
 
Supporting Information 
 
Supporting Information A: Quadratic interpolation for a lookup table 
The function f(x) is approximated by quadratic interpolation between lookup table knots. 
Knots are spaced by width w, and FL(0,iw) = f(iw) at each knot where i is the lowest 
nearby knot number and z is distance from that knot. The equations are 
f(x) ≈FL(z,i) 

FL(z,i) = az2 + bz + c 
z = x - iw  
With boundary conditions at (1) z = 0; (2) z = w/2; and (3) z = w 

FL(z=0,i) = f(iw)=c                                                     (1) 

FL(z=w/2,i) = f(iw + 0.5w)  = a(0.5w)2 + b(0.5w) + c                   (2) 

FL(z=w,i) = f((i+1)w) = aw2 + bw + c                                   (3) 
Then it follows that  

FL(z=w,i) – c         =  aw2 + bw =            f((i+1)w) – f(iw)      =     g 

FL(z=0.5w,i)   =   a0.25w2 + b0.5w  = f(iw + 0.5w) – f(iw)     =     h 
Where for convenience we introduced the notation: g = f((i+1)w) – f(iw)  and  h = f(iw + 
0.5w) – f(iw)   To solve for coefficients a and b of the 2nd order polynomial aw2 + bw 
for any knot width w, we solve the simple linear system Ax = v where A is the coefficient 
matrix [a b] and v = [g, h]: 
 
 
 
We get: a = (2g – 4h)/w2 and b = (4h – g)/w.  
 
 
Supporting Information B: Pseudo code for list generation 
Note: actual code segments are printed italic.  
The main simulation box is divided spatially into grid boxes. For example, the DHFR 
system has 73 boxes. Each CUDA thread block (a collection of threads that share memory 
and type of tasks, Figure 1) directly corresponds to one of these grid boxes and conducts 
the calculations associate with it. Each thread in this CUDA block represents one of the 
atoms in that grid box. Each thread therefore computes forces on one unique atom. The 
sum of all thread blocks comprises the entire simulation box. At the start of the program a 
list of 27 neighbor boxes (including self) is generated for each grid box applying periodic 
boundary translational symmetry on edge boxes. The symmetry operation for each box 
neighbor box is also stored in a list. One CUDA streaming multi-processor (SM) can 
execute up to 8 blocks but in practice is resource-limited to fewer. Blocks can be 
executed in any order. In principle, on a GPU with sufficient SMs, (or simulation with 
sufficiently few boxes), the entire list generation can be done in parallel. We start by 



declaring SHARED float (arrays of size max atoms in box) jx[], jy[], jz[], ja[], jb[], jq[] 
that will contain neighboring box atom coordinates, Lennard-Jones parameters and 
charge. We also declare a SHARED integer array j[] (of size max atoms in box) that will 
contain the atom number of the neighboring box with atoms in order obtained from the 
box atom list. 
 
The number of CUDA thread block equals a grid box number. It is one of the main 
simulation grid boxes for which we will loop over neighbor boxes with periodic 
symmetry.  
Determine atom i from box atom list with index thread number (thread index of this 
block is its box atom list index) read from GLOBAL RAM box atom lists. 
Read from GLOBAL RAM atom coordinates, charge and Lennard-Jones parameters of i 
and store these in LOCAL REGISTERS ix, iy, iz, iq, ia, ib respectively. 
 
Read from GLOBAL RAM binary exclusion for atom i (integer: retain in LOCAL 
REGISTERS iExcl). 
Loop over neighbor grid boxes 

 Get neighbor box number and neighbor box periodic symmetry operation from 
global RAM (2 integers), 
Prepare symmetry vector valid for all atoms of the neighbor box and keep in 
LOCAL REGISTERS (floats tx, ty, tz where for example tx = either zero or (+)/(-
) grid box-length-x).  
Find atom index of one neighbor of current neighbor box corresponding to index 
of this thread (jLoad).  
Read coordinates, parameters and charge of neighbor atom jLoad from GLOBAL 
RAM and store these into SHARED memory arrays listed above. For example in 
jx[thread number] we store coordinate x of atom jLoad which is an atom in the 
neighbor box atom list at index equaling this thread number and j[thread number] 
= jLoad. We now have all atoms of the current neighbor box in SHARED 
memory in one step since each of these operations is done in parallel. 
 
 Loop over neighbor atoms n of current neighbor box (note NO GLOBAL READS 
within this loop). 

 Get neighbor j from shared array (j[n]) and get coordinates and parameters 
of j from the other shared arrays (jx[n] etc.).  
 Translate neighbor coordinates (by symmetry tx,ty,tz) and calculate r2 

(square of length of the difference in coordinate vector).  
  Determine valid neighbor: 
  bool valid =  (r2 is below list cutoff2 and i is not j);  
   Continue determine valid with binary exclusion list (see code segment 
below). 
  Binary exclusion (c++ code segment) 
  int diff = j[n] - i; 
  int dshift = 1<<(diff – 1); //-- obtain decimal value bit position. 
  bool val = (diff > 0) && (diff < 33); 
  bool valid = valid && !((dshift & iExcl) && val); 
 
   if (valid) 
   Calculate geometric averages Aij, Bij and qij. Example Aij= ia * 
ja[n]. 



   Along with atom number j, store Aij, Bij and qij in float4 structure 
“pars”.   
   Write “pars” structure to GLOBAL RAM with (matrix) indexing 
   for coalesced parallel read by force kernel later. (Supporting 
Information C) 
   Increment number of neighbors for i by 1.    
  end if 
 end loop 
end loop 
Store  number of neighbors for i in GLOBAL RAM. 
 
 
 
 
 
 
Supporting Information C: Pseudo code for real space calculations of non-bonded 
interactions 
Atom number i is thread number, plus number of threads per block times block number. 
So again this thread is one unique atom. In this case atoms are simply in order of original 
input coordinate file.  
Declare LOCAL REGISTER floats (OR doubles) in which to accumulate forces (iFx, 
iFy, iFz). 
If option 4, declare SHARED float arrays FLa[], FLb[], FLc[] size 256 or 512 in which 
the quadratic lookup coefficients for electrostatic force term (Supporting Information 
A) are now stored by read from GLOBAL RAM (by all threads with thread number < 
256). Each thread of a block reads one knot index of three coefficients. In one step, the 
whole lookup table is stored in shared memory. 
Read atom coordinates and number of neighbors from GLOBAL RAM (3 floats and one 
integer) and store in LOCAL REGISTERS (floats ix, iy, iz and integer iNrNbrs).  
Loop over neighbors 
    while (loop index <= number of neighbors) 

Get the pair info float4 structure “pars” from neighbor list in GLOBAL RAM. 
This read is 100% coalesced and data kept for the duration of the force calculation 
below. 
Read neighbor coordinates (into LOCAL REGISTER floats jx, jy, jz) from 
GLOBAL RAM directly (cached on Fermi) OR through TEXTURE (cached). 
Get difference vector (LOCAL REGISTER floats rx, ry, rz) where rx = ix – jx  
 Prepare symmetry vector LOCAL REGISTER floats tx, ty, tz where symmetry is 
determined by rx is greater than list cutoff or less than (-)list cutoff.  

 Perform symmetry translation (e.g. rx = rx + tx). 
  Perform force calculation (see Force calculation option code segments below). 
 OPTION 1: no long range; calculate whole NB force without lookup – NO reads. 



 OPTION 2: linear lookup all – read one float4 from TEXTURE using built-in 
linear interpolation. 
 OPTION 3: Quadratic interpolation electrostatic – read one float4 from 
TEXTURE no interpolation. 

 OPTION 4: 256 or 512 knot Quadratic interpolation electrostatic read 3 floats 
from SHARED 
  
     Synchronize threads. 
end while 
 
 
Force calculation options (c++/CUDA code segments) 
The “pars” float4 data structure was read from the neighbor list where pars.x = j, pars.y = 
Aij, pars.z = Bij, pars.w = qij. The neighbor atom (j) coordinates are then read and all 
options are preceded by symmetry translation of neighbor coordinates as shown above. 
Subsequently: 
 float r2 = rx*rx + ry*ry + rz*rz; 
 float r = sqrt(r2); 
 
OPTION 1. Explicit calculation of all three force terms (no PME): 
 float invr2 = 1.0f/r2; //-- note isqrt can be used here since r is not needed 
 float invr6 = invr2*invr2*invr2; 
 float FLJ = -12.0f * pars.y * invr6*invr6*invr2 + 6.0f * pars.z * invr6*invr2; 
 float Fel = pars.w * sqrt(invr2) *invr2; 
 
OPTION 2. Texture memory linear interpolation of all three force terms (with PME) 
 float4 F; F.x = F.y = F.z = F.w = 0.0f;  
 if (valid) 
  F = tex1D(tFLUa, r * 0.05f); //-- tex1D is a CUDA function 
  //-- Texture force lookup with built-in linear filtering (interpolation) 
  //--  tFLUa is the table of force values (all three terms) 
 float FLJ = pars.y * F.x + pars.z * F.y; 
 float Fel = pars.w * F.z * valid; 
 
OPTION 3. Quadratic interpolation of electrostatics with PME. Coefficients from texture 
memory: 
 float invr2 = 1.0f/r2; 
 float invr6 = invr2*invr2*invr2; 
 float FLJ = -12.0f * pars.y * invr6*invr6*invr2 + 6.0f * pars.z * invr6*invr2; 



 int ind = r * KNOTSbyR;  //--  KNOTSbyR = number of table knots / r-max 
 float findx = float(ind); 
 float dx = r - findx * InvKNOTSbyR; //--  InvKNOTSbyR = 1/ KNOTSbyR 
 float4 F; F.x = F.y = F.z = F.w = 0.0f; 
 if (valid) 
  float4 c = tex1D(tELFLa, findx);  
  //-- Texture lookup of interpolation coefficients (no filtering) 
  //--  tELFLa is the table of coefficients for  quadratic interpolation 
 float Fel = (c.x + (c.y*dx + c.z)*dx) * pars.w;  
 //-- quadratic interpolation where c.x,y,z are analogous to FLa,b,c 
 
OPTION 4. Quadratic interpolation of electrostatics with PME. Coefficient from shared 
memory: 
 float invr2 = 1.0f/r2; 
 float invr6 = invr2*invr2*invr2; 
 float FLJ = -12.0f * pars.y * invr6*invr6*invr2 + 6.0f * pars.z * invr6*invr2; 
 int ind = r * SH256_KNOTSbyR * valid; //-- SH256_KNOTSbyR = 256/r-max 
 float findx = float(ind); 
 float dx = r - findx * SH256_InvKNOTSbyR; 
 float4 F; F.x = F.y = F.z = F.w = 0.0f; 
 float Fel = (FLc[ind] + (FLa[ind]*dx + FLb[ind])*dx) * pars.w; 
  
All options are completed with force accumulation at end of loop: 
 iFx += (FLJ - Fel)*rx; iFy += (FLJ - Fel)*ry; iFz += (FLJ – Fel)*rz; 
 
Supporting Information D: Serial profile of MOIL (single-precision) 
Flat profile: 
 
Output from gnu profiler (gprof) for solvated DHFR (section III.1). The 
output was re-organized by function. For example, the non-bonded 
interactions (when PME is used) are calculated by the following 
functions: watwat_ewald, cdie_ewald, symwat_ewald and symcdie_ewald. 
The calculation time therefore is the sum of these four.   
 
Flat profile: 
Each sample counts as 0.01 seconds. 
  %   cumulative   self              self     total            
 time   seconds   seconds    calls   s/call   s/call  name 
 
Non bonded force – real space     
 43.03    105.16   105.16     1350     0.08     0.08  watwat_ewald_ 
 14.78    141.28    36.12     1350     0.03     0.03  cdie_ewald_ 
 12.08    170.80    29.52     1350     0.02     0.02  symwat_ewald_ 
  0.04    243.55     0.09     1350     0.00     0.00  symcdie_ewald_ 



 
List generation 
  6.92    187.72    16.92      150     0.11     0.16  nbondm_ 
  3.43    196.10     8.38     1950     0.00     0.00  nbmsym_ 
  2.60    202.46     6.36      150     0.04     0.04  nbond_ 
  0.09    241.69     0.21     1950     0.00     0.00  nbsym_ 
 
PME including FFT 
  2.22    207.89     5.43      450     0.01     0.01  scalar_sum_ 
  2.08    212.97     5.08      450     0.01     0.01  grad_sum_ 
  1.56    225.79     3.81      450     0.01     0.01  fill_charge_grid_ 
  0.90    228.00     2.21      900     0.00     0.01  pubz3d_ 
  0.79    231.96     1.94 16588800     0.00     0.00  passf4_ 
  0.67    235.27     1.63 16588800     0.00     0.00  passb4_ 
  0.58    236.70     1.43 63547202     0.00     0.00  one_pass_ 
  0.07    242.08     0.18      450     0.00     0.00  
get_bspline_coeffs_ 
  0.07    242.76     0.17 31773601     0.00     0.00  fill_bspline_ 
 
(M)SHAKE 
  2.06    218.01     5.04     1200     0.00     0.00  shakept_ 
  1.62    221.98     3.97     1200     0.00     0.00  mshakpt_ 
  0.69    233.64     1.68     1200     0.00     0.00  shakevl_ 
  0.47    237.85     1.15     1200     0.00     0.00  mshakvl_ 
 
Bonded forces 
  0.26    239.14     0.63     1350     0.00     0.00  etors_ 
  0.14    240.83     0.35     1350     0.00     0.00  etheta_ 
  0.09    241.90     0.21     1350     0.00     0.00  ener14_ 
  0.04    243.36     0.10     1350     0.00     0.00  ebond_ 
 
Subtract excluded forces 
  0.27    238.51     0.66     1350     0.00     0.00  cdie_ewald_excl_ 
  0.16    240.11     0.39 16167657     0.00     0.00  ewforceexcl_ 
 
Verlet/RESPA 
  0.16    240.49     0.38     3000     0.00     0.00  vel_step_ 
  0.05    243.15     0.12     1200     0.00     0.00  coord_step_ 
 
 
	  


