29.852121
C	24.390575	88.371184	31.887569
с С	25 070647	88 113864	30 524849
C C	26 264655	89 047508	30 313823
C C	20.204055	86 642460	30 376200
c c	20 252162	04 222760	20 590050
0	20.333103	94.525709	29.009909
0	20.1/0313	95.143439	30.892893
0	29.918364	94.002309	29.465082
0	28.218313	95.40/256	28.339911
N	30.251099	99.472994	19.648377
С	31.426638	100.054480	19.714268
N	32.004270	100.542754	18.575404
N	32.131949	100.148584	20.883965
С	31.667013	99.623555	22.111604
0	32.421183	99.731658	23.115047
N	29.806706	98.474642	23.242945
С	28.725214	97.493467	22.962584
С	27.774132	97.944587	21.829351
N	28.528743	98.353363	20.684157
С	30.386176	99.024620	22.054029
С	29.738725	98.970186	20.807817
С	27.875228	97.222061	24.179599
S	28.551527	96.149596	25,423030
с С	26.622171	97.717856	24.296405
S	25 601408	97 283727	25 686504
C	25.001400	98 627822	23.252596
0	26 970550	99 040044	22 27/183
C C	20.070000		22.274103
Mo	25.505090	99.907904	25.014/19
MO 0		93.310732	20.079130
0	33.595550	92.425970	25.739090
0	31.451619	93.4/6182	31.596///
0	26.08856/	94.02/852	26.244045
H	2/.1444/1	102.0036/2	26.9445/4
H	28.227475	101.896684	28.341852
H	26.559142	99.991208	28.121877
H	27.314479	99.517829	26.605716
Н	28.755477	99.550430	29.334473
Н	27.949466	98.150079	28.622063
Н	29.545774	98.423215	26.593171
Н	30.514483	99.485494	27.637196
Н	29.731157	96.654055	28.227895
Н	33.083876	98.290129	29.797673
Н	32.197618	99.352380	28.769425
Н	31.026418	95.446265	29.550317
Н	32.306939	96.215689	30.438053
Н	30.349044	102.445370	27.794359
н	31.217840	101.830149	25.013412
н	32.036596	103.023627	26.057872
н	32.825780	100.324789	24.726477
 H	35,137208	100 044460	26 196551
 ц	31 035036	08 015610	27 027004
п п	34 100000	00 072157	27.03/004
и п	34.400003 35 570300	30.02343/ 00 079/1/	23.300923 25 077011
п 11	21 7/1100	07 600060	23.01/011
п п	31./41199 25 110050	9/.U09909 05 50//2/	24.349039
п	22.TT0220	yJ.JU4434	23.//0148

H	30.979899	95.305870	24.846090
Н	33.107081	93.936935	25.572376
Н	21.921551	95.882448	26.797557
Н	23.524798	95.361117	26.234114
н	23.586172	97.471766	27.634310
н	22,904031	96.565098	29.007736
 H	24.273598	93,301997	26.887611
н н	22 225/59	01 521002	27 966274
п u	22.225455	80 766615	27.700274
11	23.903703	09.700015	27.723243
п	23.014240 25.100176	90.723134	20.229034
H T	25.190170	91.0102/1	2/.312/23
H	24.458924	93.544849	29.558620
H	24.608160	91.899360	32.035056
Н	25.012146	93.639139	31.839877
H	23.311824	93.109037	31.956293
H	23.612056	92.134219	37.816163
H	22.734104	92.916775	36.486974
Н	23.177209	91.202203	36.366286
Н	24.724713	92.629533	34.974561
Н	25.164738	93.580243	36.398243
Н	26.190520	91.603735	37.478509
Н	25.632227	90.546532	36.187898
Н	27.602539	92.875918	35.781879
Н	28.095822	91.208244	36.101288
н	26.997829	90.546496	33,996874
н	27.567154	94.148758	34,226176
ц	27.803615	9/ 201236	32 161019
п п	27.003013	00 816250	31 780560
11	27.272030	90.010330	31.700309
п IJ	27.555679	92.399300	31.135227
H	31.919074	92.336280	35.512/03
H	30.290584	91.965/81	34.911180
Н	31.41694/	92.890500	33.8/2318
Н	30.335087	94.892169	33.690795
Н	30.392616	96.698750	35.896919
H	28.691045	96.752930	33.342584
H	28.685499	98.043835	34.536835
H	31.175657	97.105175	33.012527
Н	29.488572	98.196866	31.536523
Н	29.386719	99.582890	32.639244
Н	30.898071	99.267280	31.756202
Н	31.829948	98.107299	35.212727
Н	32.219013	99.219993	33.894549
н	30.781810	99.512419	34.892132
н	29.125501	97.227345	37.462024
н	27.070219	95.376403	38,270215
н	27.650507	96.806640	39.164566
н	25 847051	96 226712	36 100992
и ц	23.386103	97 106801	37 053716
и п	23.300193	97.400004	36 275594
п IJ	24.334377	96.000600	30.275584
H T	23.454/90	90.000090	34.9/9142
п	22./0923/	9/.J04/03	34./4200/
н 	25.35/189	95.313481	33.255497
H	26.666289	96.448566	31.433349
Н	23.850010	100.208598	34.163022
Н	27.022385	99.082062	30.431601
H	24.760528	101.982634	32.696470
H	26.326633	101.439435	30.847970
H	32.482191	86.571047	24.993544
H	31.945944	86.659717	26.688190
Н	33.551759	88.536262	25.800192

H	32.164333	89.177552	24.933344
H	29.841368	87.926280	26.927709
Н	27.749951	86.696107	25.220097
Н	27.514807	87.751550	26.627049
Н	28.231599	88.541538	23.746078
Н	26.736657	88.917104	24.618921
Н	27.419175	90.133023	27.102749
Н	29.661036	90.389163	23.440981
Н	28.578158	92.125515	27.962301
Н	30.836357	92.402646	24.305091
Н	30.277819	93.640433	27.602149
Н	29.692262	85.939941	34.188610
Н	30.090337	87.669409	34.225587
н	28.401775	87.148304	34.060848
н	28.869994	86.151552	31.822162
Н	29.247066	87.864545	31.801292
н	31.429633	85.771436	32.331540
Н	30.927846	86.169143	30.690158
Н	31.977708	88.234924	32.696991
н	32.974663	87.418066	31.490621
Н	31.561737	88.476316	29.693902
Н	31.831504	90.203973	32.812309
н	31.161072	91.634209	32.113329
Н	30.784916	90.212632	28.924622
Н	30.557862	91.696277	29.883586
н	23.525881	87.706215	32.026630
Н	25.094715	88.171518	32.715987
Н	24.025087	89.404458	31.948484
Н	24.325976	88.348670	29.747041
Н	27.028933	88.873141	31.096300
Н	26.759404	88.873350	29.346466
Н	25.933409	90.097180	30.336090
н	26.214329	86.357153	31,150627
Н	24.614512	85.975113	30.481415
Н	25.940043	86.444415	29.394920
н	31,389168	100,568907	17,767179
Н	32.683210	101.294448	18.635393
н	33.071734	100,542262	20,911447
н	29.444746	99.226587	23.848319
н	29,203980	96.554829	22.633190
н	27,123437	97.096833	21,541369
н	28.057447	98,466469	19,789623
н	25,203830	98.045680	22.729465
Н	24.583046	99.673924	24.528157
Н	26.158715	100.499383	24.320998
н	24,961341	100,502402	22,993584
Н	33.159208	91.678585	26.286731
н	33.999926	91.981118	24.977638
н	32.327666	93.443037	31.174237
Н	30.817387	93.716583	30.850816

origin	28.430554328	94.923602414	28.894595035
gx	28.046829966	95.536494046	28.567205930
дХ	27.944664637	94.954277591	29.521519597
gz	28.927274558	95.427077384	29.254936724

Euler rotation of the hyperfine tensor to the *g*-tensor:

Atom	Alpha	Beta [degrees	Gamma]	Ax 	Ay [MHz]	Az	
121Mo 1240	-21.6	70.9 76.0	42.9	143.08	47.41	51.41	
1010	26.2	9.8	-5.3	-2.68	-28.84	-1.75	
98S	-15.9	6.6	-60.0	1.22	3.06	1.46	
990	-19.5	69.0	31.5	-0.04	-0.11	-4.97	
1000	-25.7	30.0	43.2	0.35	-0.02	-0.63	

Euler rotation of the Electric Field Gradient (EFG) tensor to the *g*-tensor:

Atom 	Alpha	Beta [degrees]	Gamma	EFGx	EFGy [a.u.**-3	EFGz]	
121Mo	-8.6	63.2	2.7	1.29	-1.05	-0.24	
1240	-28.9	75.5	-24.0	-0.18	0.00	0.18	
1010	18.2	17.6	-77.4	-1.07	1.56	-0.49	
98S	5.2	75.0	17.9	-2.16	0.84	1.32	
990	-0.3	37.1	-84.9	1.56	-0.56	-1.00	
1000	19.0	62.3	-46.8	-0.92	-0.70	1.62	

Figure S8. The *g*-tensor orientation and total spin density of 2 (contoured at 0.01 e/bohr³).

(3) SO-SO₃ (258 atoms):

С	27.975563	101.424553	27.379790
С	29,143022	101.527538	26.393408
0	20 070927	101 020336	25 262204
0	29.070037	101.029330	23.202394
С	27.502824	99.970677	27.547640
С	28.440539	99.039067	28.332717
С	29.803119	98.806752	27.660049
N	30 /30062	97 548506	28 083671
N		07.070500	20.003071
C	31.581534	97.373504	28./40319
N	32.431943	98.384821	29.001267
N	31.903281	96.132754	29.165937
N	30 276982	102 161107	26 826707
0		102.101107	20.020707
C	51.490592	102.002948	20.050387
С	32.441999	101.008792	26.613346
0	32.594756	100.900078	27.851034
N	33.100046	100.266827	25.706350
C	31 231211	99 125623	26 069707
	34.534244	00 224100	
C	34.526192	98.324108	25.025982
C	33.680888	97.091791	25.113818
N	32.349776	97.003677	24.714583
С	34,008075	95.836435	25.575018
c	21 201617	05 753091	2/ 02052/
C	31.094047	95.755081	24.929554
N	32.890620	95.031352	25.455642
С	22.819436	95.470347	27.131015
С	22.552306	94.123538	27.799833
0	21 627133	93 968091	28 500027
0	21.027133	06 455560	20.333327
C	23.502306	96.455562	28.084015
S	25.213929	95.939396	28.617494
N	23.435800	93.123567	27.490987
С	23,292387	91,785722	28.054393
c		01 711600	
C	23.310400	91.711089	29.J/1994
0	23.042486	90.769957	30.219208
С	24.188265	90.796368	27.306827
N	24.261650	92.698503	30.128139
C	24 309371	92 845678	31 567957
c		02 196206	26 722200
C	23.521/42	92.186296	30.722390
C	24.859746	92.575558	36.070005
С	25.985322	91.603626	36.446161
С	27.320354	91.859005	35.737966
N	27.316418	91,481016	34.312915
C	27.201762	02 200017	22 225262
C	27.391703	92.290917	33.235202
N	27.447788	93.621236	33.341191
N	27.443163	91.748954	32.004844
С	31.091476	92.720767	34.906002
C	30 562003	93 996645	35 556898
0	20.404002	04 007577	35.550000
0	30.404893	94.097577	30.///031
N	30.223613	95.010998	34.701245
С	29.647443	96.246228	35.222794
С	28.422341	95.942154	36.074945
0	27 514846	95 165079	35 697621
c	27.01101		24 000200
C a	29.203103	9/.231413	34.098388
С	30.476454	97.819445	33.316945
С	29.944029	98.714954	32.188657
С	31.445012	98.597704	34.218775
N	28.348422	96.635679	37,220562
C	27 207112	06 151101	20 106150
	21.20/113	90.434124	20.130123
С	25.986811	97.218242	37.880129
0	25.526560	98.041833	38,671733

N	25.396115	96.893234	36.698852
С	24.172027	97.570849	36.298618
С	23.606132	97.111433	34.955304
С	24.441711	97.379688	33.736698
С	24.814936	96.408237	32.833048
C	24,897641	98,639714	33,184995
N	25.498634	96.966497	31.768005
C	25 527922	08 337812	31 937202
C C	2/ 810515	00 003086	33 573035
	24.019313	99.993900 00.222045	21 005220
	20.033310	100 070207	22 722020
	25.540252	100.970397	32./32020
C a	25.938299	100.051318	31.493/18
C	31.8/9266	87.150592	25./06032
C	30.446645	87.097550	25.169658
0	30.186677	86.766338	24.007328
С	32.389398	88.585582	25.947916
С	31.918585	89.242604	27.249516
0	31.324602	88.521137	28.109174
0	32.170025	90.487206	27.424552
N	29.490304	87.463663	26.071587
С	28.091328	87.627059	25.700067
С	27.836501	88.756145	24.677720
С	28.408035	90.082818	25.114733
С	28.017176	90.666733	26.328187
С	29.379809	90.750135	24.354946
C	28,575869	91,858390	26.782060
C	29.945092	91,952204	24.788658
C C	29 551469	92 504025	26 011423
0	30 153313	03 6700/3	26 111425
C C	20 121112	96 019061	20.440457
C C		00.910901	22 226004
	29.570085	00.099003	32.220000
	31.014093 21.CEE221	07.004030	21.754220
C N	31.000321	88.402425	31.754220
N	31.143288	89.294819	30.706715
C	30.986989	90.623498	30.810366
N	30.895891	91.233316	32.015262
N	30.888459	91.369118	29.702242
С	24.391353	88.371950	31.889003
С	25.071318	88.114664	30.526223
С	26.247892	89.062933	30.296029
С	25.504501	86.648000	30.391103
S	28.422292	95.058612	29.711888
0	27.453080	94.058229	30.359913
0	29.868711	94.377261	29.721116
0	28.187342	95.029046	28.034191
N	30.162192	99.636203	19.642770
С	31.391595	100.093996	19.712882
N	32.004674	100.543812	18.576891
N	32,113129	100.087530	20.879688
C	31,609236	99.564233	22.092530
0	32 375062	99 553959	23 099070
N	20 660101	08 553/11	23.105050
C	29.551021	07 602510	23.193030
C C	20.551921	00 16/010	22.0/3703 21 70/075
с N	21.39/30/	90.104310 00 652216	21./040/3
21	20.330302	90.0000207	20.00/123
C a	30.27/402	99.09838/	22.029346
C	29.613015	99.14/708	20./90759
C	2/./26368	9/.306868	24.094282
S	28.456977	96.229072	25.304336
С	26.472332	97.786748	24.255481

S	25.500684	97.312889	25.664413
С	25.820887	98.728655	23.253059
0	26.795512	99.223345	22.309799
С	25.162036	99.955540	23.872981
Мо	26.624748	95.459161	26.721770
0	33.291958	92.428641	25.980229
0	31,107853	94.166658	32.014887
0	25 944106	94 057311	25 989166
с н	27 152122	102 022406	26 959348
п u	28 235031	101 871704	28 353442
п п	26 528047	00 082303	28 05/081
п п	20.320047	99.902393	26 540086
п	27.521139	99.545950	20.349900
H U	20.59/450	99.411500	29.336000
H	27.932590	90.000220	20.42/041
H	29.6/1595	98./4141/	26.569865
H	30.492706	99.630893	27.870007
Н	29.934983	96.703644	27.778840
H	33.113899	98.248309	29.738566
H	32.396915	99.331972	28.573254
Н	31.165248	95.392248	29.231924
Н	32.880495	95.884445	29.263335
Н	30.351552	102.443695	27.800061
Н	31.211782	101.841989	25.013928
H	32.035110	103.026052	26.065219
Н	32.813263	100.290248	24.712804
Н	35.133007	100.059450	26.158252
Н	34.057205	98.980261	27.056984
н	34.454696	98.750665	24.013676
Н	35.569830	98.007922	25.166957
Н	31.808467	97.763118	24.259369
Н	34,945313	95.453450	25,961580
н	30.876494	95,408159	24,768380
н	32 868895	93 985322	25 700920
н	21 838163	95 888371	26 859423
ц	23 107311	95 364074	26 208011
п п	23.407344	07 450023	20.200011
п u	23.300721	97.430023	
п	22.934004	90.540507	29.019937
н т	24.202222	93.307009	20.039110
н т	22.240042	91.400290	27.930092
H	24.075394	89.796370	2/./43880
H 	23.904189	90./46153	26.246544
H	25.244673	91.094603	27.366619
Н	24.532161	93.496589	29.549165
H	24.423966	91.860398	32.035546
H	25.160012	93.480651	31.834406
Н	23.380157	93.293816	31.959807
H	23.602610	92.175007	37.820151
Н	22.723683	92.892839	36.454312
Н	23.201128	91.184629	36.399677
H	24.738082	92.592855	34.973769
Н	25.146775	93.595234	36.370813
Н	26.175812	91.662325	37.530979
Н	25.663524	90.564116	36.254003
Н	27.601340	92.915902	35.823254
Н	28.121167	91.280851	36.223992
Н	27.225117	90.488090	34.113774
Н	27.488637	94.144841	34.236278
Н	27.463968	94.142736	32.460440
н	27.219629	90.771173	31.843044
Н	27.450199	92.382553	31.191506

Н	31.614711	92.139184	35.673600
H	30.236595	92.134744	34.538076
H	31.763905	92.929900	34.066917
H	30.376182	94.884336	33.693262
H	30.394373	96.718921	35.885843
Н	28.586012	96.738444	33.401099
Н	28.718582	98.063962	34.550092
Н	31.031338	96.982995	32.853029
Н	29.282127	98.154889	31.511917
Н	29.361948	99.556508	32.595576
Н	30.769767	99.136038	31.595180
Н	31.922424	97.960145	34.977511
Н	32.251430	99.053332	33.625350
Н	30.921958	99.414441	34.741736
Н	29.155293	97.188824	37.493212
Н	27.071282	95.377306	38.280716
Н	27.638785	96.817876	39.166652
H	25.847564	96.211965	36.083374
H	23.413574	97.414074	37.083245
 Н	24.360692	98.656578	36.281411
н	23.380148	96.033488	35.001343
н	22.630249	97.615823	34.847699
н	24.613926	95.342459	32.860950
н	25.640854	96.504129	30.865091
н	24.346444	100.279874	34.513824
н	26 466773	99 052294	30 123653
н	25 270503	102 026031	33 031582
ц	26 310414	101 110917	30 8/9805
и ц	32 50301/	86 650110	2/ 0/8857
и ц	31 05630/	86 5815/8	24.540057
и ц	33 102160	88 580872	25 988620
n u	33.492400	80.247048	25.900020
и п	20 920191	09.247040	25.110454
n u	29.020101	86 681034	20.903913
и п	27.522102	97 911696	25.275194
п п	27.002192	07.011000	20.02/900
п u	26.275550	00.400001 99.922196	23.710909
п п	20.743730	00.032100	24.JZ/1/Z
п 11	27.202422	90.1/19/4	20.943343
п 11	29.700074	90.317740	23.404003
п п	20.200007	92.292949	2/./31021
п п	20 504465	92.401391	24.100121
п п	29.594405	94.030771	2/.101091
п 11	29.970302	00.0/0/05	24.213307
п	29.034034	0/.044955	24.203007
п 11	20.301200	00.034/01	34.002/10
H	29.13303/	83.902/4/	31.84/005
п п		0/./0/209	31.//9953
п 11	31.001374	00.321397	32.2/43/1
H	31.054547	86.654442	30.656379
H	31.48/508	88.846546	32.747809
H	32./48885	88.304055	31.039244
H	31.184/10	88.945524	29./04452
H	30.8/6466	90.689148	32.865970
H	30.9/5369	92.255169	32.081629
н 	31.289737	91.022/46	28./92169
Н 	30.512429	92.318360	29./48310
H	23.544569	87.687099	32.039103
H	25.103807	88.201799	32./16937
H	24.001065	89.396563	31.940364
Н	24.317744	88.328764	29.750756

Н	27.022035	88.905192	31.071895
Н	26.741030	88.885693	29.328057
Н	25.908413	90.109757	30.311431
Н	26.248972	86.383683	31.160938
Н	24.648040	85.968714	30.511444
Н	25.956589	86.444779	29.407849
Н	31.389432	100.654566	17.776152
Н	32.778436	101.197063	18.636564
Н	33.088208	100.382700	20.904305
Н	29.324048	99.300214	23.820627
Н	29.000623	96.693508	22.482637
Н	26.940456	97.343688	21.435257
Н	27.889175	98.801702	19.772902
Н	25.057633	98.150014	22.689716
Н	24.360476	99.658135	24.561376
Н	25.908472	100.545874	24.421123
Н	24.730967	100.578080	23.077422
Н	32.818255	91.696803	26.507255
Н	33.693737	91.959444	25.230579
H	31.989962	94.543887	31.862552
Н	30.592928	94.320246	31.152498

origin	28.364622502	94.966271169	28.866944020
gx	28.098462743	95.631754834	28.525836061
дХ	27.792341695	95.018076341	29.414552519
gz	28.845993280	95.395819630	29.329366400

Euler rotation of the hyperfine tensor to the *g*-tensor:

Atom 	Alpha	Beta [degrees	 Gamma]	Ax	Ay [MHz]	Az	
121Mo	-15.1	62.5	27.9	143.18	47.99	51.44	
1240	20.9	74.2	-23.6	-0.58	1.72	8.23	
1010	-15.4	39.9	15.6	-9.21	-25.13	-8.65	
98S	12.9	29.4	73.2	-4.31	-4.65	3.26	
990	-15.2	41.2	47.7	1.10	1.02	-5.08	
1000	-23.7	69.5	28.9	-1.29	0.12	0.60	

Euler rotation of the Electric Field Gradient (EFG) tensor to the g-tens	ient (EFG) tensor to the g-tensor:	Gradient (Field	Electric	of the	rotation	Euler
--	------------------------------------	------------	-------	----------	--------	----------	-------

Atom 	Alpha	Beta [degrees	 Gamma]	 EFGx 	EFGy [a.u.**-3	 EFGz]	
121Mo	-1.9	59.1	-8.2	1.28	-0.87	-0.42	
1240	26.1	20.0	85.2	0.14	0.01	-0.15	
1010	-17.7	47.3	45.5	-1.05	-0.51	1.55	
98S	-35.2	51.9	31.9	-2.19	0.82	1.38	
990	33.2	28.9	17.2	1.51	-0.99	-0.52	
1000	30.2	68.8	-44.3	-0.94	-0.68	1.62	

Figure S9. The *g*-tensor orientation and total spin density of 3 (contoured at 0.01 e/bohr³).

(4) SO-SO₃ (258 atoms):

C	27 977289	101 122900	27 377645
	27.577205	101.422900	27.377043
C	29.144/45	101.525978	26.391268
0	29.079945	101.000006	25.272145
С	27.559404	99.964326	27.614395
С	28.526361	99.108544	28.445527
С	29.866147	98.770832	27.772134
Ν	30.497780	97.611850	28.420549
С	31.526020	97.614403	29.271054
Ν	32.373219	98.649078	29.391464
N	31.743808	96.497342	30.009962
Ν	30.274926	102.170975	26.817703
С	31.500209	102.061827	26.048207
С	32.450444	101.019914	26.631654
0	32.604480	100.926728	27.872024
Ν	33.106025	100.278789	25.729332
С	34.236411	99.425077	26.067979
С	34.573473	98.411891	24.947863
С	33.859079	97.091124	24.940242
Ν	32.566545	96.840100	24.475110
С	34.369849	95.856585	25.278894
С	32.326404	95.514647	24.532196
Ν	33.407562	94.901054	25.021170

С	23.123507	95.450875	26.962541
С	22.720240	94.152583	27.657416
0	21.706230	94.075567	28.353792
С	23.694432	96.488945	27,932059
S	25.340022	96.054098	28.700563
N	23 571311	93 093450	27 471690
C	22 206115	01 792104	27.471050
	23.290113	91.703194	20.033042
	23.500504	91.707930	29.571900
0 ~	23.048321	90.759020	30.210252
С	24.098987	90.699081	27.328743
N	24.237792	92.707953	30.128746
С	24.312816	92.843900	31.567062
С	23.525234	92.185143	36.721582
С	24.863169	92.574585	36.069161
С	25.962091	91.552078	36.385553
С	27.299113	91.805544	35.682796
N	27.293976	91.460455	34.249155
С	27.482871	92.286791	33.197246
N	27.610796	93.607580	33.338411
N	27 566799	91 762116	31 960643
C	31 00/888	02 720017	3/ 0052/5
C C	20 610967	92.720917	25 55211 <i>1</i>
	20 517201	94.010921	26 772542
0	30.51/381	94.14/383	30.//3542
N	30.24/861	95.022493	34.694578
С	29.650113	96.246124	35.221472
С	28.432534	95.923413	36.081345
0	27.546422	95.115052	35.723984
С	29.286620	97.246247	34.111475
С	30.481602	97.989830	33.479279
С	29.966885	98.878501	32.338623
С	31.262590	98.829453	34.501353
N	28.348389	96.634247	37.216047
С	27.289688	96.453982	38.194764
С	25.986749	97.213391	37.879874
0	25.526791	98.036338	38.672300
N	25,394269	96.885803	36,700540
C	24,174402	97.569767	36,296997
C C	23 61/330	97 112686	3/ 9/9/07
C C	24 502464	07 202727	22 772722
C C	24.302404	06 105961	22 022406
	23.135021	90.405001	33.033400
C N	24.009033	96.045556	33.1/1201
N	25.8/1618	96.969646	32.015189
С	25.722123	98.337201	32.063495
С	24.568707	100.001543	33.417255
С	26.250335	99.320926	31.220520
С	25.104170	100.983535	32.584065
С	25.940115	100.649869	31.491656
С	31.884003	87.149498	25.706142
С	30.428943	86.931378	25.287273
0	30.123739	86.174662	24.357251
С	32.401328	88.600507	25.621647
С	32.063588	89.534736	26.792078
0	31.307440	89,076633	27.728303
0	32 524666	90 709798	26 802403
N	29 515175	87 620102	26 01/270
С	22.012113	87 675171	25.014370
C C	20.093900	0/.0201/4	23.700037
C C	21.139000 20 262721	00.10990J 00.506307	24.29000 24.070775
	20.203/34	09.JY020/	24.0/2//5
C a	21.028488	90.08/351	24.083550
C	29.400684	89.861573	23.291558

С	28.111028	91.987203	24.544320
С	29.904011	91.159790	23.144052
С	29.267888	92.222838	23.792275
0	29.789947	93.500923	23.664138
С	29.439087	86.918589	33.758766
C	29.575359	86.899025	32,226987
C C	30 983027	86 583327	31 691100
C C	31 025075	00.J0J527 97 702557	21 560202
N	21 470410	07.792337	20 572420
N	31.470410	00./02/00	30.572439
C	31.015185	90.012232	30.//8931
N	30.886170	90.527947	32.034453
N	30.662334	90.738399	29.720725
С	24.395727	88.370239	31.888793
С	25.075770	88.112886	30.526065
С	26.257017	89.058077	30.299659
С	25.503923	86.645263	30.387007
S	28.800965	94.885732	30.042129
0	29.211856	93.369374	30.039244
0	27.475563	94.970421	30.828436
0	28.484275	95.310289	28.468531
N	30 166366	00 17505 <i>/</i>	10 630003
C	21 511014	00 068456	10 706090
N	31.311014	99.9004J0	19.700900
N	32.000739	100.541053	18.5/4952
N	32.105244	100.220083	20.880805
C	31.784907	99.649767	22.111309
0	32.490650	99.923844	23.115087
N	30.145582	98.225561	23.265742
С	29.120173	97.160430	23.043528
С	28.176468	97.480620	21.860653
N	28.937152	97.809102	20.693540
С	30.636571	98.823881	22.054624
С	30.029378	98.623035	20.805517
С	28.250668	96.952582	24.262190
S	28.891133	95.964362	25.604565
C	26.994295	97.449653	24.322014
9	25 036018	97 115060	25 708139
C C	26 375080	08 282330	23.200160
0	20.373909	90.202559	$23 \cdot 209109$
0	27.331443	90.599004	22.195472
C v	25.788840	99.013157	23.009100
MO	26.954844	95.404127	2/.056653
0	33.780595	92.318180	25.228566
0	31.436901	93.402903	31.547657
0	26.363323	93.893445	26.468058
Н	27.133282	101.967871	26.927604
Н	28.214182	101.924332	28.330944
Н	26.588216	99.967287	28.130725
Н	27.385793	99.481752	26.641353
Н	28.727308	99.586679	29.418714
н	28,013093	98,157903	28,662138
н	29 706911	98 498308	26 719585
и п	30 557211	00 610723	27 803617
11 TT	20 072774	06 729552	27.003017
11	23.3/3/14	JU./20JJ2 00 600160	20.310034
п u	32.989300	90.00U109	30.1935/5
H	32.400801	99.4/9/53	28./60852
Н	30.945445	95.892927	30.233158
Н	32.563606	96.426774	30.600506
Н	30.343882	102.470202	27.786406
Н	31.220533	101.819197	25.015054
Н	32.032301	103.027503	26.047314
Н	32.817402	100.316055	24.734855

H	35.123201	100.059556	26.233771
H	34.038046	98.903284	27.015172
H	34.446760	98.902928	23.970603
H	35.642927	98.174561	25.042047
Н	31.847224	97.519683	24.123661
Н	35.348300	95.590211	25.661566
Н	31.415333	95.006343	24.228256
Н	33.514561	93.815405	25.134304
Н	22.200004	95.869695	26.532840
Н	23.825313	95.272999	26.135608
Н	23.822789	97.458727	27.432392
Н	23.022237	96.627913	28.790235
Н	24.435972	93.228629	26.942291
Н	22.219847	91.586094	27.927775
Н	23.877445	89.720800	27.773011
Н	23.826448	90.668683	26.264840
H	25,181055	90.885673	27,410800
H	24.483038	93.514531	29.552080
H	24,419269	91.851996	32.022248
H	25.180255	93.463333	31.820402
н	23,401593	93.309191	31,979470
н	23.622822	92.114309	37.815707
н	22.740991	92.924033	36.504288
н	23.174724	91,209950	36.352383
H	24.729647	92.647308	34.976662
H	25,181836	93.569559	36.416598
H	26.158740	91,550702	37.470789
H	25,608733	90.534297	36.142446
H	27.590034	92.856825	35.796215
Н	28.092193	91.205960	36.156965
Н	27.272857	90.467908	34.030129
Н	27.588815	94.097581	34.251952
Н	27.570073	94.179285	32.476197
Н	27.271884	90.810889	31.760459
Н	27.850143	92.353529	31.169302
Н	31.889340	92.297781	35.532095
Н	30.260218	92.004105	34.883203
Н	31.459408	92.881871	33.882362
Н	30.263914	94.860111	33.690283
Н	30.395793	96.710042	35.890015
Н	28.704553	96.728358	33.330863
Н	28.602171	97.997119	34.540025
Н	31.172482	97.237925	33.052674
Н	29.449422	98.286965	31.569277
H	29.245910	99.620629	32.715134
Н	30.789820	99.428616	31.858071
Н	31.734524	98.217709	35.283975
Н	32.067234	99.394799	34.008417
H	30.601146	99.561750	34.992277
H	29.137040	97.220880	37.471575
H	27.077534	95.376783	38.281784
H	27.642765	96.820788	39.163669
Н	25.846763	96.211794	36.078718
Н	23.415314	97.418735	37.082289
Н	24.370576	98.654331	36.273773
Н	23.384879	96.035221	34.991554
H	22.645062	97.623021	34.822145
Н	25.090591	95.327121	33.151704
Н	26.397758	96.429990	31.321014
Н	23.917792	100.288056	34.245697

Н	26.875347	99.041428	30.375825
H	24.866425	102.031916	32.773081
Н	26.328866	101.444130	30.852084
Н	32.478055	86.511218	25.039505
Н	32.024941	86.776734	26.733578
Н	33.500378	88.594511	25.535133
Н	32.030837	89.089933	24.705339
Н	29.882517	88.230115	26.759965
Н	27.709714	86.593595	25.756270
Н	27.589750	88.216416	26.476423
Н	28.186910	87.508449	23.548144
Н	26.663075	88.156211	24.182259
Н	26.723054	90.523692	25.273350
Н	29.900861	89.032848	22.785373
Н	27.590410	92.813659	25.030820
Н	30.788569	91.352446	22.534059
Н	29.290278	94.093063	24.279137
Н	29.702131	85.941883	34.191902
Н	30.092627	87.670980	34.230387
Н	28.405665	87.143095	34.059698
Н	28.878288	86.144941	31.830621
Н	29.232726	87.857031	31.801090
Н	31.474813	85.832115	32.331770
Н	30.902604	86.123634	30.693117
Н	32.047027	88.289283	32.543252
Н	32.931130	87.451472	31.277141
Н	31.507515	88.498342	29.574927
Н	31.327052	90.022520	32.794960
Н	30.964609	91.553186	32.091272
Н	30.849426	90.300589	28.777427
Н	30.178423	91.633859	29.805482
Н	23.552032	87.681834	32.040540
Н	25.108909	88.205613	32.717140
Н	24.000674	89.393016	31.937854
Н	24.324331	88.332284	29.750499
Н	27.035490	88.886414	31.068541
H	26.738408	88.892741	29.323714
H	25.922041	90.106556	30.330308
H	26.242048	86.374953	31.161044
H	24.644236	85.968773	30.499561
H	25.961063	86.444640	29.405525
H	31.427979	100.432480	17.747375
H	32.541058	101.402100	18.630837
Н	33.013829	100.784131	20.911998
H	29.741288	98.955677	23.869944
H	29.648053	96.224730	22.792016
H	27.553132	96.594766	21.641736
H	28.459212	97.841450	19.795025
Н	25.576458	97.669916	22.740912
Н	24.977696	99.446831	24.389983
Н	26.571345	100.227262	24.136050
Н	25.382577	100.149432	22.800810
Н	33.276665	91.638198	25.821284
Н	33.957180	91.861042	24.390694
Н	32.189561	93.233737	30.953895
Н	30.632043	93.428171	30.940886

origin	28.473199361	94.874992206	28.799572068
gx	28.927162876	94.264131408	29.025028000
дХ	28.936746438	94.985164533	28.164709618
qz	28.930479800	95.369739928	29.219314200

Euler rotation of the hyperfine tensor to the *g*-tensor:

Atom	Alpha	Beta [degrees	Gamma]	Ax 	Ay [MHz]	Az	
121Mo	-23.7	32.7	16.6	53.55	50.07	144.83	
1240	-24.4	18.5	25.8	7.81	1.81	-0.12	
1010	-11.2	78.5	33.1	-9.49	-30.16	-10.37	
98S	17.0	46.8	-1.2	3.44	-1.35	-1.84	
990	-22.0	81.7	2.0	-1.49	0.37	-0.21	
1000	-29.2	59.8	-21.2	1.16	-4.93	0.40	

Euler rotation of the Electric Field Gradient (EFG) tensor to the *g*-tensor:

Atom 	Alpha	Beta [degrees	Gamma]	EFGx	EFGy [a.u.**-3	EFGz]	
121Mo 1240 1010 98S 990 1000	10.0 -45.0 -39.9 -17.6 31.3 18.5	29.3 21.2 51.1 76.8 68.4 24.6	$ \begin{array}{r} 10.5 \\ -71.8 \\ -17.5 \\ -35.4 \\ 1.5 \\ 2.9 \\ \end{array} $	-0.40 -0.02 -0.69 -2.14 -0.67 -0.61	-0.96 0.14 1.61 1.39 -0.89 1.56	1.36 -0.12 -0.93 0.75 1.56 -0.96	

Figure S10. The *g*-tensor orientation and total spin density of 4 (contoured at 0.01 e/bohr³).

		hfi		nqi		principal <i>g</i> -values			
Species		$a_{\rm iso}/{\rm MHz}$	(<i>T</i> ₁₁ , <i>T</i> ₂₂ , <i>T</i> ₃₃)/MHz	<i>e²Qq/h/</i> MHz	η	g _x	g _y	gz	ref
blocked R160Q hSO -	³³ S ¹⁷ O _{coordinated} ¹⁷ O _{remote}	2.1 _9 _4.5	(1.6, 2.5, -4.1) (5, 5, -10) (1.25, 1.25, -2.5)	36 7 5	0.2 _ _	1.951	1.971	2.006	this work
blocked wt hSO*†	³³ S	2.6	(-0.3, -0.3, 0.6)	36	_	1.963	1.972	1.999	10
blocked At-SO*	³³ S	3.3	(1.3, 1.5, -2.8)	40	0	1.963	1.974	2.005	11
wt lpH cSO	^{95,97} Mo	98.4‡	(-48.3, -23.4, 71.7)‡	_	_	1.968	1.974	2.007	12
wt hpH cSO	^{95,97} Mo	86.7‡	(-52.8, -23.7, 76.5)‡	_	_	1.954	1.966	1.990	12
-	⁹⁵ Mo ³³ S	80.6 3.33	(-32.6, -29.6, 62.2) (-0.53, -0.40, 0.92)	-36 4.4	1.0 0.7				
(1) SO-Sulfate (DFT)-	$^{17}O_{\text{coordinated}}$	-9.56 -1.23 (a) 0.02 (b) 0.01 (c)	(6.06, 5.17, -11.22) (1.18, 1.17, -2.35) (0.00, -0.36, 0.36) (0.00, -0.27, 0.27)	10.9 10.6 10.5 10.9	0.3 0.1 0.1 0.1	1.992 1.997	2.004	this work	
(2) SO-Sulfite (DFT) -	$= \frac{{}^{17}O_{oxo}}{{}^{95}Mo}$ $= \frac{{}^{33}S}{{}^{17}O_{coordinated}}$ $= \frac{{}^{17}O_{remote}}{{}^{17}O_{remote}} = \int_{0}^{17}$	3.26 80.6 1.91 -11.09 -1.71 (a) -0.10 (b)	(-3.71, -2.34, 6.04) (-33.2, -29.2, 62.4) (-0.69, -0.45, 1.14) (9.34, 8.41, -17.75) (1.66, 1.60, -3.26) (0.08, 0.45, -0.53)	1.2 -36 27.9 9.6 9.5 9.9	1.0 0.6 0.2 0.4 0.3 0.1	1.994	1.996	2.004	this work
(3) SO-Sulfite (DFT) -	$= \frac{{}^{17}O_{oxo}}{{}^{95}Mo}$ $= \frac{{}^{33}S}{{}^{17}O_{coordinated}}$ $= \frac{{}^{17}O_{remote}}{{}^{17}O_{remote}}$	3.61 80.9 -1.90 -14.33 -0.99 (a)	(-4.38, -0.24, 4.62) (-32.9, -29.4, 62.3) (5.16, -2.41, -2.75) (5.68, 5.12, -10.80) (2.01, 2.09, -4.10)	1.1 36 28.4 9.5 9.2	1.0 0.4 0.3 0.3 0.3	1.993	1.997	2.003	this work
(4) SO-Sulfite (DFT) -	$ \frac{{}^{17}O_{oxo}}{{}^{95}Mo} $ $ \frac{{}^{33}S}{{}^{17}O_{coordinated}} $ $ \frac{{}^{17}O_{remote}}{{}^{17}O_{remote}} = $	-0.19 (b) 3.13 82.8 0.09 -16.67 -1.13 (a)	(0.30, 0.79, -1.10) $(-3.70, -1.40, 5.10)$ $(-32.8, -29.3, 62.0)$ $(-1.43, -1.93, 3.36)$ $(7.18, 6.30, -13.49)$ $(1.53, 2.28, -3.81)$ $(0.22, 0.44, -1.04)$	9.9 0.9 -38 27.7 9.9 9.6 0.5	0.2 0.9 0.4 0.3 0.1 0.2	1.962	1.967	2.003	this work
	$^{17}O_{oxo}$	-0.44 (b) 3.16	(-3.29, -1.35, 4.64)	9.3 0.9	0.1				

Table S1. Experimental magnetic resonance parameters for *wt* and mutant *blocked* forms of SO and DFT-calculated magnetic resonance parameters for sulfate- and sulfite-bound SO models.

* The ¹⁷O magnetic resonance parameters for these species have not been fully evaluated.

† The *blocked* form of this enzyme was obtained only under low-pH conditions in the strict absence of chloride.

[‡] To our knowledge, these are the only reported Mo hyperfine values for SO. Although the Mo centers of the *lpH* and *hpH* forms differ structurally from the *blocked* form, these are provided here to facilitate general comparisons with the calculated ⁹⁵Mo(V) hyperfine values.

References.

1. Doonan, C. J.; Wilson, H. L.; Rajagopalan, K. V.; Garrett, R. M.; Bennett, B.; Prince, R. C.; George, G. N. J. Am. Chem. Soc. 2007, 129, 9421-9428.

2. Gutteridge, S.; Lamy, M. T.; Bray, R. C. Biochem. J. 1980, 191, 285-288.

3. *Reagent Chemicals: Specifications and Procedures : American Chemical Society Specifications.* American Chemical Society: 2006.

4. Lamy, M. T.; Gutteridge, S.; Bray, R. C. Biochem. J. 1980, 185, 397-403.

5. Raitsimring, A. M.; Pacheco, A.; Enemark, J. H. J. Am. Chem. Soc. 1998, 120, 11263-11278.

6. Astashkin, A. V.; Raitsimring, A. M.; Feng, C.; Johnson, J. L.; Rajagopalan, K. V.; Enemark, J. H. *Appl. Magn. Reson.* **2002**, *22*, 421-430.

7. Astashkin, A. V.; Hood, B. L.; Feng, C. J.; Hille, R.; Mendel, R. R.; Raitsimring, A. M.; Enemark, J. H. *Biochemistry* **2005**, *44*, 13274-13281.

8. http://quiz2.chem.arizona.edu/epr.

9. http://www.thch.uni-bonn.de/tc/orca.

10. Rajapakshe, A.; Johnson-Winters, K.; Nordstrom, A. R.; Meyers, K. T.; Emesh, S.; Astashkin, A. V.; Enemark, J. H. *Biochemistry* **2010**, *49*, 5154-5159.

11. Astashkin, A. V.; Johnson-Winters, K.; Klein, E. L.; Byrne, R. S.; Hille, R.; Raitsimring, A. M.; Enemark, J. H. J. Am. Chem. Soc. 2007, 129, 14800-14810.

12. Dhawan, I. K.; Enemark, J. H. Inorg. Chem. 1996, 35, 4873-4882.