

Supporting Information

Supporting Information A: Quadratic interpolation for a lookup table
The function f(x) is approximated by quadratic interpolation between lookup table knots.
Knots are spaced by width w, and FL(0,iw) = f(iw) at each knot where i is the lowest
nearby knot number and z is distance from that knot. The equations are
f(x) ≈FL(z,i)

FL(z,i) = az2 + bz + c
z = x - iw
With boundary conditions at (1) z = 0; (2) z = w/2; and (3) z = w

FL(z=0,i) = f(iw)=c (1)

FL(z=w/2,i) = f(iw + 0.5w) = a(0.5w)2 + b(0.5w) + c (2)

FL(z=w,i) = f((i+1)w) = aw2 + bw + c (3)
Then it follows that

FL(z=w,i) – c = aw2 + bw = f((i+1)w) – f(iw) = g

FL(z=0.5w,i) = a0.25w2 + b0.5w = f(iw + 0.5w) – f(iw) = h
Where for convenience we introduced the notation: g = f((i+1)w) – f(iw) and h = f(iw +
0.5w) – f(iw) To solve for coefficients a and b of the 2nd order polynomial aw2 + bw
for any knot width w, we solve the simple linear system Ax = v where A is the coefficient
matrix [a b] and v = [g, h]:

We get: a = (2g – 4h)/w2 and b = (4h – g)/w.

Supporting Information B: Pseudo code for list generation
Note: actual code segments are printed italic.
The main simulation box is divided spatially into grid boxes. For example, the DHFR
system has 73 boxes. Each CUDA thread block (a collection of threads that share memory
and type of tasks, Figure 1) directly corresponds to one of these grid boxes and conducts
the calculations associate with it. Each thread in this CUDA block represents one of the
atoms in that grid box. Each thread therefore computes forces on one unique atom. The
sum of all thread blocks comprises the entire simulation box. At the start of the program a
list of 27 neighbor boxes (including self) is generated for each grid box applying periodic
boundary translational symmetry on edge boxes. The symmetry operation for each box
neighbor box is also stored in a list. One CUDA streaming multi-processor (SM) can
execute up to 8 blocks but in practice is resource-limited to fewer. Blocks can be
executed in any order. In principle, on a GPU with sufficient SMs, (or simulation with
sufficiently few boxes), the entire list generation can be done in parallel. We start by

declaring SHARED float (arrays of size max atoms in box) jx[], jy[], jz[], ja[], jb[], jq[]
that will contain neighboring box atom coordinates, Lennard-Jones parameters and
charge. We also declare a SHARED integer array j[] (of size max atoms in box) that will
contain the atom number of the neighboring box with atoms in order obtained from the
box atom list.

The number of CUDA thread block equals a grid box number. It is one of the main
simulation grid boxes for which we will loop over neighbor boxes with periodic
symmetry.
Determine atom i from box atom list with index thread number (thread index of this
block is its box atom list index) read from GLOBAL RAM box atom lists.
Read from GLOBAL RAM atom coordinates, charge and Lennard-Jones parameters of i
and store these in LOCAL REGISTERS ix, iy, iz, iq, ia, ib respectively.

Read from GLOBAL RAM binary exclusion for atom i (integer: retain in LOCAL
REGISTERS iExcl).
Loop over neighbor grid boxes

 Get neighbor box number and neighbor box periodic symmetry operation from
global RAM (2 integers),
Prepare symmetry vector valid for all atoms of the neighbor box and keep in
LOCAL REGISTERS (floats tx, ty, tz where for example tx = either zero or (+)/(-
) grid box-length-x).
Find atom index of one neighbor of current neighbor box corresponding to index
of this thread (jLoad).
Read coordinates, parameters and charge of neighbor atom jLoad from GLOBAL
RAM and store these into SHARED memory arrays listed above. For example in
jx[thread number] we store coordinate x of atom jLoad which is an atom in the
neighbor box atom list at index equaling this thread number and j[thread number]
= jLoad. We now have all atoms of the current neighbor box in SHARED
memory in one step since each of these operations is done in parallel.

 Loop over neighbor atoms n of current neighbor box (note NO GLOBAL READS
within this loop).

 Get neighbor j from shared array (j[n]) and get coordinates and parameters
of j from the other shared arrays (jx[n] etc.).
 Translate neighbor coordinates (by symmetry tx,ty,tz) and calculate r2

(square of length of the difference in coordinate vector).
 Determine valid neighbor:
 bool valid = (r2 is below list cutoff2 and i is not j);
 Continue determine valid with binary exclusion list (see code segment
below).
 Binary exclusion (c++ code segment)
 int diff = j[n] - i;
 int dshift = 1<<(diff – 1); //-- obtain decimal value bit position.
 bool val = (diff > 0) && (diff < 33);
 bool valid = valid && !((dshift & iExcl) && val);

 if (valid)
 Calculate geometric averages Aij, Bij and qij. Example Aij= ia *
ja[n].

 Along with atom number j, store Aij, Bij and qij in float4 structure
“pars”.
 Write “pars” structure to GLOBAL RAM with (matrix) indexing
 for coalesced parallel read by force kernel later. (Supporting
Information C)
 Increment number of neighbors for i by 1.
 end if
 end loop
end loop
Store number of neighbors for i in GLOBAL RAM.

Supporting Information C: Pseudo code for real space calculations of non-bonded
interactions
Atom number i is thread number, plus number of threads per block times block number.
So again this thread is one unique atom. In this case atoms are simply in order of original
input coordinate file.
Declare LOCAL REGISTER floats (OR doubles) in which to accumulate forces (iFx,
iFy, iFz).
If option 4, declare SHARED float arrays FLa[], FLb[], FLc[] size 256 or 512 in which
the quadratic lookup coefficients for electrostatic force term (Supporting Information
A) are now stored by read from GLOBAL RAM (by all threads with thread number <
256). Each thread of a block reads one knot index of three coefficients. In one step, the
whole lookup table is stored in shared memory.
Read atom coordinates and number of neighbors from GLOBAL RAM (3 floats and one
integer) and store in LOCAL REGISTERS (floats ix, iy, iz and integer iNrNbrs).
Loop over neighbors
 while (loop index <= number of neighbors)

Get the pair info float4 structure “pars” from neighbor list in GLOBAL RAM.
This read is 100% coalesced and data kept for the duration of the force calculation
below.
Read neighbor coordinates (into LOCAL REGISTER floats jx, jy, jz) from
GLOBAL RAM directly (cached on Fermi) OR through TEXTURE (cached).
Get difference vector (LOCAL REGISTER floats rx, ry, rz) where rx = ix – jx
 Prepare symmetry vector LOCAL REGISTER floats tx, ty, tz where symmetry is
determined by rx is greater than list cutoff or less than (-)list cutoff.

 Perform symmetry translation (e.g. rx = rx + tx).
 Perform force calculation (see Force calculation option code segments below).
 OPTION 1: no long range; calculate whole NB force without lookup – NO reads.

 OPTION 2: linear lookup all – read one float4 from TEXTURE using built-in
linear interpolation.
 OPTION 3: Quadratic interpolation electrostatic – read one float4 from
TEXTURE no interpolation.

 OPTION 4: 256 or 512 knot Quadratic interpolation electrostatic read 3 floats
from SHARED

 Synchronize threads.
end while

Force calculation options (c++/CUDA code segments)
The “pars” float4 data structure was read from the neighbor list where pars.x = j, pars.y =
Aij, pars.z = Bij, pars.w = qij. The neighbor atom (j) coordinates are then read and all
options are preceded by symmetry translation of neighbor coordinates as shown above.
Subsequently:
 float r2 = rx*rx + ry*ry + rz*rz;
 float r = sqrt(r2);

OPTION 1. Explicit calculation of all three force terms (no PME):
 float invr2 = 1.0f/r2; //-- note isqrt can be used here since r is not needed
 float invr6 = invr2*invr2*invr2;
 float FLJ = -12.0f * pars.y * invr6*invr6*invr2 + 6.0f * pars.z * invr6*invr2;
 float Fel = pars.w * sqrt(invr2) *invr2;

OPTION 2. Texture memory linear interpolation of all three force terms (with PME)
 float4 F; F.x = F.y = F.z = F.w = 0.0f;
 if (valid)
 F = tex1D(tFLUa, r * 0.05f); //-- tex1D is a CUDA function
 //-- Texture force lookup with built-in linear filtering (interpolation)
 //-- tFLUa is the table of force values (all three terms)
 float FLJ = pars.y * F.x + pars.z * F.y;
 float Fel = pars.w * F.z * valid;

OPTION 3. Quadratic interpolation of electrostatics with PME. Coefficients from texture
memory:
 float invr2 = 1.0f/r2;
 float invr6 = invr2*invr2*invr2;
 float FLJ = -12.0f * pars.y * invr6*invr6*invr2 + 6.0f * pars.z * invr6*invr2;

 int ind = r * KNOTSbyR; //-- KNOTSbyR = number of table knots / r-max
 float findx = float(ind);
 float dx = r - findx * InvKNOTSbyR; //-- InvKNOTSbyR = 1/ KNOTSbyR
 float4 F; F.x = F.y = F.z = F.w = 0.0f;
 if (valid)
 float4 c = tex1D(tELFLa, findx);
 //-- Texture lookup of interpolation coefficients (no filtering)
 //-- tELFLa is the table of coefficients for quadratic interpolation
 float Fel = (c.x + (c.y*dx + c.z)*dx) * pars.w;
 //-- quadratic interpolation where c.x,y,z are analogous to FLa,b,c

OPTION 4. Quadratic interpolation of electrostatics with PME. Coefficient from shared
memory:
 float invr2 = 1.0f/r2;
 float invr6 = invr2*invr2*invr2;
 float FLJ = -12.0f * pars.y * invr6*invr6*invr2 + 6.0f * pars.z * invr6*invr2;
 int ind = r * SH256_KNOTSbyR * valid; //-- SH256_KNOTSbyR = 256/r-max
 float findx = float(ind);
 float dx = r - findx * SH256_InvKNOTSbyR;
 float4 F; F.x = F.y = F.z = F.w = 0.0f;
 float Fel = (FLc[ind] + (FLa[ind]*dx + FLb[ind])*dx) * pars.w;

All options are completed with force accumulation at end of loop:
 iFx += (FLJ - Fel)*rx; iFy += (FLJ - Fel)*ry; iFz += (FLJ – Fel)*rz;

Supporting Information D: Serial profile of MOIL (single-precision)
Flat profile:

Output from gnu profiler (gprof) for solvated DHFR (section III.1). The
output was re-organized by function. For example, the non-bonded
interactions (when PME is used) are calculated by the following
functions: watwat_ewald, cdie_ewald, symwat_ewald and symcdie_ewald.
The calculation time therefore is the sum of these four.

Flat profile:
Each sample counts as 0.01 seconds.
 % cumulative self self total
 time seconds seconds calls s/call s/call name

Non bonded force – real space
 43.03 105.16 105.16 1350 0.08 0.08 watwat_ewald_
 14.78 141.28 36.12 1350 0.03 0.03 cdie_ewald_
 12.08 170.80 29.52 1350 0.02 0.02 symwat_ewald_
 0.04 243.55 0.09 1350 0.00 0.00 symcdie_ewald_

List generation
 6.92 187.72 16.92 150 0.11 0.16 nbondm_
 3.43 196.10 8.38 1950 0.00 0.00 nbmsym_
 2.60 202.46 6.36 150 0.04 0.04 nbond_
 0.09 241.69 0.21 1950 0.00 0.00 nbsym_

PME including FFT
 2.22 207.89 5.43 450 0.01 0.01 scalar_sum_
 2.08 212.97 5.08 450 0.01 0.01 grad_sum_
 1.56 225.79 3.81 450 0.01 0.01 fill_charge_grid_
 0.90 228.00 2.21 900 0.00 0.01 pubz3d_
 0.79 231.96 1.94 16588800 0.00 0.00 passf4_
 0.67 235.27 1.63 16588800 0.00 0.00 passb4_
 0.58 236.70 1.43 63547202 0.00 0.00 one_pass_
 0.07 242.08 0.18 450 0.00 0.00
get_bspline_coeffs_
 0.07 242.76 0.17 31773601 0.00 0.00 fill_bspline_

(M)SHAKE
 2.06 218.01 5.04 1200 0.00 0.00 shakept_
 1.62 221.98 3.97 1200 0.00 0.00 mshakpt_
 0.69 233.64 1.68 1200 0.00 0.00 shakevl_
 0.47 237.85 1.15 1200 0.00 0.00 mshakvl_

Bonded forces
 0.26 239.14 0.63 1350 0.00 0.00 etors_
 0.14 240.83 0.35 1350 0.00 0.00 etheta_
 0.09 241.90 0.21 1350 0.00 0.00 ener14_
 0.04 243.36 0.10 1350 0.00 0.00 ebond_

Subtract excluded forces
 0.27 238.51 0.66 1350 0.00 0.00 cdie_ewald_excl_
 0.16 240.11 0.39 16167657 0.00 0.00 ewforceexcl_

Verlet/RESPA
 0.16 240.49 0.38 3000 0.00 0.00 vel_step_
 0.05 243.15 0.12 1200 0.00 0.00 coord_step_

	

