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Chapter 1

Description of the evolutionary
algorithm

1.1 The evolutionary procedure

The aim of the algorithm is to obtain genetic networks that implement a given task encoded in a score
function. A starting collection of genetic networks is modified iteratively using repeated rounds of
“growth” and “selection”.

The starting collection of genetic networks is chosen to consist of 30 networks containing a fixed
number of genes. In the initial networks, there are no interactions between the different genes :
each of them produces initially its mRNAs and proteins at different rates but without any further
interactions.

In the growth phase, the number of genetic networks is doubled by adding to the original collec-
tion a mutated version of each genetic network. Mutations can simply consist in changes in kinetic
constants, such as mRNA or protein production or degradation rates. or, in a chemical constant de-
scribing gene regulation by a protein or an interaction between two proteins. They can also be real
evolutionary novelties that can change the network topology or the number of its components, like
the creation of a new transcriptional interaction between a protein and a gene promoter or the intro-
duction of a new post-transcriptional interaction.

Selection follows the growth phase. All the genetic networks are evaluated and ranked according
to a predetermined score function. The networks with scores in the top 50% are kept and the other
ones are deleted. The network collection thus regains its original size and is ready for another round
of growth and selection. The procedure is iterated for until a maximal allowed number of 1200 gener-
ations. To obtain bistable networks without being over-specific, we chose the score function to simply
require that the protein concentrations remained sufficiently different, as time evolved, between cells
starting from initial conditions with different imposed values of a given protein A, as detailed below.

Mutation rates are chosen in the present algorithm according to the mutation types. Simple or
activated phosphorylations are chosen for instance comparably more frequently than dimerizations
(see Table 1.1 for the precise probability of each type of modification). Moreover, initial conditions
and kinetic constants are kept under reasonable range by ignoring a mutation of a kinetic constant or
an initial condition outside the range [0.1, 20]. In this case, another mutation is chosen randomly for
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Multistability and cell-cell interactions 3

the network. And in the same vein, we restrict the number of transcriptional regulations, to 5 for evo-
lutionary simulations with the whole set of possible interactions and to 8 when only transcriptional
interactions were included, and the number of dynamical variables to 12. To assess, the influence
of these bounds, we performed simulations runs where these maximal numbers were doubled as
reported in the main text and in Fig. S4.3.

Fig. S4.1 shows for illustration two runs of simulations that lead to the creation of cell-autonomous
networks. The score of the ancestors of the final networks are also shown. It can be noted that they
the score of the ancestors of the final networks are not always the best in the population and can even
deteriorate for a few generations, although the best scoring network is always kept. We observed
generally, that the number of generation until convergence, when convergence occurred in within the
maximum allowed number of generations, decreased more slowly than 1/N when N, the number of
networks in the collection was increased.

Before providing further details of the algorithm impementation, we note that for computational
efficiency, the algorithm departs from biological evolution in several ways. The duplication with
mutations of the best scoring networks differs from reproductive fitness and, as a consequence, the
best-scoring networks of one generation always appear in the next generation. An important differ-
ence also comes from the choice of the score function that in our procedure directly evaluates the
network for its ability to produce different cell fates. In reality this most certainly comes about as a
by-product of a different selection pressure. These differences should certainly lead to caution about
drawing conclusions about biological evolution, beyond the interesting fact that networks that per-
form somewhat complex tasks can be produced rather easily by trial and error under the guidance of
a score function.

1.2 Description of transcriptional regulation

The dynamics of mRNA production (transcription) and protein production (translation) are governed
by ordinary differential equations.

The transcription of a gene a producing an mRNA ma is described as follows

dma

dt
= ρa(P1, · · · , Pn)− δama, (1.1)

where δa is ma degradation rate, ρa its production rate and it has been assumed that the transcription
of gene a is regulated by proteins (or protein complexes) P1, · · · , Pn. Explicitly, ρa is described with
a Hill-like function, as resulting from the competition between the different factors that regulate the
transcription of gene a (fast equilibrium dynamics on the promoter is assumed) :

ρa(P1, · · · , Pn) =
ρ0 + ∑j=1,··· ,n ρj(Pj/P(0,a)

j )h

1 + ∑j=1,··· ,n(Pj/P(0,a)
j )h

. (1.2)

In Eq. (1.2) ρ0 is the basal transcription rate of gene a, the concentration P(0,a)
j measures the concentra-

tion for half-activation or repression of protein Pj on the promoter of gene a, and ρj the rate that results

when transcription of gene a is fully dominated by Pj (i.e. for Pj � P(0,a)
j ). Note that if ρ0 < ρj, protein

Pj activates the transcription of gene a and represses it for ρ0 > ρj. The Hill coefficient for binding,
h, is taken here equal to 1, for non-cooperative transcriptional interactions and to 2 for cooperative
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ones, as specified in the text. The Hill function description is a simplification that can sometimes
prevent interesting behavior. For instance, neglecting time in the promoter binding/unbinding dy-
namics does not allow the “mixed-feedback loop” in its simplest version to oscillate (1) . Since we are
primarily interested in stationary states in the present paper, we assume this simplification is of no
consequence.

Protein production is more simply taken to be proportional to the mRNA concentration. That is,
the production of protein A from its mRNA ma is given by

dA
dt

= βAmA − δA A + IntA, (1.3)

where δA is the degradation rate of A. The last term IntA eventually describes the interaction of A
with other proteins such as complex formation or catalytic transformation to a modified form, an
example of which is provided in Eq. (1.11) below (for a protein B).

1.3 Post-transcriptional interactions

The possible post-transcriptional interactions in the algorithm can be of two possible types, namely
complex formation between two proteins (“dimerization” in Table 1.1), and modification of a pro-
tein, which can itself either happen at a fixed rate (“phosphorylation” in Table 1.1) or can depend
on the concentration of another described protein (denoted as “activated phosphorylation” in Table
1.1). These different possibilities are mathematically implemented as follows. In each case, we only
describe the terms which are added when the interaction is created and denote by dots the other
interactions which the proteins can participate in.

Dimerization between protein A and B to produce the complex C, is described by

dA
dt

= · · · − κAB AB (1.4)

dB
dt

= · · · − κAB AB (1.5)

dC
dt

= · · ·+ κAB AB− δCC (1.6)

where κAB is the complex formation rate and δC the complex degradation rate. These two constants
are chosen at random when the interaction is created, , as described above.

“Phosphorylation” of protein A, which produces the modified protein A∗, is simply described by

dA
dt

= · · · − κA A (1.7)

dA∗

dt
= · · ·+ κA A− δA∗A∗ (1.8)

where κA is the rate at which A is modified and δA∗ the rate at which the modified form is degraded.
Finally, ”activated phosphorylation” of protein A by protein B corresponds to

dA
dt

= · · · − κAB AB (1.9)

dA∗

dt
= · · ·+ κABBA− δA∗A∗ (1.10)
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The concentration of protein B is not modified in this case, in contrast to the “dimerization” case and
the rate of transformation of A into A∗ depends on the concentration of B in contrast to the simple
“phosphorylation” of A.

We did not investigate regulation at the level of translation or involving mRNA nor regulations
coming from other types of RNAs. This subject of much current interest lies beyond the focus of the
present study but it is certainly worth further computational investigations.

1.4 Cell-cell interactions

A central difference between the present algorithm and previous ones is the inclusion of cell-cell
interaction. In order to implement it in a simple way and to avoid being too specific, interaction
between cell 1 and 2 is introduced by taking protein A in cell 1 to induce the transformation of protein
B into protein B∗ in cell 2. This is mathematically represented by the following terms in B and B∗

equations in cell 2

dB2/dt = · · · − γ12 A1B2

dB∗2 /dt = · · ·+ γ12 A1B2 (1.11)

where A1 denotes the concentration of A in cell 1, B2 and B∗2 the concentrations of B and B∗ in cell 2,
and the dots are meant to represent the other interaction which increase or decrease the amount of B2
or B∗2 . As described in the text, in a few simulations the effects of receptor saturation and cooperativity
were investigated by replacing Eq. (1.11) by

dB2/dt = · · · − γ12 A1
Bσ

2
Bσ

0 + Bσ
2

dB∗2 /dt = · · ·+ γ12 A1
Bσ

2
Bσ

0 + Bσ
2

(1.12)

with B0 the concentration of B at half-maximum activation and the exponent σ was chosen to be 1
(saturation only) or 2 (saturation and cooperativity).

Note that we assume that A in the signal-sending cell influences the state of B in the signal-
receiving cell but that this interaction by itself has no effect in the signal-sending cell (but of course
when A is present in the signal-receiving cell and B is present in the signal-sending cell, the reciprocal
interaction exists in which the sending/receiving characters of the cells are inverted). In other words,
we do not consider here bidirectional signaling although it exists in some biological cases (like for
instance for Eph/Ephrin interaction).

As with other reactions, when an interaction was introduced in a simulation run A and B were
chosen at random among the proteins of the networks. As specified in the result section, A and B
were further constrained to be different in some evolutionary runs.

1.5 Evaluation procedure and score function

The evaluation procedure and score functions should obviously be chosen according to the desired
outcome. In order to select for networks producing different fates in different cells, the action of each
genetic circuit was here tested for its action in two cells.
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This test phase consisted in integrating the differential equations corresponding to the consid-
ered genetic circuit and evaluation of a chosen score function. The differential equation integration
required the specification of initial conditions. These were prescribed by first imposing the concen-
tration of protein A in each cell to a given value (dependent of the cell) and letting the other concen-
trations relax to these imposed values, by integrating the other concentrations starting from identical
initial values in different cells. The initial values of protein other than A were attached to each net-
work and let free to evolve in the course of the evolutionary simulations as other constants (see Table
1.1 for their respective probabilities of mutations). The different initial imposed values of A concen-
trations can be thought of as roughly mimicking different initial concentrations arising for instance
from interaction with a positional information gradient.

The score function is particularly important for the success of the evolutionary procedure. It
should provide a gradually improvable score and should also avoid being over-specific (like by re-
quiring precise values for some protein concentrations) which would impede the success of the simu-
lated evolution. To obtain bistable networks without being over-specific, we chose to simply require
that the protein concentrations remained sufficiently different, as time evolved, between cells starting
from initial conditions with different imposed values of protein A. This was implemented by first
keeping the dynamical variables within a defined range by assigning a drastically deleterious score
to networks producing mRNAs or protein concentration outside the [0.005, 500] range (in arbitrary
units).

Then a proximity between the expression profiles of a protein P in two different cells i and j was
defined by

Proxi,j(P) =
∫ T

0
Π(Pi(t), Pj(t)) dt (1.13)

with T the time over which the network dynamics was integrated (T = 300 in dimensionless units
unless otherwise specified) and Π the function defined by

Π(x, y) =

{
1− |x− y|/2 if |x− y| < 2,
0 otherwise.

When two different fates were desired, two cells 1 and 2 were considered to have different fates
(as assessed by measuring protein A concentration) when their protein expression profiles were never
close namely when Prox1,2 < 1.0.

1.6 Initial differences between the two cells during the test phase.

In our two-cell simulations, the initial concentrations of A were drawn at random in each evolution-
ary run in the same way as other protein concentrations and unchanged during the whole evolution-
ary run. All cells in one evolutionary run had the same initial concentrations of A. For the simulation
runs with a steeper gradient (Fig. S4.3), the same procedure was adopted but after the random
draw of the two initial A concentrations, the larger concentration was multiplied by 4 and the smaller
divided by 4.
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1.7 Network pruning

The raw networks observed once the convergence criterion was reached, were very often complex
and decorated with proteins or reactions unessential to the desired function. In order to try and au-
tomatically reduce the successful networks to their essential, we added an additional pruning phase.
While keeping the evolutionary procedure under the constraint of the score function, we let it run
for 500 additional generations. In this optimization mode, the possibility to add reactions or proteins
was removed in favor of protein and reaction elimination, and parameter adaptation. This automatic
pruning is illustrated in Fig. S3.1, which displays a bistable AAC network before and after automatic
pruning.

1.8 Implementation of the algorithm

The developed programs have been written in C++ and are available at https://github.com/hrouault/Genherite.
They have been executed on an octoprocessor Intel Xeon machine with 32 Go RAM.

The random number generation and ODEs integrations have been performed with algorithms
provided by the GNU Scientific Library. The random number generator used is the default Mersenne
Twister algorithm. The stepping function for ODEs integration makes use of the Runge-Kutta Prince-
Dormand method and step size control is achieved with the standard method proposed by the li-
brary. Parallelization is brought into play with multithreading. The program outputs the generated
networks in the dot file format for graph visualization.

Tables
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Table 1.1: Mutation rates

Mutations Relative rate
Initial condition modification 3.0

Reaction rate modification 2.0
Degradation rate modification 2.0

Promoter constants modification 2.0
Cell communication constants modification 2.0

Dimerization 0.6
Activated phosphorylation 0.6

Phosphorylation 1.2
Promotion 0.3

Reaction withdrawal 0.2
Cell communication insertion 0.25

Frequencies of the different mutations. When a network is mutated, first the mutation type is drawn
with a probability proportional to the rates indicated in the right column. Then the specific reaction
to be mutated is drawn at random among all the reactions of the chosen type. The chosen rates
ensure that mutations affecting the topology of the network are less frequent than changes in kinetic
constants. They also allow evolution to keep networks of a reasonable size. When a mutation affects
a kinetic constant or the initial condition, the affected constant is chosen at random among the whole
set of the network constants. The chosen constant is then multiplied by 22r−1 where r is a random
number uniformly distributed between 0 and 1. When reactions are added, the inputs are chosen
randomly among the existing dynamical variables and an output species is created if needed. When
a reaction withdrawal is drawn, with probability 1/2 removal of either a transcriptional regulation or
a post-transcriptional regulation is chosen. For a transcriptional regulation, one is chosen at random
among all the existing ones. For a post-transcriptional reaction, a protein species is chosen at random
among all the existing one and it is removed when it does not participate in any reaction besides its
own production (i.e. it does not regulate a gene or participate in the production of another protein).



Chapter 2

Mathematical analysis of different
networks

2.1 The auto-activation complexation network: a bistable switch

The auto-activation and complexation (AAC) switch is based on a protein A that activates the tran-
scription of its own gene and is able to bind another protein B in a complex. A simple description of
its dynamics can be based on the following two equations,

dA
dt

= ρA
A

A0 + A
− κAB− δA A (2.1)

dB
dt

= ρB − κAB− δBB (2.2)

Here, we have not explicitly described mRNA dynamics so that ρA and ρB are the rates of production
of protein A and B, κ is the AB complex formation constant and δA and δB the protein degrada-
tion constants. We have also assumed that protein A activates the transcription of gene a with half-
maximum activation at a concentration A0 and a Hill coefficient of one. Finally, the basal transcription
rate of a in absence of A has been assumed to be negligible, for simplicity.

In a stationary state, the time derivatives in Eq. (2.1,2.2) vanish. The concentration of B is therefore
a function of the concentration of protein A

B =
ρB

δB + κA
. (2.3)

The possible stationary concentrations of A are thus given by

ρe f f (A)− δA A = 0, (2.4)

in which we have found it convenient to introduce the effective production of free A (i.e. not com-
plexed with B) ρe f f (A) with

ρe f f (A) =
ρA A

A0 + A
− ρB A

AB + A
(2.5)

9
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We have also defined the concentration AB = δB/κ.
We consider first the limit AB � A0 which is easily understood intuitively. In this limit, which

can be achieved with realistic parameter values (1), the production of B ρe f f (A) is equal to zero when
ρA < ρB, that is when there are enough B produced to complex all produced A. On the contrary
when ρA > ρB, the effective production of A is simply diminished by the maximal complexation rate
ρB when the concentration of A is high enough to render ρe f f (A) ≥ 0,

ρe f f (A) = 0, for A < A0
ρB

ρA − ρB

ρe f f (A) =
ρA A

A0 + A
− ρB, for A ≥ A0

ρB
ρA − ρB

(2.6)

As emphasized in ref. (2, 3), this simple subtraction by complexation transforms the non-cooperative
activation of gene a into an ”ultrasensitive” activation function. Returning to Eq. (2.4), this effective
ultrasensitive activation results in the existence of multiple steady states for the AAC network, when
the degradation rate of A is low enough. More precisely, this holds when δA ≤ (

√
ρA/ρB− 1)2ρB/A0.

The previous approximate analysis simply shows that the AAC network possesses multiple steady
states for ρA > ρB when AB/A0 and δA are small enough. It is not difficult to refine the argument
and obtain the exact boundaries of the bistable domain. Taking A0 as the concentration scale, it is
clear that the shape of ρe f f (A) only depends on the two dimensional parameters r = ρA/ρB and
α = AB/A0,

ρe f f (aA0) = ρB a R(a), with R(a) =
r

1 + a
− 1

α + a
(2.7)

With these notations, Eq. (2.4), which determines the possible steady concentrations of A other than
0, reduces to

R(a) = δA A0/ρB (2.8)

An elementary calculation shows that the extremum of R for a > 0, when it exists, is located at a∗ =
(1− α

√
r)/(
√

r − 1). One concludes that Eq. (2.8) can have two positive solutions only when r > 1
and α < 1/

√
r. In this case, when a grows from 0 to a∗, R(a) increases from R(0) to R(a∗) and then it

decreases toward 0 when a grows beyond a∗1. Two solutions exist when R(0) < δA A0/ρB < R(a∗).
Finally, the parameter domain where the AAC network has three steady states, one with A = 0 and
two with A > 0, is given by

ρA > ρB,
√

ρA/ρB < κA0/δB, and ρA/ρB − κA0/δB < δA A0/ρB <
(
√

ρA/ρB − 1)2

1− δB/(κA0)
(2.9)

These conditions also imply that the steady state with A = 0 and the one with the largest concentra-
tion of A are stable as it is easily shown by linearization of Eq. (2.1) and Eq. (2.2). Thus, the conditions
of Eq. (2.9) indeed define the parameter regime in which the AAC network is bistable. The different
parameter regimes in the (ρA, ρB) plane are displayed in Fig. 1A.

As a final remark, we note that a bistable regime exists for the AAC network when the degradation
of the full AB complex is replaced by a catalytic modification or a catalytic degradation of A by B.

1When a∗ < 0, R(a) is monotonic and Eq. (2.8) can have at most one solution. For r < 1 and α > 1/
√

r, the other case
when a∗ is positive, R(a) decreases until it reaches a negative value R(a∗) and then grows again toward zero. Thus, in this
case, Eq. (2.8) cannot have two solutions for a > 0 since its r.h.s. is positive.
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For simplicity, we consider a non-degraded catalyst B. In this case, Eq. (2.2) is replaced by

dB
dt

= −κAB + ρmC (2.10)

dC
dt

= +κAB− ρmC (2.11)

where we have denoted by C the AB complex and by ρm the rate of production of the modified (or
degraded) form of A once the complex is formed. In a stationary state, the concentration of non-
complexed B proteins is

B =
ρmBT

ρm + κA
(2.12)

with BT the total B concentration. Eq. (2.12) is identical to Eq. (2.3) with the replacements (ρB ↔
ρmBT , δB ↔ ρm). One therefore deduces from the previous analysis that a bistable regime exists when
ρmBT < ρA < κ2 A2

0BT/ρm and the degradation rate of A lies in the range ρA/A0 − BTκ < δA <

(√ρA −
√

ρmBT)2/(A0 − ρm/κ).
In Fig. 1, the graph has been drawn for a dimensionless value of the complex formation rate equal

to 10 (κA0/δB = 10).

2.2 The mixed-feedback loop in the bistable regime

The mixed-feedback loop is a simple network based on two genes a and b with two interactions of
different kinds. On the one hand, protein A produced by gene a regulates the transcription of gene
b. On the other hand, it can form a transcriptionally inactive complex with protein B. The different
possible dynamical regimes of the MFL have been studied previously (1). Here, we limit ourselves
to the case depicted in Fig. 1B where protein A is a repressor of gene b transcription. In this regime,
the MFL can be studied without explicitly describing mRNA dynamics or the binding dynamics of
protein A to the promoter of gene b. This reduces the MFL dynamics description to the following two
equations,

dA
dt

= ρA − κAB− δA A (2.13)

dB
dt

= ρB
A0

A0 + A
− κAB− δBB (2.14)

where ρA and ρB are the rates of production of protein A and B, κ is the AB complex formation
constant and δA and δB the protein degradation constants. We have also assumed that protein A
represses the transcription of gene b with half-maximum repression at a concentration A0 and a Hill
coefficient of one, which is sufficient for bistability. Finally, the transcription rate of b in the fully
repressed state has been assumed to be negligible, for simplicity.

In a stationary state, the concentration of B is given as a function of the concentration of A by

B =
ρB A0

(A0 + A)(δB + κA)
(2.15)
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The production ρe f f (A) rate of free A is the total production rate of A diminished by the formation
rate of the complex between A and B,

ρe f f (A) = ρA −
ρB A

(1 + A/A0)(AB + A)
(2.16)

where we have introduced the concentration AB = δB/κ of protein A above which complexation with
A dominates over degradation for the dynamics of B. As stressed in ref. (2, 3), complexation gives
to ρe f f (A) a shape similar to what strong cooperativity would produce, which renders bistability
possible. The stationary concentrations of A are obtained when degradation of A and complexation
balance the production of A

ρA = δA A +
ρB A

(1 + A/A0)(AB + A)
(2.17)

Eq. (2.17) depends on three dimensionless parameters

rA =
ρA

δA A0
, rB =

ρB
δA A0

, η =
AB
A0

=
δB

κA0
. (2.18)

Bistability is possible when the right-hand-side (r.h.s) of Eq. (2.17) is non monotonic that is for

rB ≥ (1 + η1/3 + η2/3)3 (2.19)

In this regime, the r.h.s of Eq. (2.17) has an N-shape as a function of A. Bistability is achieved when
Eq. (2.17) has three roots, that is when ρA stands between the local maximum and minimum of the
r.h.s. of Eq. (2.17). Simple analytic expressions are easily obtained in the biologically relevant limit
AB � A0, that is η � 1. Then, one obtains for the lower limit of ρA, in dimensionless form,

rA ≥ 2
√

rB − 1 (2.20)

The upper limit is simply rA ≤ rB to zeroth order in η. Keeping the first η-correction one obtains

rA ≤ rB − 2η
√

rB(rB − 1) (2.21)

The two approximate expressions (2.20) and (2.21) have been plotted in Fig. 1B together with the
numerically determined exact boundary of the bistability domain for a dimensionless value of the
complex formation rate equal to 100 (κA0/δB = 100).

2.3 A bistable two-gene network based on purely transcriptional
non-cooperative interactions

When the interactions were restricted to be purely transcriptional and non-cooperative, the algorithm
repeatedly created the two-gene network shown in Fig. S4.2C. In this network, A transcriptionally
activates its own gene. In parallel with this direct activation loop, A also indirectly activates its own
gene by transcriptionally repressing its repressor B. We show, here, that this simple network can
indeed be bistable even with non-cooperative transcriptional interactions.
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The network dynamics can be described by the two equations

dA
dt

=
ρA A/A0

1 + A/A0 + B/B0
− δA A (2.22)

dB
dt

=
ρB

1 + A/AB
− δB B (2.23)

where, for simplicity, mRNA dynamics are not explicitly described, and we have taken the basal
production rate of A and the fully repressed production rate of B to be zero.

Can the simple system of eqs (2.22, 2.23) support multiple stable steady states? In a steady state,
the production of B is equal to its degradation, and the steady concentration of B is related to that of
A by

B(A) =
ρ0/δB

1 + A/AB
(2.24)

Given this relation, the steady concentration of A is either equal to 0 or obey the equation

f (A) ≡ ρA/A0

1 + A/A0 + B(A)/B0
= δA (2.25)

Linearization of Eq. (2.22) shows that the A = 0 solution is stable when the degradation rate of A is
larger than its production in presence of the maximal possible steady concentration of B, B = ρB/δB,
namely when

δA >
ρA/A0

1 + ρB/(δB/B0)
(2.26)

The non-zero steady concentrations of A are given by the solution of Eq. (2.25). The function on
the l.h.s of Eq. (2.25) decreases towards 0 when A grows. Given the simple form of f (A), a compu-
tation of its derivative shows that two different cases can be distinguished depending on the relative
magnitude of the two concentrations, A0 and AB, governing transcriptional activation and repres-
sion by A. When AB/A0 is large enough , f monotonically decreases starting from A = 0 while, for
small enough AB/A0, it begins by increasing at low A concentration before reaching a maximum
and eventually decreasing. A computation of the derivative of f straightforwardly gives the exact
criterion,

AB
A0

<
ρB

δBB0
(2.27)

When f decreases monotonically (i.e. when the inequality (2.27) does not hold), Eq. (2.25) shows that
a single non-trivial steady state exists as soon as δA < f (0), a condition which exactly corresponds
to the loss of stability for the A = 0 state, i. e. to the violation of Eq. (2.26). As explained below,
a simple linear stability calculation shows that the non-trivial state is stable. Therefore in the case
when f decreases monotonically , which corresponds to a situation where the network indirect loop
is hard to activate, the network has always a single stable state, either A = 0 when Eq. (2.26), holds
or a non-trivial one with A 6= 0 that replaces it otherwise.

When the condition (2.27) is obeyed, the network properties are more interesting. As A grows the
function f grows until A = A∗, reaches its maximum f (A∗) and then decreases toward 0, with

A∗ = AB

(√
ρB

δBB0

A0

AB
− 1

)
(2.28)
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Therefore, there are two supplementary fixed points, in addition to the trivial A = 0 one, when

f (0) =
ρA/A0

1 + ρB/(δBB0)
< δA < f (A∗) =

ρA/A0

1 + 2
√

(ρB/δBB0)(AB/A0)− AB/A0
(2.29)

Linear stability of a non-trivial fixed point As is simple to perform. The trace of the 2× 2 stability
matrix is always negative, while its determinant has the sign of − f ′(As). This readily shows that
the non-trivial fixed points with the larger value of A is stable (the determinant is positive) while the
other one is unstable.

In summary, the simple network of Fig. S4.2C is bistable in the parameter regime where both
Eq. (2.27) and (2.29) are obeyed.

Before concluding, we note a feature of this circuit that surprised us, at first. When looking for
bistable circuit based on non-cooperative transcriptional interactions, simulated evolution repeatedly
produced the network of Fig. S4.2C where an indirect activation loop is made by a chain of two
repressions. We expected that bistability could also be produced by having instead an indirect loop
made of two activations but this never appeared in the simulations. Two non-cooperative activations
in fact cannot produce bistability, when transcriptional regulation is described by Eq. (2) of the main
text, where different factors compete for the same binding site. This can be simply seen as follows.

In the general case, the equation for A is

dA
dt

=
ρ0 + ρA A/A0 + ρBB/B0

1 + A/A0 + B/B0
− δA A (2.30)

The steady states are determined when production equals degradation of A, that is for

ρ0/A + ρA/A0 + ρBB(A)/(AB0)
1 + A/A0 + B(A)/B0

= δA (2.31)

where B(A) is the stationary concentration of B for a given concentration of A. When A activates
the transcription of B, B(A) is an increasing function of A as well as the denominator of the l.h.s. of
Eq. (2.31). However, when A activates the transcription of B in a non cooperative fashion, B(A)/A is
always a decreasing function of A 2. Therefore, the numerator of l.h.s. of Eq. (2.31) is also a decreasing
function of A (since it is a sum of two decreasing functions) as well as the l.h.s of Eq. (2.31). There-
fore, Eq. (2.31) cannot have multiple solutions and two non-cooperative activations cannot produce a
bistable circuit in the case of Fig. S4.2C.

2.4 Simple bistable two-cell networks

2.4.1 Interaction between homologous proteins in the signal-sending and signal-
receiving cells

In the simplest network of two interacting cells produced by the evolutionary algorithm, a single
protein that we call A both ”sends” the signal in one cell and ”receives” it in the other cell. In this

2In the non-cooperative case, the stationary concentration of B reads B(A) = ρb
0+ρb

A A/AB
1+A/AB

. The function B(A)/A =
ρb

0/A+ρb
A/AB

1+A/AB
is readily seen to be decreasing as a ratio of decreasing functions
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case, the two-cell network dynamics is described by the following two equations

dA1

dt
=

ρ0 A0 + ρ1 A1

A0 + A1
− γA1 A2 − δA1 (2.32)

dA2

dt
=

ρ0 A0 + ρ1 A2

A0 + A2
− γA1 A2 − δA2 (2.33)

where A1 and A2 denote the concentrations of protein A in the two cells. For simplicity, we have not
explicitly described mRNA dynamics so that ρ0 denote the basal rate of production of protein A, ρ1 its
maximum production rate, δ its degradation constant and γ quantify the strength of the interaction
between the two cells. We have also assumed that protein A activates the transcription of gene a with
half-maximum activation at a concentration A0 and a Hill coefficient of one.

We begin by assuming that the basal transcription rate of a in absence of A is negligible. That is,
we begin by taking ρ0 = 0 and study afterwards the changes brought by a non-zero ρ0.

We first consider the possible stationary states of Eq. (2.32,2.33). The l.h.s. of Eq. (2.32) vanishes
when either A1 = 0 or

A2 =
1
γ

[
−δ +

ρ1

A0 + A1

]
(2.34)

Similarly, the stationarity of Eq. (2.33) gives either A2 = 0 or the equation obtained by exchanging the
role of A1 and A2 in Eq. (2.34).

A1 =
1
γ

[
−δ +

ρ1

A0 + A2

]
(2.35)

When ρ1/A0 < δ, the production rate of A is smaller than its degradation rate for non-interacting
cells. This is a fortiori true when they are interacting and therefore A1 = A2 = 0 is the only stationary
state.

When ρ1/A0 > δ, the stationary state A1 = A2 = 0 is unstable and there are three other possible
states, the two asymmetric states (A1 = 0, A2 = ρ1/A0 − δ) and (A1 = ρ1/A0 − δ, A2 = 0), and the
symmetric state obtained by the intersection of the curves given by Eq. (2.34) and (2.35). The curve
given by Eq. (2.34) starts for A1 = 0 at A2 = Ai with

Ai =
1
γ

[
−δ +

ρ1

A0

]
. (2.36)

It ends when A2 vanishes for A1 = A f with A f = ρ1/A0 − δ. Two cases can be distinguished
depending upon whether γ < δ/A0 for which Ai < A f or γ > δ/A0 for which Ai > A f . It is not
difficult to check that in the former case the symmetric state is stable and the asymmetric states are
unstable whereas for γ > δ/A0 the reverse is true. The cells therefore spontaneously assumes two
different states as soon as the interaction strength γ is greater than a critical γc = δ/A0. At γ = γc
itself, the bifurcation described by Eq. (2.32,2.33) (for ρ0 = 0) is non-generic since Eq. (2.34) and (2.35)
coincides and there is a line of fixed points.

For ρ0 6= 0, the dynamics is qualitatively similar in that there is a symmetric stationary state that
is stable for small γ and unstable for large γ. In this symmetric state, the concentration As of A in the
two cells obeys

γA2
s + δAs =

ρ0 A0 + ρ1 As

A0 + As
(2.37)

Comparison of the two sides of Eq. (2.37) shows that As always exists and is uniquely determined.
When As increases from zero to infinity, the l.h.s of Eq.(2.37) increases from zero to infinity with an
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increasing slope whereas its r.h.s increases from ρ0 > 0 to ρ1 with a decreasing slope. It is therefore
clear that these two functions cross at a unique point. Moreover, since the l.h.s of Eq.(2.37) is an
increasing function of γ, As decreases when γ increases and actually approaches 0.

The stability of this symmetric solution is easily studied by linearization of Eqs. (2.32,2.33). The
symmetry between the two cells implies that the two eigenmodes are either symmetric or antisym-
metric with real eigenvalues. The two modes are stable when γ = 0 (non-interacting cells) and for γ
small enough. When the interaction γ between the cells is increased, it is found that the antisymmet-
ric mode always becomes instable before the symmetric one. This happens when the corresponding
eigenvalue crosses zero i.e for

λa =
(ρ1 − ρ0)A0

(A0 + As)2 − δ = 0. (2.38)

As stated, for γ = 0, λa is negative and the symmetric state is stable. When γ increases, As decreases
and λa increases. It crosses zero at a finite γ = γc, i.e. Eq. (2.38) is satisfied, if and only λa is positive
for As = 0. That is, a necessary condition for instability is

ρ1 − ρ0 > A0δ. (2.39)

When the condition (2.39) is realized, the symmetry between the two cells is spontaneously broken
when γ > γc. It is not difficult to see from Eq.(2.37,2.38) that when ρ1 becomes sufficiently large,
the finite basal production rate ρ0 becomes irrelevant and γc tends toward δ/A0, its ρ0 = 0 value.
In the other limit, when ρ1 tends towards its minimum value ρ0 + A0δ, larger and larger interaction
strengths are needed to break the symmetry between the two cells with γc diverging as

γc ∼
4δ2ρ0

(ρ1 − ρ0 − A0δ)2 (2.40)

Close to the bifurcation line, a weakly nonlinear calculation shows that the amplitude Fa of the anti-
symmetric mode obeys an equation of the form

d
dt

Fa = λaFa + κF3
a (2.41)

with κ proportional to δ/A0 − γc and of the same sign. Therefore, κ is negative and the transition is
continuous (of the so-called ”supercritical pithfork” type) since, for ρ0 6= 0, γc is larger than δ/A0,
the critical interaction strength for a zero basal protein production rate. The transition is however
unusually sharp for ρ1 � ρ0 since κ vanishes in this limit, a trace of the anomalous bifurcation
behavior for ρ0 = 0.

On Fig. 3, the plot has been drawn in dimensionless units by measuring the values of ρ1 and γ
relative to the relevant effective production rate δA0 and effective interaction δ/γ. The basal protein
production rate has been chosen such that ρ0/(δA0) = 0.4. For comparison, the dashed lines mark
the boundary of the bistability domain when ρ0 = 0.

2.4.2 Interaction between heterologous proteins in the signal-sending and signal-
receiving cells: a network purely based on post-transcriptional interactions

One the most commonly produced network bistable two-cell networks with an interaction between
different proteins in the signal-sending and signal-receiving cell only relies on post-transcriptional
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interactions. As depicted in Fig. 4A, signal transmission is obtained by the transformation of protein
B into the modified form B∗ in the signal-receiving cell due to the presence of A in the signal-sending
cell. Quite remarkably, evolutionary simulations show that the simple addition of a complexation
between A and B∗ is sufficient to create a parameter regime in which the network is bistable. In
order to show it explicitly and better understand the dynamics of this basic network, we analyze it
mathematically in the following. The network dynamics is described by the following three equations
in cell 1

dA1

dt
= ρA − κA1B∗1 − δA A1 (2.42)

dB1

dt
= ρB − γA2B1 − δBB1 (2.43)

dB∗1
dt

= γA2B1 − κA1B∗1 − δB∗B∗1 (2.44)

where A1 and A2 denote the concentrations of protein A in the two cells and B1 and B∗1 , the con-
centrations in cell 1 of the two forms of protein B. Of course, the analogous set of equations with
permuted indices 1 and 2, describes the dynamics in cell 2. For simplicity, we have not explicitly
described mRNA dynamics so that ρA and ρB denote the production rate of protein A and B. The
protein degradation constants are respectively, δA, δB and δB∗ and γ and κ respectively quantify the
strengths of the interaction between the two cells and the kinetics of complex formation between A
and B∗.

In order to analyze the network dynamics described by Eq. (2.42,2.43,2.44), we first determine the
steady concentrations for two cells in identical states and then analyze the stability of this symmetric
state. In a steady symmetric state, one has

B =
ρB

γA + δB
(2.45)

B∗ =
γAB

κA + δB∗
(2.46)

with A determined by

ρA − δA A = ρB
γ κA2

(γA + δB)(κA + δB∗)
(2.47)

Eq. (2.47) clearly has a unique positive solution since, as A increases from zero, the l.h.s of Eq. (2.47)
decreases linearly from ρA while its r.h.s increases monotonically from zero to ρB.

To perform the stability analysis of this steady state in a simple but relevant limit, we focus on
the case when complexation is the fastest process. That is, we suppose that κ is large enough so
that B∗ (Eq. (2.44)) quickly reaches the steady value B∗1 ' γA2B1/(κA1), while A and B protein
concentrations evolve on a slower time scale. In this fast complexation limit, the dynamics reduce to
that of the two-dimensional system

dA1

dt
= ρA − γA2B1 − δA A1 (2.48)

dB1

dt
= ρB − γA2B1 − δBB1 (2.49)
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The stability of the steady symmetric solution is easily studied by linearization of Eqs. (2.48,2.49).
The symmetry between the two cells implies that the two eigenmodes are either symmetric or an-
tisymmetric. The symmetric mode is found to be always stable. For the antisymmetric mode, the
linearization of Eqs. (2.48,2.49) is obtained by writing the protein concentrations under the form,
A1 = A + a, B1 = B + b, B∗1 = B∗ = B∗ + b∗, A2 = A − a, · · · . The linear evolution around the
symmetric steady values A, B, B∗ (Eqs. (2.45-2.47)), then reads,

da
dt

= (γB− δA)a− γAb (2.50)

db
dt

= γBa− (γA + δB)b (2.51)

Stability of the symmetric state requires that the two eigenvalues of the linear dynamics matrix L
have negative linear parts, namely that their sum tr(L) is negative and their product det(L) positive

tr(L) = γB− γA− δA − δB < 0 (2.52)
det(L) = −δBγB + δAγA + δAδB > 0 (2.53)

Two cases can be distinguished depending on the relative values of the degradation constants of A
and B.

We consider first the case δB > δA. In this case, division of Eq. (2.53) by δA readily shows that the
determinant condition (2.53) is stronger than the condition (2.52) on the trace. The stability boundary
is thus given by the vanishing of det(L) which can be written with the help of Eq. (2.45,2.47)

ρB = ρA +
δBδA

γ
(2.54)

Below the line (2.54), the linear system (2.50, 2.51) has two real and negative eigenvalues. When the
line (2.54) is traversed from below, one of the two eigenvalues becomes positive rendering the sym-
metric state unstable. This corresponds to the appearance of bistability and spontaneous symmetry
breaking between the two cells.

Before leaving the analysis of the case δB > δA, we note a subtlety. The stability boundary (2.54)
is obtained in the limit in which κ is large and all the other parameters are fixed. The elimination of
B∗ is no longer valid when the steady-state value of A (Eq. (2.47)) is small enough so that κA ∼ 1,
that is for ρA ∼ 1/κ. An alternative reduction of Eq. (2.42,2.43,2.44) can be performed in the limit of
large κ and small ρA ∼ 1/κ. By supposing that A1 ∼ 1/κ and B∗1 ∼ 1/κ, one obtains that B1 quickly
reaches the steady value B1 = ρB/δB and can be eliminated from the dynamics. The linear stability
boundary of the remaining two-dimensional systems for the symmetric and antisymmetric A and B∗

modes can be performed as above and it provides the stability condition

ρB =
δBδA

γ

(
ρA + δAδ∗B/κ

ρA − δAδ∗B/κ

)2
(2.55)

Finally, Eq. (2.54) and (2.55) can be combined into a uniform approximation of the stability boundary

ρB = ρA +
δBδA

γ

(
ρA + δAδ∗B/κ

ρA − δAδ∗B/κ

)2
(2.56)

Eq. (2.56) is shown in Fig. 4B together with the exact boundary of the bistable domain.
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When δB < δA, the determinant condition (2.53) is no longer stronger than the trace condition
(2.52). It is therefore possible than the symmetric state looses stability with tr(L) becoming positive.
This corresponds to the real part of two complex eigenvalues becoming positive and to the appear-
ance of oscillations. The condition tr(L) > 0 can be translated on the parameter conditions

ρA < ρb +
δA − δB

2

√
(δA/γ)2 + 4ρB/γ− δA(δA + 3δB)

2γ
(2.57)

For fast complexation between A and B∗, linear analysis thus delimits the oscillatory region as the
region bounded by Eq. (2.57) and Eq. (2.56) (i.e such that det(L) > 0). A dynamical trace with cells
oscillating in antiphase is shown in Fig. 4C.

On Fig. 4, the kinetic parameters used to draw the graph are δB∗ = 1, γ = 1, κ = 10. For (C) :
δA = 1 > δB = 0.25 with ρA = 2, ρB = 3, and the other kinetic parameters as in B.



Chapter 3

Description of the different networks

We display here networks as they were created by our evolutionary algorithm. We use a more abstract
notational convention to be able to display all the parameters that are required to simulate them. This
provides a full description for all the networks that were displayed in the figures of the main text.
Please note that we reproduce here, the networks as they were created by the evolutionary algorithm.
The labels on the genes and proteins may thus be different from the labels in the figures of the main
text (for instance, the two genes in the AAC network are denoted a and b in Fig. 1, but in the example
displayed in Fig. S3.2, evolution used gene a and c to create the corresponding network).

Our notational conventions are as follows (an explicit example is provided below):
- upper red boxes display the different genes as well as the parameters (ρ, δ, α) describing basal
mRNA production (ρ), mRNA stability (δ), and translation efficiency (α),
- ovals enclose the corresponding proteins and their degradation rates (δ),
- arrows describe regulatory interactions and their strengths. An arrow from an oval to a box describes
a transcriptional regulation of the boxed gene by the protein in the oval, with (K, ρ) the dissociation
constant and activated (or repressed) transcription rate and (for gene a and protein Pj, K = (P(0,a)

j )−h

and ρ = ρj with the notations of Eq. (2) of the main text). Hill coefficients are equal to one in all figures,
except when otherwise specified. Arrows converging from two ovals denote a post-transcriptional
interaction between two proteins, that is either a complex formation (solid arrows) or a catalytic mod-
ification of one of the protein (indicated by a solid arrow) by another (indicated by a dashed arrow).
The kinetic constant for this interaction is shown at the arrow ends and another arrow points to the
oval corresponding to the formed entity (the complex, denoted by concatenating the name of the two
constitutive proteins, or the modified protein, denoted by the addition of a star to the name of the
mother protein).

As an example for the convenience of the reader, we explicitly provide the equation corresponding
to the AAC switch displayed in Fig. S3.1B with am and em the concentrations of the two mRNAs
corresponding, to the two genes a and e, A and E the concentrations of the two proteins and AE the

20
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concentration of their complex.

dam

dt
=

0.19 + 9× 2.1 A
1 + 2.1 A

− 1.8 am (3.1)

dem

dt
= 2− 1.8 em (3.2)

dA
dt

= 1.1 am − 0.1A− 1.4 A× E (3.3)

dE
dt

= 0.47 em − 0.2 E− 1.4 A× E (3.4)

dAE
dt

= 1.4 A× E− 0.1 AE (3.5)

a
ρ=0.42, δ=1.9, α=1.2

A, δ=0.1

b
ρ=1.3, δ=0.49, α=1

B, δ=0.41

e
ρ=1.9, δ=2.1, α=0.37

E, δ=0.19

K=0.66
ρ=1

1.8 0.56

0.92

K=0.44
ρ=4.1

AE, δ=0.11

2.3

AE*, δ=0.8

EA, δ=0.34

BAE, δ=0.26

a
ρ=0.19, δ=1.8, α=1.1

A, δ=0.1

e
ρ=2, δ=1.8, α=0.47

E, δ=0.2

K=2.1
ρ=9

1.4

AE, δ=0.1

A B

Figure S3.1: Examples of network pruning performed by the algorithm. A) A cell-autonomous
bistable network after convergence but before the pruning phase. B) The same network after the
pruning phase. Note that since evolution proceeds during the pruning phase, the networks kinetic
parameters are modified during the pruning phase and some of them are different after and before
pruning.
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a
=0.13, =0.33, =0.65

A, =0.1

c
=1.2, =1.8, =3.2

C, =0.64

K=0.11
=4.1

3.4

AC, =0.38

a
=2.6, =1.3, =3.3

A, =0.1

d
=0.59, =0.83, =2.2

D, =1.5

3.6

K=20
=0.13

AD, =0.36

Figure S3.2: Examples of a AAC network (left) and Mixed-Feedback-Loop (right) created by the
algorithm.

a
=0.2, =7.1, =0.25

A, =0.12

K=0.17
=20

a
=2.8, =4, =0.46

A, =0.1

d
=4.2, =0.39, =0.49

D, =0.35

K=2.4
=0.1

K=0.1
=0.19

a
=0.24, =3, =2.3

A, =0.1

c
=4.6, =0.5, =1.3

C, =0.72

K=0.1
=13

K=0.17
=0.63

K=1.3
=0.13

Figure S3.3: Examples of bistable purely transcriptional networks corresponding to the networks of
Fig. 1 in the main text. Transcriptional interactions have Hill coefficients equal to 2 for the two top
networks.
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a
=0.64, =0.91, =0.27

A, =0.12

K=2.6
=4.4

1

A*, =1.5

Figure S3.4: An example of the simplest network, pictured in Fig. 3 in the main text, for which
interactions allow two identical cells to be in different states.
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a
=2, =0.79, =1.6

A, =0.13

e
=2.2, =0.41, =1.2

E, =1.7

0.71

1.1

E*, =0.19

EA, =0.1

Figure S3.5: An example of the type 1 created bistable network displayed in Fig. 4. In the example
shown, the interaction takes place between A, in the signal-sending side, and E, in the signal-receiving
side.



Multistability and cell-cell interactions 25

a
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d
=0.39, =0.32, =4.8

D, =0.21

e
=0.58, =0.52, =3.6

E, =1.7

0.27
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3.6

DE, =0.22

DEA, =0.25 D*, =2.4

a
=9.8, =0.54, =0.5

A, =0.14

d
=0.45, =2.1, =2

D, =1.2

e
=4.5, =0.73, =1.8

E, =0.29

K=0.31
=20

22 1

ED, =0.15A*, =1.2

Figure S3.6: Created examples of the type 2 networks displayed in Fig. 5 in the main text.
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Figure S3.7: Created examples of the type 3 network displayed in Fig. 6 in the main text. Note that
the transcriptional inhibition by the modified signal-receiving protein is actually implemented by a
dimer of proteins D∗ in the shown bottom-left network .
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Supplementary figures

27
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Figure S4.1: Examples of score evolutions in two simulation runs. The score evolution is shown
in two evolutionary simulations runs leading to the creation of cell-autonomous bistable networks.
(A, B) The score of each network in the evolving population is shown as a black dot. The red line
shows the scores of the ancestors of the final network. The score evolution during 16 generations is
enlarged in panel B insert to show the non-monotonic variation of these ancestor scores. (A’,B’) The
final networks in the two runs displayed as explained above with all their kinetic constants.
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Figure S4.2: Simple bistable networks purely based on transcriptional interactions. (A) Simple
autoactivation loop. (B) Repression of a repressor. (C) Auto-activation and repression of a repressor.
While the designs shown in A and B require Hill coefficients greater than one, the network shown in
C is bistable even when all transcriptional interactions are described by Hill coefficients equal to one.
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Figure S4.3: Two cell network statistics for larger maximal numbers of allowed proteins and in-
teractions. Same as Fig. 2 for simulation runs in which a larger maximal number of proteins and
regulations were allowed (see the main text and section 1).
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Figure S4.4: Two cell network statistics for a steep initial gradient. Same as Fig. 2 but for steep
initial gradient of A (see the main text and section 1.6).
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