Supplementary Table 1. Patient characteristics from Director’s Challenge study (Shedden

et al., 2008)

UM & HLM

(Training, n=256)

MSK
(Test 1, n=104)

DFCI
(Test 2, n=82)

Median follow-
up (months)

Age (mean, s.d.)
Sex (% male)
Tumor Stage
Stage |
Stage Il
Stage 11
Stage IV
Unknown

48

65 (10)
55%

61% (157/256)
19% (49/256)
18% (47/256)

1% (3/256)

44

65 (10)
36%

61% (63/104)
19% (20/104)
20% (21/104)

50

61 (10)
55%

68% (56/82)
32% (26/82)




Supplementary Table 2. Summary of prognostic gene signatures discovered using the
proposed methodology.

Gene Selection Number of | Number of gene signatures generating significant stratification
Approach signaling (log-rank P< 0.05; Kaplan-Meier analyses) in all datasets
hallmarks with significant with significant with significant
used in gene hazard ratio in hazard ratio in all hazard ratio in all
selection all stages stages and stage | stages, stage I,_apd
stage | not receiving
chemotherapy
Network-based 7 4 1 0
(Approach 1) 6 9 5 )
Network + Random 7 4 4 1
Forests (Approach 2) 6 3 5 0
Network + Relief 7 7 4 0
(Approach 3) 6 47 26 16




Supplementary Table 3. Prognostic signatures identified with Approach 1 that generated significant stratifications in patients with all stages,
stage | only, and stage | without receiving chemotherapy.

No. | Concurrently Coexpressed Signaling Hallmarks Signature genes
HSPAQ, PRDX6, SUPT7L, LEPROT, MPI. QPCT, SLC39A8, ADH1B, MTXL, RAD17, HIPKL, ZFR,
S1 | MET, EGF, KRAS, RB1, E2F1, E2F5 CLIC2, TFPI, HEXA, LYST, DYNLRB1, GCC1, CPEB1, ATP1A1, ABHD11
TOMM34, RPS6KAL, ADD2, MPPEDL, DNAJCA, IL12RB2, ICAL, THY1, LOC399491, FHL1,
S2 | EGF, EGFR, KRAS, TP53, E2F3, E2F4 WDRA43, LRRC23, MRPL13, ZC3H7A, GRHL2, APOA2, CPEBL, LOC100294391, ATP1A1
EEF1B2, TOMM70A, TOMM34. IRF3, DDT, RPS6KAL SC65, SMAD3, PPM1E, MOCS3, DNAJCA,
S3  EGF, KRAS, TP53, E2F1, E2F2, E2F4 DNAJA2, GRK6, ZNF592, THY1, FHL1, ACTA2, GRMS, GRHL2, APOA2, CPEB1, FBXO31,
PDCDILG2, HDLBP
PRDX6, ANXAS, TOMM70A, TOMM34, IRF3, RPS6KAL, KATNAL, MPHOSPH9, CCDCO,
S4  EGF, KRAS, TP53, E2F1, E2F2, E2F5 ZNF141, SCNN1G, DNAJA2, ABCF2, HBSLL, APLP1, ITCH, MTX1, GRK6, NUP214, ANXAQ,

ELN, ZFR, ZNF592, ACTA2, GRM8, NRN1, APOA2, CPEB1, PDCD1LG2, MUM1, HDLBP, RING1

Supplementary Table 4. Prognostic signatures identified with Approach 2 that generated significant stratifications in patients with all stages,
stage | only, and stage | without receiving chemotherapy.

No.

Concurrently Coexpressed Signaling Hallmarks

Signature genes

S5

MET, EGFR, E2F2, KRAS, TP53, E2F1, E2F3

CD86, LHX2, GBX1, HEMK1, CPEB1



Supplementary Table 5. Prognostic signatures identified with Approach 3 that generated significant stratifications in patients with all stages,
stage | patients only, and stage | patients without receiving chemotherapy.

Concurrently Coexpressed

No. Signaling Hallmarks Signature genes
S6 E/Izi-g EGF, EGFR, KRAS, TP53, CD86, ICAL, RPAP3, CPEB1
St EAZE:I; EGF, EGFR, KRAS, E2F2, ANXAGB, SLC17A7, CD86, GAS7, TAF4, ARNT, CPEB1
EEF1B2, SNRPD2, PRDX6, ANXA6, TOMM70A, NIPSNAPL, IL13RAL, IRF3, DDT, ABCC4, RPS6KAL, SMAD3,
S8 EAZEZ EGF, KRAS, TPS3, E2F1, CD86, CCDC9, OPRL1, CLDN6, DNAJA2, CCL19, MTX1, MAPK9, ANXA9, ZFR, THY1, SFRS2B, IVD,
MKRN2, GRHL2, CPEB1, FBX031, PDCD1LG2, C200rf30, MUM1, OR1F1(]
S9 | MET, EGF, KRAS, E2F1, E2F3, HSPA9, ANXAG, MPI, ACTL6A, RPS6KAL, RTCD1, SLC12A2, CCDC9, NDUFAF3, FLT3LG, ANXAS9, ZFR,
E2F5 CLIC2, SOSTDC1, TRMU, TCF3, DYNLRB1, CPEB1, C200rf46, LOC100294391, ATP1Al, MUM1, ABHD11
510 ESIEZ EGFR, KRAS, TPS3, RBL, RPL18, VIPR2, MOCS3, DNAJC4, ADAMTSL3, WDR12, HDLBP
S11 | EGF, EGFR, KRAS, TP53, E2F3, TOMMB34, RPS6KAL, ADD2, MPPED1, DNAJC4, IL12RB2, ICAL, THY1, LOC399491, FHL1, WDR43, LRRC23,
E2F4 MRPL13, ZC3H7A, GRHL2, APOA2, CPEB1, LOC100294391, ATP1A1
S12 ngz EGFR, TPS3, RBL, E2FL, MOCS3, DNAJC4, CCBP2, THY1, SFRS2B, PUM2, HDLBP
513 ESIEZ KRAS, TPS3, RB, E2F1, PRDX6, MOCS3, OPRL1, HBS1L, MTX1, ZFR, SPIN1, CPEB1, OR1F1, HDLBP
S14 | EGF, KRAS, TP53, RB1, E2F1, DDT, MOCS3, MPPED1, DNAJC4, RGL1, CEP57, THY1, TFPI, LRRC23, MRPL13, CPEB1, FBX031, ATP1Al,
E2F4 HDLBP, SFTPB
S15 | EGF, KRAS, TP53, RB1, E2F1, RPL30, PRDX6, SNX2, LEPROT, MPI, KATNA1, SLC39A8, HBS1L, MTX1, ELN, ZFR, ANGEL1, TFPI,
E2F5 LRRC23, NRN1, SLC35F2, HMBOX1, CPEB1, ATP1A1, GINS2, HDLBP
S16 | EGF, KRAS, TP53, E2F1, E2F2, EEF1B2, TOMMY70A, TOMM34, IRF3, DDT, RPS6KA1, SC65, SMAD3, PPM1E, MOCS3, DNAJC4, DNAJA2,
E2F4 GRKS6, ZNF592, THY1, FHL1, ACTA2, GRM8, GRHL2, APOA2, CPEBL1, FBX031, PDCD1LG2, HDLBP
PRDX6, ANXA6, TOMM70A, TOMM34, IRF3, RPS6KA1L, KATNAL, MPHOSPH9, CCDC9, ZNF141, SCNN1G,
s17 ESIFS KRAS, TPS3, E2F1, E2F2, DNAJA2, ABCF2, HBS1L, APLP1, ITCH, MTX1, GRK6, NUP214, ANXA9, ELN, ZFR, ZNF592, ACTA2, GRMS,
NRN1, APOA2, CPEBL, PDCD1LG2, MUM1, HDLBP, RING1
518 ESIES KRAS, TPS3, E2F2, E2F3, KIAA0040, KCNS3, KCNA4, COL14A1, CPEB1, RING1
S19 ESIES KRAS, RB1, E2F1, E2F3, HSPA9, ABHD11, C90rf156
520 ESIEZR' KRAS, RBL, TP53, E2F1, TRAP1, PRMT2, MOCS3, DNAJC4, CCL8, TFCP2L1, LOH3CR2A, HDLBP, PKNOX2
S21 | EGFR, KRAS, RB1, E2F5, TP53,

E2F2

TRAP1, VIPR2, TCP10, TBX1, CCLS, LDLR, WDR12, PRR15L, HDLBP



Supplementary Table 6. Multivariate Cox proportional hazard analysis of the 10-gene risk score and
major clinical covariates including gender, age, and tumor stage on the combined testing cohorts (MSK
and DFCI)

Variable* P-value Hazard Ratio (95% CI)"
Analysis without 10-gene risk score
Gender (Male) 0.22 1.34 (0.84,2.16)
Age at diagnosis (>60) 0.08 1.61 (0.95,2.74)
Cancer Stage
Stage Il 6.25E-05 291 (1.72,4.91)
Stage 11 1.09E-05 4.16 (2.20,7.85)
Analysis with 10-gene risk score
Gender (Male) 0.28 1.30 (0.81, 2.09)
Age at diagnosis (> 60)  0.09 1.59 (0.93, 2.70)
Cancer Stage
Stage |1 1.62E-04 2.74 (1.62, 4.63)
Stage 11 4.58E-06 4.45 (2.35, 8.43)
10-gene risk score 8.61E-04 3.63 (1.70, 7.77)

* Gender was a binary variable (0 for female and 1 for male); age at diagnosis was a binary variable (0 for
< 60 years old and 1 otherwise); cancer stage was a categorical variable with 3 categories (Stage | [as the
reference group], Stage 11, and Stage I1I).

¥ denotes confidence interval.



Functional pathway Analysis
Proprietary web-based software Ingenuity Pathway Analysis (IPA, Ingenuity Systems®,

www.ingenuity.com) was used to derive curated molecular interactions, including both physical

and functional interactions, as well as pathway relevance reported in the literature. The databases
and software toolsets weigh and integrate information from numerous sources, including
experimental repositories and text collections from published literature. Core analysis was used
to identify significant biological processes and functions from the merged network related to the
identified 10-gene signature in human tissues and cell lines.

The discovered biomarkers may reveal fundamental molecular mechanisms of this deadly
disease, and enhance our understanding of why patients with certain molecular tumor
characteristics have a poor clinical outcome and how their outcome could be improved.
Functional pathway studies with IPA confirmed the interactions between the major NSCLC
signaling pathways and the identified 10-gene signature. Nine canonical pathways were
significantly (P<0.05; adjusted with BH tests) associated with the 10 prognostic genes. These
pathways include methane metabolism and phenylalanine metabolism related to cell cycle,
eicosanoid signaling that mediates inflammation and immunity, and MAPK signaling related to
cell death, tissue morphology and inflammatory response (Supplementary Fig. 1A). Cancer is
among the top 5 most significant disease and disorders (P<0.05; adjusted with BH tests) in the
network related to the 10 prognostic genes (Supplementary Fig. 1B). Furthermore, 4 of the 10
prognostic genes were involved in interactions with major lung cancer signaling proteins,
including TP53, KRAS, EGF, E2F1, and RBL1 as reported in the literature (Supplementary Fig.
1C). For instance, high density lipoprotein binding protein HDLBP is indirectly related to TP53
through a tumor-suppressor gene WT1, as HDLBP is regulated by WT1 (1), which in turn
interacts with TP53 (2). A prognostic gene, peroxiredoxin 6 (PRDX6), promotes invasion and
metastasis of lung cancer cells (3). Direct interaction of pulmonary surfactant SP-A gene and
PRDX6 could be important in the regulation of lung surfactant phospholipid metabolism (4).
The computationally derived networks delineated expression patterns among the 10 prognostic
genes and the signaling hallmarks specifically associated with the good- and poor-prognosis
groups (Supplementary Fig. 2). Specifically, the interaction between CPEB1 and TP53 was
confirmed in a published study (5). These identified biomarkers associated with lung cancer

progression and metastasis could be potential therapeutic targets in future clinical treatments.
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http://www.inderscience.com/Local%20Settings/Temporary%20Internet%20Files/OLK2A/www.ingenuity.com
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Supplementary Figure 1. Functional pathway analysis of the 10 prognostic genes. Core
analysis was performed with Ingenuity Pathway Analysis (IPA). Significant canonical pathways
retrieved from IPA (A). Cancer was a significant biological function in the disease and disorders
category (B). Curated interactions related to the 10 signature genes were also revealed from the

literature (C).
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Supplementary Figure 2. Disease-specific coexpression relations among the 10-gene
prognostic signature and the 6 lung cancer signaling hallmarks. The disease-specific
expression patterns, i.e., coexpression patterns specific for the good-prognosis group (A) and the
poor-prognosis group (B) that were commonly present in both training (UM & HLM) and
combined test cohorts (MSK & DFCI) were illustrated. The interpretation of the coexpression
patterns is provided in (C). The stability of the networks in (A) and (B) was evaluated by using
random subsets of the training samples in 100 iterations (D). The stability is defined as the
portion of disease-specific coexpression relations obtained from the original data that are
retrieved by using only a random subset of the training data and the full test data.



Disease-specific coexpression networks assessment

Gene co-expression networks derived from the implication networks algorithm was
evaluated on precision and false discovery rate (FDR). Five gene set collections (positional,
curated, motif, computational, and Gene Oncology) and canonical pathway databases from the
MSigDB ' were used to evaluate the biological relevance of computationally derived
coexpression relations. A co-expression relation was considered a true positive (TP) if the pair of
genes belongs to the same gene set or pathway in any investigated database. If a pair of genes
does not share any gene set or pathway, the co-expression relation was considered a false
positive (FP). A co-expression relation was labeled as non-discriminatory (ND) if at least one
gene in the pair is not annotated in a database (6). Co-expression relations labeled as ND were
excluded in the evaluation as they were not confirmed.

Precision and g-value of the disease-mediated coexpression networks are defined as:

.. TP
Precision = ——
TP+ FP
FP
g-value=—
TP+ FP

Null distributions of precisions and g-values were generated in 1,000 random
permutations of the class labels in the test cohorts. From the null statistics, the FDR of the
disease-mediated coexpression networks is the average of g-value from the null distribution.

For each of the 21 signatures and their respective concurrent co-expressed signaling
hallmarks (Supplementary Table 3-5), the disease-specific co-expression networks commonly
present in both training and test cohorts were retrieved and further validated for biological

evaluation as presented in figures Supplementary Fig. 3-23.

* http://www.broadinstitute.org/gsea/msigdb/collections.jsp



- Positive Ir_nphcatmn (A=> B) _
(Up-regulation of gene A causes up-regulation of gene B)

Forward Negative Implication (A => -B)
(Up-regulation of gene A causes down-regulation of gene B)

Inverse Negative Implication (-A => B)
(Down-regulation of gene A causes up-regulation of gene B)

> Negative Implication (-A => -B)
(Down-regulation of gene A causes down-regulation of gene B)

Positive Equivalence (A < B)
<&—» (Up-regulation of gene A causes up-regulation of gene B and
up-regulation of gene B causes up-regulation of gene A)

Negative Equivalence (A & -B)
<@—p> (Up-regulation of gene A causes down-regulation of gene B and
down-regulation of gene B causes up-regulation of gene A)

Supplementary Figure 3. Legend of expression relations of the disease-specific coexpression
networks represented in the six implication rules.
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Supplementary Figure 4 . Disease-specific coexpression networks for signature S1
(precision = 0.71, FDR = 0.08)
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Supplementary Figure 5. Disease-specific coexpression networks for signature S2 (precision
=1, FDR =0.10)
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Supplementary Figure 6. Disease-specific coexpression networks for signature S3 (precision
=1, FDR = 0.03)
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Supplementary Figure 7. Disease-specific coexpression networks for signature S4 (precision
=1, FDR =0.01)
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Supplementary Figure 8. Disease-specific coexpression networks for signature S5 (precision
=1, FDR =0)
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Supplementary Figure 9. Disease-specific coexpression networks for signature S6 (precision
=1, FDR = 0)
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Supplementary Figure 10. Disease-specific coexpression networks for signature S7
(precision = 0.86, FDR = 0.10)
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Supplementary Figure 11. Disease-specific coexpression networks for signature S8
(precision = 0.95, FDR = 0.05)
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Supplementary Figure 12. Disease-specific coexpression networks for signature S9
(precision =1, FDR = 0.02)

Good Prognosis Poor Prognosis
EGFR
VIPR2
e (LveRz )
Y

woRE2

Supplementary Figure 13. Disease-specific coexpression networks for signature S10
(precision =1, FDR = 0.08)
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Supplementary Figure 14. Disease-specific coexpression networks for signature S11
(precision = 1, FDR = 0.06)
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Supplementary Figure 15. Disease-specific coexpression networks for signature S13
(precision =1, FDR = 0)
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Supplementary Figure 16. Disease-specific coexpression networks for signature S14
(precision =1, FDR = 0.01)
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Supplementary Figure 17. Disease-specific coexpression networks for signature S15
(precision =1, FDR = 0.05)
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Supplementary Figure 18. Disease-specific coexpression networks for signature S16
(precision = 1, FDR = 0.03)
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Supplementary Figure 19. Disease-specific coexpression networks for signature S17
(precision =1, FDR = 0.02)
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Supplementary Figure 20. Disease-specific coexpression networks for signature S18
(precision =1, FDR = 0)
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Supplementary Figure 21. Disease-specific coexpression networks for signature S19
(precision =1, FDR = 0)
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Supplementary Figure. 22. Disease-specific coexpression networks for signature S20
(precision =1, FDR = 0.05)
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Supplementary Figure 23. Disease-specific coexpression networks for signature S21
(precision = 1, FDR = 0.001)
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