
Atomistic Study of the Long-Lived Quantum Coherences in the 
Fenna-Matthews-Olson Complex 

Sangwoo Shim, Patrick Rebentrost, Stéphanie Valleau, and Alán Aspuru-Guzik 

Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 
 



Supporting Material



2

I. HIERARCHY EQUATION OF MOTION METHOD AND COMPARISON TO

MD-METHOD

In this section, we will briefly describe the HEOM approach. The interested reader can
find the details in previously published work [1, 2].

The total quantum Hamiltonian can be partitioned in its system and bath components
as

H = HS +HB +HSB, (1)

where the bath is modeled by a series of harmonic oscillators as HB =
∑7

m=1

∑NmB

i=1 Tmi +
1
2
mmiω

2
miq

2
mi which represent the phonon modes of the environment (NmB modes coupled to

each of the seven sites m) and the modes of different sites are assumed to be uncorrelated. In
the interaction picture, one can write the evolution of the system density matrix by tracing
over the bath degrees of freedom and assuming factorized initial conditions as

ρ̃S (t) = ŨS (t) ρ̃S (0) (2)

where

ŨS (t) =

〈
T← exp

(
− i
~

∫ t

0

dt1L̃SB (t1)

)〉
B

(3)

and L̃SB (t) is the system-bath Liouvillian. Carrying out the cumulant expansion and using
Wick’s theorem for the Gaussian fluctuations one can obtain the following equation of motion
of the system density operator

ρS (t) = − i
~
LSρ (t) +

7∑
m=1

Φmσ
δm (t) (4)

where δm = (δ1m, δ2m, ..., δmm, .., δ7m) = (0, 0, ..., 1, ..., 0), Φm = i |m〉 〈m|× and the auxiliary
operators σ (t) in the interaction picture are defined as

σ̃(n1,n2,...,n7) (t) = T←
7∏

m=1

[∫ t

0

dt1e
−γm(t−t1)Θ̃j (t1)

]nm

exp

[∫ t

0

dt1W̃m (t1)

]
ρ̃S (0) . (5)

Such auxiliary operators evolve in time as

∂

∂t
σ(n1,n2,...,n7) (t) = − i

~
LS −

∑
m

nmγmσ
(n1,n2,...,n7) (t) (6)

+
∑
m

Φmσ
(n1,...,nm+1,..,n7) (t) +

∑
m

nmΘmσ
(n1,...,nm−1,...,n7). (7)

This hierarchy theoretically continues to infinity but generally one can truncate it after a
finite number of auxiliary operators and reach convergence.
The HEOM equations are not time local and therefore the phonon modes of the bath for
each site are influenced by the electronic states of the chromophore at that site. Hence,
the dynamics also explicitly includes site-dependent reorganization processes of the bath.
Such effects are not explicitly included in the MD-method because the energy trajectories
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are obtained from the one-way interaction of the bath with the system. Furthermore, the
MD bath is a ground state equilibrium bath while the HEOM includes a non-equilibrium
excited state bath. Finally, the MD method does not explicitly contain a memory kernel
which could take into account non-Markovian effects. Nonetheless, it appears that the MD-
method can reproduce correctly the experimentally observed dynamic energy transfer time
scales. One could therefore argue that the reorganization processes are not dominant for
the FMO complex dynamics. This argument is further supported by the fact that the MD
dynamics are very similar to the HSR model, described in the next section, which does not
explicitly include any reorganization energy.

II. HAKEN-STROBL-REINECKER MODEL

The Haken-Strobl-Reinecker model is a markovian model in which the environment is
described by classical stochastic variables [3, 4]. We assume that thermal fluctuations of the
environment couple to the chromophores by the electron-phonon Hamiltonian:

HSB(t) =
∑
m

qm(t)|m〉〈m|, (8)

where the qm(t) describe stochastic bath fluctuations. Here, we consider only diagonal fluc-
tuations which are typically larger than fluctuations of the inter-molecular couplings [5]. The
random variables qm(t) are taken to be unbiased Gaussian fluctuations, with 〈qm(t)〉 = 0 and
a two-point correlation function:

〈qm(t)qn(0)〉 = δmnδ(t)γm, (9)

where γm is the site-dependent dephasing rate. In our simulations, such rates are taken
directly from the MD results as in Eq (8) of Section IIIB. We assume that fluctuations at
different sites are uncorrelated and that the phonon correlation time is small compared to
the system timescales. With these assumptions, one obtains the Haken-Strobl equation for
the density operator in the Schrödinger picture as [3, 4]:

ρ̇(t) = − i
~

[HS, ρ(t)] + Lφ(ρ(t)), (10)

where the pure-dephasing Lindblad operator is given by:

Lφ(ρ(t)) =
∑
m

γm[Amρ(t)A†m −
1

2
AmA

†
mρ(t)− 1

2
ρ(t)AmA

†
m]. (11)

with the generators Am = |m〉〈m| and pure dephasing rates γm. This Lindblad equation leads
to exponential decay of all coherences in the density operator and to an equal distribution
of populations in the inifinite time limit.
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FIGURE LEGENDS

Figure 1

Simulated linear dichroism and circular dichroism spectra at 300K.
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