Supplementary data for:

Probing the mechanistic role of the long α-helix in subunit L of respiratory Complex I from *Escherichia coli* by site-directed mutagenesis

Galina Belevich, Juho Knuuti, Michael I. Verkhovsky, Mårten Wikström, Marina Verkhovskaya

Helsinki Bioenergetics Group, Institute of Biotechnology, PO Box 65 (Viikinkaari 1) FIN-00014 University of Helsinki, Finland

Drimor	Securation ^d
Filler	Sequence
for PCR	
UpLF	ATGGCAGGTATGGCAATCGACG
UpLXhoR	GGTTAA CTCG AGCATGTTCATCCG
DnLXhoF	G <u>CTCGAG</u> GGCATATAAGAACGTAG
DnLR	ACAGCGGCAGGGAGAAACG
UpLNheR	GGTTAAGGC T AGCATGTTCATCCG
LnNheF	ATTCC <u>GCTAGC</u> TTATCTCTGCTTCC
for mutagenesis ^b	
Y590St	TGCTGTTAAGTGAGAACGGCTA A CTGCGCTGGTAT
D542N	GGTGGTACAACGCCTGGGGATTT A ACTGGCTGTATG
D542R	GGTACAACGCCTGGGGATTT CG CTGGCTGTATGACAA
K551Q	ATGACAAAGTGTTCGTC C AGCCGTTCCTGGGTATT
K551E	ATGACAAAGTGTTCGTC G AGCCGTTCCTGGGTATT
P552A	CAAAGTGTTCGTCAAG G CGTTCCTGGGTATTGC
P552Q	CAAAGTGTTCGTCAAGC A GTTCCTGGGTATTGCCT
P552C	TATGACAAAGTGTTCGTCAAG TGC TTCCTGGGTATTGCCTGGTTG
G532ins ⁶	GCCGTCTGCTGGGCGATGGTGATGGTGACCCTACCTGGTGGTACAAC
G532ins ⁷	CCGTCTGCTGGGCCCAGATGGTGATGGTGACCCTACCTGGTGGTACAAC
G532sub ⁷	CAACAGTGCGCCGGGCCGTCTGCTGGGCCCAGATGGCGACGGCGATCCGGGATTT
	GACTGGCTGTATGACAAAGTG
P552ins ⁶	GTGTTCGTCAAGCCGGATGGTGATGGTGACCCATTCCTGGGTATTGCC
P552ins ⁷	GTGTTCGTCAAGCCGCCAGATGGTGATGGTGACCCTTTCCTGGGTATTGCC
P564ins ⁶	TGCTGAAACGCGATCCGGATGGTGATGGTGACCCACTGAACTCAATGATGAAC
P564sub ⁷	CCTGGGTATTGCCTGGTTGCTGAAACGCGATCCG <mark>GGTG</mark> AC GG T GATGGTGA C CCA
	CCGGCTGTCCTTTCCCGCTTTGCAGGTAAAGGTC
P572ins ⁶	CAATGATGAACATCCCGGATGGTGATGGTGACCCAGCTGTCCTTTCCCGCT

Table S1 Oligonucleotide primers used for cloning and mutagenesis of *E.coli nuoL* gene

^a New restriction sites are underlined, altered nucleotides are in bold, and nucleotide sequence in insertions/substitutions is shaded

^b Sequence represents sense primer, antisense primer had reverse complementary sequence

Fig.S1. Growth curves of NuoL mutants truncated at N- and C-termini and with single amino acid substitution in AH in minimal malate medium.

GR70N, wild type, black squares; GRL3 (ΔnuoL), red diamonds; GRLn, cyan stars; Y590St, blue, solid line and squares; K551fs, blue, dashed line, open cycles; D542N, green, solid line and squares; D542R, green, dashed line, open squares; K551Q, dark yellow, solid lines and triangles; K551E, dark yellow, dashed line, open triangles; P552A, wine, solid lines and cycles; P552C, wine, dashed line, open cycles; P552Q, wine, dotted line, open cycles with cross.

Fig.S2. Growth curves of NuoL mutants with insertion/substitution in AH in minimal malate medium.

GR70N, wild type, black squares; GRL3 (Δ nuoL), red diamonds; G542*ins*⁷, wine, solid line and cycles; G542*ins*⁶, wine, dashed line, open cycles; G542*sub*⁷, wine, dotted line, open cycles with cross, P552*ins*⁶, green, solid line and triangles; P552*ins*⁷, green, dashed lane, open triangles; P564*ins*⁶, blue, solid line and diamonds; P654*sub*⁷, blue, dashed line, open diamonds; P572*ins*⁶, dark yellow stars.

Fig.S3. SDS-PAGE of purified *E. coli* Complex I.

Lane 1, molecular mass markers (kDa). Lane 2, P552ins⁶ variant. Lane 3, wild type. The assignment of the observed bands to the individual subunits of Complex I is given on the right.

